PETRI NET SUPERVISORS FOR
DISCRETE EVENT SYSTEMS

A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

By

John O. Moody, B.S.E.E., M.S.E.E.

Panos J. Antsaklis, Director

Department of Electrical Engineering
Notre Dame, Indiana
April, 1998
Supervisory control is the process of limiting the actions of a plant, normally described as a discrete event system (DES), to a set of safe, allowable, or desirable behaviors. DES models may have an application-specific specialized form, but are generally described as automata or Petri nets. The benefits of Petri net models over automata include the handling of concurrent events, a more compact representation of a larger reachable state space, and increased complexity of possible system behaviors.

A method is developed here for enforcing logical intersections and unions of linear predicates on the reachable state space of a Petri net plant. The control computation, based on the well understood concept of Petri net place invariants, is straightforward and computationally inexpensive. The resulting feedback controller is itself a Petri net, providing a unified plant/controller model description that facilitates analysis, simulation, verification, and implementation.

The most difficult problems in supervisory control involve designing controllers when certain events in the plant can not be inhibited or can not be sensed by an observer. The theoretical implications of uncontrollable and unobservable transitions are explored here in light of invariant based controllers. Computational techniques are developed for generating control laws and supervisors as well as means of characterizing all feasible Petri net controllers under these conditions.

The practical utility of the constraints that these invariant based controllers can
realize is thoroughly explored. The method is shown to be useful for enforcing a wide range of forbidden state problems, handling the allocation and use of finite resources, avoiding deadlock and insuring liveness, enforcing direct and indirect conditions on allowable plant events, realizing logical predicates on plant behavior, and handling constraints involving real time.

Examples are provided throughout the text to illustrate and motivate the various control techniques and applications. Larger examples that incorporate the use of multiple techniques are collected at the end of the dissertation.
for my father,
Peter R. Moody, Jr.
TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS xii

ACKNOWLEDGMENTS xv

1 INTRODUCTION 1

2 PETRI NETS 7

2.1 Introduction .. 7
2.2 Petri Net Definitions 8
2.3 Structural Invariants 14
2.4 Siphons and Traps 16
2.5 Classes of Petri Nets 21
2.6 Petri Nets and Automata 23
 2.6.1 Formal Languages 23
 2.6.2 DES Control 28
2.7 Petri Nets in Control 31

3 INVARIANT BASED CONTROL DESIGN 36

3.1 Introduction 36
3.2 Monitor Based Supervisors 39
3.3 Supervisor Synthesis using Place Invariants 43
3.4 Maximally Permissive Supervision 49
3.5 Disjunctions of Linear Constraints 51

4 UNCONTROLLABLE AND UNOBSERVABLE TRANSITIONS 60
4.1 Introduction ... 60
4.2 Uncontrollable Transitions .. 62
4.3 Unobservable Transitions ... 64
4.4 Constraint Transformations 65
4.5 Vector Discrete Event Systems 69
4.6 Petri Net Modeled Supervisors 77

5 CONTROLLER SYNTHESIS FOR PLANTS WITH UNCONTROLLABLE AND UNOBSERVABLE TRANSITIONS 92
5.1 Introduction ... 92
5.2 Generating Constraint Transformations 93
 5.2.1 An Integer Linear Program for calculating R_1 and R_2 93
 5.2.2 Matrix Row Operations 96
5.3 Structure of Admissible Constraints and Controls 102
 5.3.1 Characterization of Admissible Constraints 103
 5.3.2 Constraint Transformations for Unobservability 105
5.4 Constraint Transformations and Supervisor Synthesis 106
 5.4.1 Illustrations of Issues 106
 5.4.2 Generation of Nonconvex Control Laws 111
 5.4.3 Supervisor Synthesis Algorithm 114

6 CONTROL SPECIFICATIONS 120
6.1 Introduction ... 120
6.2 Modeling of Finite Resources 122
6.3 Deadlock Avoidance ... 123
 6.3.1 Introduction ... 123
 6.3.2 Structural Conditions for Liveness 125
 6.3.3 A Sufficient Test for Liveness 128
 6.3.4 Deadlock Avoidance in Manufacturing Systems 136
 6.3.5 Deadlock Avoidance through Supervisory Control 140
6.4 Equality Constraints 148
6.5 Constraints involving the Firing Vector 150
 6.5.1 Direct Realization 151
 6.5.2 Indirect Realization 157
6.6 Logical Constraints on System Behavior 161
6.7 Constraints Involving Time 165
6.8 Remarks on the Limits of the Constraint Inequality 177

7 EXAMPLE APPLICATIONS .. 187
 7.1 Introduction .. 187
 7.2 The Cat and Mouse Problem 188
 7.2.1 Supervision with all transitions controllable 188
 7.2.2 Introduction of uncontrollable transitions 193
 7.3 Automated Guided Vehicle Coordination 195
 7.4 The Unreliable Machine 200
 7.4.1 Plant Model .. 200
 7.4.2 Resource and Safety Constraints 202
 7.4.3 Deadlock Avoidance 205
 7.5 Piston Rod Robotic Assembly Cell 210
 7.5.1 Plant Definition and Constraints 210
 7.5.2 Uncontrollable Transitions and Control Synthesis 214
8 SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY
LIST OF TABLES

2.1 The formal languages and their automaton models. 24
7.1 Place and transition descriptions for Figure 7.8. 201
7.2 Place descriptions for Figure 7.11. 212
7.3 Controller place descriptions for Figure 7.12. 219
7.4 Explanation of transitions and places in Figure 7.20. . . . 236
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A simple Petri net.</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>a) Invariant with no trap or siphon. b) Trap and siphon with no invariant.</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>The generating family of siphons is larger than the set of minimal siphons.</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Venn diagram showing the relation of PN classes.</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>This infinite state Petri net is represented with a finite graph. It accepts a context-free language that is not regular.</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>An infinite state automaton with an infinite graph. The context-free language (2.12) can not be represented with a finite automaton.</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>A Petri net for language (2.14).</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>The set of Petri net languages includes all regular languages, intersects the context-free languages, and is a subset of the context-sensitive languages.</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Two models of a simple discrete event system</td>
<td>29</td>
</tr>
<tr>
<td>2.10</td>
<td>The automaton controller for the system of Figure 2.9</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>A supervisor is connected to the Petri net of Figure 2.5 such that the language of the closed loop system is given by (2.15) where $K = 3$.</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Plant net for the example of section 3.3</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>The Petri Net of Figure 3.1 with Controller.</td>
<td>49</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3</td>
<td>The Petri Net plant for the example of section 3.5.</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>The PN of Figure 3.3 with a supervisor for enforcing constraint (3.30).</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Transitions 2 and 3 are uncontrollable.</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>A Petri net with uncontrollable transitions α, and γ.</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Petri nets with tree structures.</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>The Petri net of Figure 4.2 with controller shown with dashed lines.</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Should transition t_2 be allowed to fire if the constraint is $\mu_4 \leq 2$?</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>A Petri net that yields a trivial constraint transformation.</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>A Petri net that yields an optimal constraint transformation.</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>A Petri net that yields many constraint transformations but a unique optimal controller.</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>A Petri net that yields many constraint transformations and standard invariant based controllers that all lead to suboptimal control.</td>
<td>110</td>
</tr>
<tr>
<td>6.1</td>
<td>Modeling the loss of a finite resource using uncontrollable transitions.</td>
<td>123</td>
</tr>
<tr>
<td>6.2</td>
<td>A Petri net with a controlled siphon but no trap.</td>
<td>126</td>
</tr>
<tr>
<td>6.3</td>
<td>a) A PN with a covering T-invariant. b) Transformation of the net to eliminate values greater than one from the covering invariant.</td>
<td>129</td>
</tr>
<tr>
<td>6.4</td>
<td>A bounded net with a covering T-invariant.</td>
<td>131</td>
</tr>
<tr>
<td>6.5</td>
<td>Addition of regulation circuits to the net of Figure 6.4.</td>
<td>132</td>
</tr>
<tr>
<td>6.6</td>
<td>A free choice Petri net with uncontrolled siphons.</td>
<td>142</td>
</tr>
<tr>
<td>6.7</td>
<td>The controller, shown with bold places and dashed arcs, insures the liveness of the FC net of Figure 6.6.</td>
<td>143</td>
</tr>
<tr>
<td>6.8</td>
<td>a) A net for which no liveness-enforcing controller exists. b) A siphon controlling supervisor is added to the net.</td>
<td>146</td>
</tr>
<tr>
<td>6.9</td>
<td>Transformation of a Transition.</td>
<td>151</td>
</tr>
<tr>
<td>6.10</td>
<td>A simple net that will have a firing constraint enforced.</td>
<td>158</td>
</tr>
<tr>
<td>6.11</td>
<td>The graph transformed net of the net in Figure 6.10.</td>
<td>159</td>
</tr>
</tbody>
</table>
6.12 The net of Figure 6.11 with its Petri net controller. 160
6.13 The untransformed net of Figure 6.10 with its Petri net controller. . . . 161
6.14 Two methods (b and c) of enforcing constraint (6.31) on network a. . 162
6.15 A timed Petri net. ... 170
6.16 The timed Petri net with a controller for two standard constraints. . . . 172
6.17 A two place time-of-day clock. ... 174
6.18 Place 8 contains tokens whenever fewer than two minutes has elapsed
 since the last firing of t_4. ... 174
6.19 The final plant model with supervisory controllers in place. 176
6.20 The “forbidden state” of the example. ... 178
6.21 An unbounded Petri net. .. 180
6.22 The unbounded Petri net controlled. ... 182
6.23 The memory-augmented controlled net. ... 182
6.24 The two-circuit net. ... 184
6.25 The controlled two-path net. ... 185
7.1 The Cat and Mouse Maze. .. 188
7.2 The Petri Net Model of the Cat and Mouse Problem. .. 189
7.3 The Cat and Mouse Petri Net and its Petri Net Controller. 192
7.4 The Cat and Mouse Petri net and controller with transitions c_7 and c_8 uncontrollable. ... 196
7.5 The Automated Guided Vehicle Petri Net. ... 197
7.6 The Controlled AGV Net. ... 199
7.7 Basic operation of the plant. ... 200
7.8 Petri net model of the unreliable machine plant. .. 201
7.9 The supervised unreliable machine, before accounting for deadlock
 avoidance. .. 205
7.10 The unreliable machine model is now live. ... 209
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.11</td>
<td>The base Petri net model for the piston rod robotic assembly cell.</td>
<td>211</td>
</tr>
<tr>
<td>7.12</td>
<td>The assembly cell model with Petri net controller.</td>
<td>218</td>
</tr>
<tr>
<td>7.13</td>
<td>The assembly cell model with a controller that accounts for a sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>loss making transitions t_5, t_6 and t_7 unobservable.</td>
<td>222</td>
</tr>
<tr>
<td>7.14</td>
<td>Petri net model for the output portion of an ATM switch.</td>
<td>224</td>
</tr>
<tr>
<td>7.15</td>
<td>The Petri net of Figure 7.14 with dummy places and transitions to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>account for firing vector constraints.</td>
<td>225</td>
</tr>
<tr>
<td>7.16</td>
<td>The ATM switch with output-port control logic in place.</td>
<td>226</td>
</tr>
<tr>
<td>7.17</td>
<td>Three fluid filled tanks serviced by a single mobile pump.</td>
<td>228</td>
</tr>
<tr>
<td>7.18</td>
<td>A Petri net model of the discrete state space for the fluid-filled tank problem.</td>
<td>232</td>
</tr>
<tr>
<td>7.19</td>
<td>The fluid-filled tank model with entrances to forbidden states disabled.</td>
<td>233</td>
</tr>
<tr>
<td>7.20</td>
<td>A Petri net model of the relevant events and states for the fluid-filled tank problem.</td>
<td>235</td>
</tr>
<tr>
<td>7.21</td>
<td>The plant of Figure 7.20 with added control structures.</td>
<td>240</td>
</tr>
<tr>
<td>7.22</td>
<td>Two dimensional state space with three hypersurfaces and five regions.</td>
<td>244</td>
</tr>
<tr>
<td>7.23</td>
<td>Petri net plant model for the double integrator.</td>
<td>244</td>
</tr>
<tr>
<td>7.24</td>
<td>Double integrator plant model with supervisor.</td>
<td>246</td>
</tr>
<tr>
<td>7.25</td>
<td>Example trajectories of the supervised double integrator.</td>
<td>246</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

≤ When the less-than-or-equal-to symbol is applied to vectors or matrices, as in \(A \leq B \), it means that every element in \(A \) is less than or equal to the corresponding element in \(B \).

\(\rightarrow \) Logical implication. \(a \rightarrow b \): if \(a \) is true then \(b \) is true.

\(\Rightarrow \) Transformation. \(a \Rightarrow b \): \(a \) is transformed to \(b \).

\(\Leftarrow \) Becomes. \(a \Leftarrow b \): \(a \) becomes \(b \).

\(\bowtie \) The right hand side of a constraint inequality. \(L \mu_p \leq b, b \in \mathbb{Z}^n \) or \(l^T \mu_p \leq b, b \in \mathbb{Z} \).

\(c \) A place in a Petri net (PN) controller.

\(D \) A general PN incidence matrix, or the incidence matrix of the closed loop plant/controller system \(D = \begin{bmatrix} D_p \\ D_c \end{bmatrix} \).

\(D_c \) The incidence matrix of a PN controller. \(D \in \mathbb{Z}^{n_c \times m} \).

\(D_p \) The incidence matrix of a PN plant. \(D \in \mathbb{Z}^{n \times m} \).

\(D_{uc} \) The incidence matrix of the uncontrollable portion of a PN plant. \(D_{uc} \) is composed of the columns of \(D_p \) corresponding to uncontrollable transitions. \(D_{uc} \in \mathbb{Z}^{n \times n_{uc}} \).

\(D_{uo} \) The incidence matrix of the unobservable portion of a PN plant. \(D_{uo} \) is composed of the columns of \(D_p \) corresponding to unobservable transitions. \(D_{uo} \in \mathbb{Z}^{n \times n_{uo}} \).

\(F \) The flow relation between a Petri net’s places and transitions.

\(I \) An identity matrix.

\(l \) Parameter in a constraint inequality, \(l^T \mu_p \leq b, l \in \mathbb{Z}^n \).

\(L \) Parameter in a constraint inequality, \(L \mu_p \leq b, L \in \mathbb{Z}^{n_c \times n} \).

\(\mu \) The marking vector of a general PN, or the marking of the closed loop plant/controller system.

\(\mu_0 \) The initial marking of the PN with marking vector \(\mu \).

\(\mu_c \) The marking vector of a PN controller. \(\mu_c \in \mathbb{Z}^{n_c} \).

\(\mu_{0c} \) The initial marking of a PN controller.
The marking vector of a PN plant. $\mu_p \in \mathbb{Z}^n$.

μ_{p_0} The initial marking of a PN plant.

m The number of transitions in plant Petri net.

n The number of places in the plant Petri net.

n_{uc} The number of uncontrollable transitions in a PN plant.

n_{uo} The number of unobservable transitions in a PN plant.

n_c The number of individual vector constraints in $L\mu_p \leq b$.

p A PN place.

P The set of places for a Petri net.

$\bullet p$ The set of transitions with output arcs to place p.

$p\bullet$ The set of transitions receiving input arcs from place p.

q The firing vector of a PN. $q \in \mathbb{Z}^m$.

s A nonnegative integer vector whose support is a trap or siphon. $s \in \mathbb{Z}^n$.

S A set of PN places, usually referring to a trap or siphon.

$\bullet S$ The set of transitions with output arcs to all places in the set S.

$S\bullet$ The set of transitions receiving input arcs from all places in the set S.

t A PN transition.

$\bullet t$ The set of places with output arcs to transition t.

$t\bullet$ The set of places receiving input arcs from transition t.

T Superscript for vector or matrix transpose.

T The set of transitions for a Petri net.

T_c The set of controllable transitions in a PN plant.

T_{uc} The set of uncontrollable transitions in a PN plant. $T_c \cap T_{uc} = \emptyset$.

uc Subscript referring to uncontrollability.

uo Subscript referring to unobservability.

x A PN place invariant vector. $x \in \mathbb{Z}^n$.
A matrix, the columns of which form a basis for a PN’s place invariants. If \(x^T D = 0 \), then \(x \) is linearly dependent with the columns of \(X \).

A PN transition invariant vector. \(y \in \mathbb{Z}^m \).

A matrix, the columns of which form a basis for a PN’s transition invariants. If \(Dy = 0 \), then \(y \) is linearly dependent with the columns of \(Y \).

The set of integers.
ACKNOWLEDGMENTS

I owe many thanks to Dr. Panos J. Antsaklis, my advisor and teacher, for the informed guidance and thoughtful direction he has provided me throughout my years of graduate school. I could always count on him to see and point out the big picture, guiding me to new paths, whenever I had become bogged down in details. He has been consistently generous with his time and attention, and the quality of my work and graduate career have greatly benefited from his technical and professional expertise.

I would also like to thank Drs. Michael D. Lemmon, Anthony N. Michel, and Michael K. Sain for agreeing to be my readers and participate in my dissertation defense committee. I was honored to have a group of readers so experienced, knowledgeable, and distinguished. I owe additional gratitude to Dr. Sain for the important insights I gained from him both in the classroom and through personal conversations. Dr. Lemmon is also a valued teacher and has played an active role in my research, both as a direct contributor and a constructive critic.

I could not have attended graduate school at the University of Notre Dame without the financial support of several benefactors. Primary thanks goes to the Arthur J. Schmitt Foundation and Notre Dame’s Center for Applied Mathematics for the fellowships they awarded me. I owe additional thanks for financial support to the engineering school’s Department of Electrical Engineering as well as the National Science Foundation.

Finally, I would like to thank my wife Tammy for the love, understanding, and support she has given me through my years of school. I can not imagine what my life in graduate school would have been like without her, and I am blessed to have her at my side as we start the next phase in our lives.
CHAPTER 1

INTRODUCTION

Discrete event systems (DES) are dynamic system models with state changes driven by the occurrence of individual events. The state space of a DES is a possibly infinite discrete set. State-to-state transitions are forced by the ordered occurrence of events from a discrete and (almost always) finite set. The discrete nature of the state and event spaces make these systems practical models for the higher level behavior of complex systems, capturing the logic and dynamics of overall system behavior and evolution. Applications for discrete event systems include industrial manufacturing systems, the relation between robotic actions and goals, process control plants, computer networks, communications protocols, and others.

This dissertation deals with the automatic control of discrete event systems. It is often necessary to regulate or supervise the behavior of these systems in order to meet safety or performance criteria, e.g., preventing automated guided vehicles from colliding on a factory floor by restricting their access to certain mutually traveled zones. DES supervisors are used to insure that the behavior of the plant (system that
is to be controlled) does not violate a set of constraints under a variety of operating conditions. The regulatory actions of the supervisor are based on observations of the plant state, resulting in feedback control.

It is common to see discrete event systems modeled as finite automata \([13, 64, 79]\). Methods exist for designing controllers based on automata system models, however these methods often involve exhaustive searches or simulations of system behavior, making them impractical for systems with large numbers of states and transition causing events.

One way of dealing with these problems is to model discrete event systems with Petri nets (PN's). Petri nets \([58, 62, 66]\) have a simple mathematical representation employing linear matrix algebra making them particularly useful for analysis and design. Petri net models are normally more compact than similar automata based models and are better suited for the representation of systems with ordered structures and flows but large reachable state spaces. The Petri net model allows for the simultaneous occurrence of multiple events, without suffering from increased model complexity, as is the case with automata. In addition they have an appealing graphical representation that has made them popular with practicing engineers. It is possible to visualize the state-flow of a system and to quickly see dependencies of one part of a system on another when the system is represented as a Petri net.

A Petri net is made up of places, which hold tokens, transitions, and directed arcs between the places and transitions. The number and distribution of tokens among the places is called the marking and represents the state of the net. The arcs
determine how tokens move from one place to another upon the firing of a transition. The state of the system can be represented as an integer vector, and the architecture or layout of a Petri net can be represented with an integer matrix known as the incidence matrix.

The intuitive graphical representation and the powerful algebraic formulation of Petri nets has lead to their use in a number of fields. Petri nets are used to model multiprocessor computer systems, computer networks, digital communication protocols, process control plants, queuing systems, and flexible manufacturing cells, among others. Often times the graphical representation of a plant as a Petri net model is enough for an engineer to design a controller for the plant. Many control techniques exist that involve recognizing and then manipulating certain structures and situations that commonly appear in Petri net models. Other techniques exist for automatically verifying the reliability of these control designs. Representing the controller itself as a Petri net makes the verification of the combined plant/controller system simpler, as well as reducing the number of computational tools required to model the overall system. Unfortunately, even when the controller is modeled as a Petri net, this cyclic technique of design and verification can become quite cumbersome when the plant model is large. This leads to the desire for an automatic method of generating controllers based on the plant and constraint data.

Through study of the structural invariants of Petri nets, which are actually elements of the kernel of the Petri net incidence matrix, and an application of some of the elementary concepts of mathematical programming, a method [57] has been
derived for synthesizing a supervisor for a Petri net based on the plant’s model and a set of linear constraints to be imposed on the plant’s behavior. The computation of the supervisor, or monitor [24], is simple and direct, making it very attractive compared to the searches employed in automata-based control synthesis procedures.

Other researchers have used Petri net structural invariants in their work on discrete event system control. Valette et al. [77,78] have explored the use of Petri nets as analytical and computational models for the representation of discrete event system controllers and have used Petri net place invariants as an analysis tool. Lautenbach and Ridder [38] use transition invariants as a means of examining and enforcing “liveness” on a Petri net. Barkaoui and Abdallah [8], and Huang, Tacconi, Lewis et al. [31, 32, 76] all make use of place invariants as a tool in the prevention of “deadlock” (see section 6.3). In this dissertation, invariants are used to synthesize controls that enforce a set of specifications on the Petri net modeled plant. These specifications indicate allowed and forbidden states in the plant’s state space.

The invariant-based control method requires that the constraints be linear inequalities on the Petri net marking vector. Fortunately it is possible to transform many other constraints on a plant’s behavior into such inequalities. Yamalidou and Kantor [82] have shown how constraints written as Boolean expressions can be transformed into sets of linear inequalities involving the firing and marking vectors. Constraints involving the firing vector can be transformed, using two different methods, into constraints that involve only marking vector elements. Thus the control method can be applied to systems whose constraints can be expressed as linear inequalities or
logic expressions and may involve elements of the marking and/or the firing vector.

The controller derived using this approach is maximally permissive in that it forces the set of constraints to be obeyed, while allowing any action that is not directly forbidden by the constraints.

A major goal in the field of discrete event system control is the synthesis of supervisors under conditions where certain state to state transitions can not be prevented by any action from the supervisor, i.e., conditions under which certain transitions are uncontrollable. The problem is then to design a controller that prevents states from occurring that violate the behavioral constraints directly or that might lead to a violation of the constraints through the action of uncontrollable transitions. A method for solving this problem using linear integer programming appears in [41–43]. A new method for solving this problem by performing algebraic manipulations on a matrix composed of the uncontrollable portion of the plant and a representation of the control goal has been proposed in several articles [50,54,55] coauthored by the writer of this dissertation. These techniques are presented here and are expanded into a consistent treatment that offers both design elegance and computationally efficiency.

As in classical control theory, the concept of uncontrollability is associated with the dual concept of unobservability. It is possible that a DES plant might contain certain state to state transitions that can not be detected by the supervisor. The mathematical representation of these unobservable events is analogous to uncontrollable transitions [50,52,54]. Both uncontrollable and unobservable transitions are
covered by the design procedures of this dissertation.

Chapter 2 gives an introduction to the Petri net model for discrete event systems. It includes a brief overview of related work in the area of DES control using Petri nets. Chapters 3 through 6 contain the primary contributions of this dissertation including controller synthesis techniques, methods of handling uncontrollable and unobservable transitions within the plant structure, and the varied uses of the linear inequality constraints that are placed on the plant's marking vector. Chapter 7 contains a number of detailed examples that illustrate the ideas discussed in the preceding chapters. This chapter may be read in sequence, or the reader may wish to refer to the individual sections of the chapter when they are referenced in the developmental material of chapters 3 through 6.
CHAPTER 2

PETRI NETS

2.1 Introduction

Petri nets and finite state machine (FSM) automata lack the full modeling and decision power that can be implemented with microprocessor based digital computers, which have the complete expressiveness of the Turing machine. In terms of formal languages, Petri net languages include all regular languages, but not all context-sensitive (or even context-free) languages [62]. Specifics regarding these details are discussed in section 2.6.1. It is logical to then ask why Petri nets are such a popular modeling paradigm for discrete event systems when they lack the full expressiveness of the Turing machine. A degree of modeling power is sacrificed in order to take advantage of the simple and direct graphical representation of Petri nets and, more importantly, the elegant and efficient mathematical representation that makes them easy to code and invites the use of many well known mathematical analytical tools. These reasons combined with the fact that many practical systems can be effectively modeled with PN languages make the Petri net an excellent choice for many DES
This chapter provides a brief introduction to Petri nets and their use in DES control. Fundamental PN definitions are covered in section 2.2. The structural invariants of a Petri net are very important to the work of this dissertation and are covered separately in section 2.3. Section 2.4 covers the concepts of Petri net traps and siphons, while section 2.5 presents the various classes of Petri nets based on their structural properties. The material of these two sections is relevant to the discussion of deadlock, deadlock avoidance, and liveness in section 6.3. The relation of Petri nets to automata, and automata based supervisory control, is covered in section 2.6. The chapter concludes in section 2.7 with a brief overview of the work of other researchers in using Petri nets as a DES control tool.

2.2 Petri Net Definitions

A Petri net is a directed bipartite graph. The structure of a Petri net is described by the triple \((P, T, F)\) where \(P\) and \(T\) represent the vertices of the graph, known as places and transitions, and \(F\) is the flow relation between the two. \(P\) and \(T\) are disjoint sets and \(F \subseteq (P \times T) \cup (T \times P)\). \(F\) is constructed such that places (elements of \(P\)) are only directed toward transitions and transitions (elements of \(T\)) are only directed toward places.

A place is a storage cell for tokens. When a transition fires, tokens are removed from some places and added to others. An arc with weight \(D_{ij}^+\) from transition \(j\) to place \(i\) indicates that when transition \(j\) fires, place \(i\) will receive \(D_{ij}^+\) tokens. An
arc with weight D_{kj}^- from place k to transition j indicates that place k must contain at least D_{kj}^- tokens before transition j is allowed to fire and that when transition j fires, place k will lose D_{kj}^- tokens. Thus for a transition to fire, all of its input places must contain a minimum number of tokens. A transition that meets these conditions is enabled and is free to fire. A disabled transition may not fire. When a transition fires, all of its input places lose a number of tokens, and all of its output places gain a number of tokens.

![A simple Petri net.](image)

Figure 2.1: A simple Petri net.

Example. Figure 2.1 shows a simple Petri net; p_1 and p_2 are the places, t_1 and t_2 are the transitions, and the arcs are represented with arrows. If an arc in a drawing is not assigned a weight then it is assumed the weight is one; all four arcs in Figure 2.1 have a weight of one. Tokens are represented as dots; place p_1 contains the net’s single token in Figure 2.1. Transition t_1 is the only enabled transition. When it fires, its input place, p_1, will lose a token, and its output place, p_2, will gain a token, at which time t_2 will be the only enabled transition.

Let \mathbb{Z} be the set of integers and let n be the number of places in a Petri net
and \(m \) be the number of transitions. The arcs connecting transitions to places are described by the matrix \(D^+ \in \mathbb{Z}^{n \times m} \) and the arcs connecting places to transitions are described by \(D^- \in \mathbb{Z}^{n \times m} \) where all of the elements of \(D^+ \) and \(D^- \) are greater than or equal to zero.

The distribution of tokens throughout the net is called the Petri net state or marking. The marking is represented with the \(n \) dimensional integer vector \(\mu \). The initial marking of the net is \(\mu_0 \). The transitions of a Petri net fire in discrete steps. The transitions that are to fire at the current step are represented by the \(m \) dimensional integer vector \(q \). The \(j \)th element of \(q \) is 0 if the \(j \)th transition will not be firing, and the \(j \)th element of \(q \) is 1 if the \(j \)th transition will fire. A given firing vector \(q \) represents a valid possible firing if all of the transitions for which it contains nonzero entries are enabled. The validity of a given firing vector \(q \) can be determined by checking the enabling condition

\[
\mu \geq D^- q
\]

Unless otherwise stated, all vector and matrix inequalities in this dissertation are read element-by-element with respect to the two sides of the inequality, in this case the vectors \(\mu \) and \(D^- q \). Thus the enabling condition can be thought of as the logical conjunction of \(n \) inequalities.

The Petri net incidence matrix is defined as

\[
D = D^+ - D^- \tag{2.2}
\]

If the given Petri net contains no self loops, i.e. no transition has input and output
arcs involving the same place, then the enabling condition can be expressed in terms of the complete incidence matrix. Without self loops, a particular transition firing can either add or subtract tokens from a given place, but it cannot do both. Thus the non-zero places of the D^+ and D^- matrices are mutually exclusive. Because all elements of $D^+ q$ must, by definition, be greater than or equal to zero and because of the mutual exclusivity of the non-zero elements in D^+ and D^-, we can use the following inequality as an equivalent enabling condition to (2.1).

$$\mu + D^+ q \geq D^- q$$

$$\mu + (D^+ - D^-) q \geq 0$$

$$\mu + D q \geq 0 \quad (2.3)$$

When a Petri net contains no self-loops, the D matrix is uniquely defined by D^+ and D^-, and since (2.3) can be used rather than (2.1) for the enabling condition, the D^+ and D^- matrices are not normally specified. It is not necessary that a plant have no self-loops to use the synthesis tools of this dissertation, however the self-loop free notation will often be used for convenience.

Care must be taken when using (2.1) or (2.3) when q indicates the concurrent firing of multiple transitions. There are a variety of different techniques for handling concurrency. Concurrency may not be allowed at all, in which case q would be a zero vector with a single element equal to one. Concurrency may be allowed only when each of the indicated transition firings could occur one after the other in any order. In this case q must satisfy (2.1), or each transition firing indicated in q must
independently satisfy (2.3) as well as the complete q vector. If (2.3) is used without this check for independently enabled transitions, then certain concurrent firings may be allowed even though some or all of the individual transitions indicated in the firing could not fire by themselves. The choice of which of these methods to use is dictated by the modeling requirements and the particular plant.

When the transitions described by q fire, the state of the Petri net will change. The state change is described by

$$
\mu \leftarrow \mu + Dq \tag{2.4}
$$

Note that the left hand side of (2.3) appears in (2.4): the state vector of a Petri net will never contain a negative element. Thus when no self loops are present, a Petri net can be described by the following system,

$$
\begin{align*}
\mu(0) &= \mu_0 \\
\mu(k+1) &= \mu(k) + Dq(k)
\end{align*} \tag{2.5}
$$

$$
D \in \mathbb{Z}^{n \times m}, \mu \in \mathbb{Z}^n, q \in \mathbb{Z}^m, (\mu, q \geq 0) \tag{2.6}
$$

which is similar to a discrete-time linear system with constraints placed on the state and input vectors. The PN enabling condition is a consequence of the constraint that the state and input vectors contain no negative elements.

The concepts of existence and uniqueness of solutions for difference equations can not be applied to system (2.5) due to the constraints placed on the state and input vectors by (2.6). These constraints, that μ and q can be composed only of nonnegative
integers, are a cause of difficulty and complexity in Petri net analysis, but they are also the reason for the utility of the systems as DES models. A similar situation occurs in the area of mathematical programming where an optimization problem is defined over an entire vector space or module, but only constrained elements are considered feasible solutions. Without (2.6), system (2.5) is a rather uninteresting subclass of linear difference equations, but with (2.6), it becomes something entirely different, requiring different tools and concepts for analysis.

A net is called safe if no place in the net can ever contain more than a single token. The majority of work in this dissertation does not rely on a net being safe or even bounded, but safe nets will be mentioned on occasion.

Example. The Petri net of Figure 2.1 has the incidence matrix

\[
D = D^+ - D^- = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}
\]

and contains no self loops. The current state is

\[
\mu = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

The only enabled firing is, according to the enabling condition (2.3),

\[
q = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
After the firing defined by \(q \) occurs, the state will change according to (2.4):

\[
\begin{bmatrix}
0 \\
1 \\
\mu
\end{bmatrix} \Leftarrow \begin{bmatrix}
1 \\
0 \\
\mu
\end{bmatrix} + \begin{bmatrix}
-1 & 1 \\
1 & -1 \\
D & 0
\end{bmatrix} \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

Inspection of Figure 2.1 shows that this is a safe net with a single token that bounces back and forth between the two input places.

2.3 Structural Invariants

One of the structural properties of Petri nets, i.e. properties that depend only on the topological structure of the Petri net and not on the net's initial marking, are the net invariants. Invariants are important means for analyzing Petri nets since they allow for the net's structure to be investigated independently of any dynamic process [37].

Place invariants are sets of places whose weighted token count remains constant for all possible markings. They are represented by \(n \)-dimensional integer vectors \(x \), where \(n \) is the number of places of the Petri net; non-zero entries correspond to the places that belong to the particular invariant. A place invariant is defined as every integer vector \(x \) that satisfies

\[
x^T \mu = x^T \mu_0
\]

where \(\mu_0 \) is the net's initial marking, and \(\mu \) represents any subsequent marking. Equation (2.7) means that the weighted sum of the tokens in the places of the invariant remains constant for all reachable markings, and this sum is determined by
the initial marking of the Petri net. The place invariants of a net can be computed by finding integer solutions to

\[x^T D = 0 \] \hspace{1cm} (2.8)

where \(D \) is the \(n \times m \) incidence matrix of the Petri net. Given any firing vector \(q \),

\[x^T \mu(k + 1) = x^T(\mu(k) + Dq(k)) \]

\[= x^T \mu(k) \]

It is easily shown that any linear combination of place invariants is also a place invariant for the net. Place invariants are a primary analytical tool used in the control synthesis work of this dissertation.

The dual of the place invariant is the transition invariant. A transition invariant \(y \in \mathbb{Z}^m \) satisfies

\[Dy = 0 \]

Using the Petri net system definition (2.5) we see that

\[\mu(0) = \mu_0 \]
\[\mu(1) = \mu_0 + Dq(0) \]
\[\mu(2) = \mu(1) + Dq(1) \]
\[= \mu_0 + Dq(0) + Dq(1) \]
\[\vdots \]
\[\mu(N) = \mu_0 + D(q(0) + \cdots + q(N - 1)) \]
\[= \mu_0 + DQ \] \hspace{1cm} (2.9)
where \(Q \) is the sum of \(N \) firing vectors. Equation (2.9) indicates that the state of a Petri net after \(N \) firings is independent of the order in which the firings occur. Thus if \(Q = y \), i.e., a transition invariant, then

\[
\mu(N) = \mu_0 + Dy = \mu_0
\]

Transition invariants represent a set of firings that will cause the marking of a net to cycle, leaving it in the state that it held before the start of the cycle. The existence of a transition invariant does not imply that it will actually be possible to fire the indicated transitions; the initial conditions of a net may prohibit it. Instead a transition invariant indicates that if it is possible to fire the given set of transitions, in any order, the state of the net will return to its initial condition at the end of the sequence.

2.4 Siphons and Traps

Traps and siphons\(^1\) (see [18,58,66]) are sets of Petri net places. Once the set of places in a trap become marked, the trap will always be marked for all future reachable markings. Similarly, once the marking of a siphon becomes empty, the siphon will remain empty. These structures are fundamental to the analysis of liveness and for creating supervisors that perform deadlock-avoidance (see section 6.3).

Traps and siphons are defined by the nature of the input and output transitions into a given set of places. Let \(\bullet p \) refer to the set of input transitions into the place \(p \), and let \(p\bullet \) refer to the set of output transitions from the place \(p \). The “bullet”

\(^1\)Siphons are sometimes called “deadlocks.”
notation can also be used with sets of places. If S is a set of places, then $\bullet S$ and $S\bullet$ refer to the set of input and output transitions for the entire set S.

Definition 2.1. A set of places S is a **siphon** iff

$$\bullet S \subseteq S \bullet$$

S is a **minimal siphon** iff there does not exist another siphon P such that $P \subseteq S$.

The definition of a trap is similar.

Definition 2.2. A set of places S is a **trap** iff

$$S \bullet \subseteq \bullet S$$

S is a **minimal siphon** iff there does not exist another siphon P such that $P \subseteq S$.

A place invariant vector with nonnegative elements indicates a set of places that is both a trap and siphon. The net of Figure 2.2a shows why the invariant must be nonnegative. This net contains the invariant

$$\mu_1 - \mu_2 = 0$$

but the two places are neither a trap nor a siphon.

Given that a set of places is both a trap and an invariant, it is not necessarily true that the set also represents the support of a place invariant. For example, consider the net of Figure 2.2b. The two places form both a trap and a siphon, however this net contains no invariants.
Figure 2.2: a) Invariant with no trap or siphon. b) Trap and siphon with no invariant.

Algorithms for computing the traps or siphons of a Petri net appear in [20] and [37]. The work of Ezpeleta, Couvreur, and Silva in [20] includes a comparison of several siphon-calculation techniques as well as their own algorithm, which is presented below.

Definition 2.3. Let \(x \in \mathbb{Z}^n \) be an integer vector corresponding to the places of a Petri net. The **support** of \(x, \|x\| \), is the set of places corresponding to the nonzero entries in \(x \).

Remark. If \(x \) represents a place invariant vector, then \(\|x\| \) is the set of places that forms the invariant. Similarly, \(\|\mu\| \) is the set of all marked places. Traps and siphons are sets, but computational techniques for finding these sets involve integer vectors. The notion of support is used to go between the two representations.

Proposition 2.4. **Characterization of siphons.** Given a PN with incidence matrix \(D \), if \(x^T D \leq 0, x \geq 0 \), then \(S = \|x\| \) is a siphon in the Petri net.

Proof. See [20].

Remark. If \(x \) is a place invariant, then \(x^T D = 0 \). The quantity \(x^T D \) is often referred to as the *defect* when \(\|x\| \) is a siphon but not a place invariant.
The technique for calculating siphons involves examining the structure of a transformed version of the original Petri net. The following proposition provides a necessary and sufficient condition for relating siphons in one PN \((D')\) to another \((D)\).

Proposition 2.5. **Necessary and sufficient siphon characterization.** Given two Petri nets with incidence matrices \(D = D^+ - D^-\) and \(D' = D'^+ - D'^-\) and

\[
D'^+ (p, t) = 0 \iff D^+(p, t) = 0
\]

\[
D'^- (p, t) = 0 \iff D^-(p, t) = 0
\]

where \(D(p, t)\) is the element of \(D\) corresponding to place \(p\) and transition \(t\). If

\[
\forall t, \forall p_i \in \bullet t, D'^- (p, t) \geq \sum_{p' \in \bullet t} D'^+ (p', t)
\]

then \(S = \|x\|, x \geq 0\), is a siphon in the PN with incidence matrix \(D\) iff

\[
x^T D \leq 0
\]

(2.10)

Proof. See [20].

All siphons in \(D\) can be found by calculating values of \(x\) that meet inequality (2.10). The transformed incidence matrix \(D'\) can be computed as follows:

\[
D'^+ = D^+
\]

\[
\forall t, \forall p \in \bullet t, D'^- (p, t) = k D^- (p, t)
\]

where

\[
k = \sum_{p' \in \bullet t} D^+ (p', t)
\]
and $D' = D^+ - D^-$. Inequality (2.10) can be changed into an equality through the addition of slack variables:

$$\begin{bmatrix} x^T & z^T \end{bmatrix} \begin{bmatrix} D' & I \end{bmatrix} = 0$$

(2.11)

where $x, z \geq 0$. Equation 2.11 has the form of a PN place invariant equation. Thus appropriate values of x can be found by finding the set of minimal support place invariants of the PN with incidence matrix $\begin{bmatrix} D' & I \end{bmatrix}$.

An algorithm for computing minimal support place invariants appears in [45]. The results obtained will yield a generating family of siphons for the original Petri net. All siphons in a net can be found as unions of the members of the generating family. A generating family will include all of the nets minimal siphons, however the set of minimal siphons will not, in general, include every member of the generating family. For example, the minimal siphon of the Petri net of Figure 2.3 is $\{p_1\}$, but the generating family is $\{\{p_1\}, \{p_1, p_2\}\}$.

![Figure 2.3: The generating family of siphons is larger than the set of minimal siphons.](image)

Calculating the generating family of traps for a Petri net with incidence matrix D is accomplished by calculating the generating family of siphons for a net with incidence matrix $-D$.

20
2.5 Classes of Petri Nets

Petri nets are classified based on structural properties involving the ways arcs connect places and transitions. Some results in the Petri net literature are only applicable for certain classes of nets. Nearly all of the results in this dissertation apply to general nets with no assumptions made on their structural properties, however some of the results in section 6.3 on deadlock and liveness apply only to asymmetric choice or extended free choice Petri nets. These and the other important classes of Petri nets (see [18,58]) are described below.

Definition 2.6. A state machine (SM) or S-system\(^2\) is a Petri net in which all transitions have one input and one output place.

The significant nodes in a state machine are the places. Each transition allows tokens to flow from one place to another, but a token in a particular place may enable multiple transitions. This is referred to as a conflict. All finite automata can be described as Petri net state machines.

Definition 2.7. A marked graph (MG) or T-system is a Petri net in which all places have a single input and a single output transition.

The significant nodes in a marked graph are the transitions. Each place receives tokens from one transition and loses tokens to another, but a single transition may have multiple input and output places. Marked graphs allow synchronization, since

\(^2\)The 'S'in S-system refers to the German word \textit{stetten}, which means “place.” Petri’s dissertation on net theory was written in German and his notation is still used.
tokens in multiple places are simultaneously lost due to the firing of a single output transition and gained by the firing of a single input transitions. Marked graphs contain no conflicts and state machines have no synchronizations. Some nets, e.g., a closed loop of places and transitions, have neither conflict nor synchronization and are both marked graphs and state machines. *Free choice* nets allow both conflicts and synchronizations.

Definition 2.8. A **free choice (FC)** net is a Petri net such that for every arc from a place \(p \) to a transition \(t \) \((p \rightarrow t)\),

1. \(t \) is the only output transition of \(p \) (no conflict), or
2. \(p \) is the only input place of \(t \) (no synchronization).

All state machines and marked graphs fall under the class of free choice nets. The definition of free choice nets shows that if any output transition of a place \(p \) is enabled, then all output transitions of \(p \) are enabled. Most work on free choice nets uses a slightly weaker definition to extend the class of nets while maintaining this basic property.

Definition 2.9. An **extended free choice (EFC)** net is a Petri net such that for every arc \(p \rightarrow t \) there exists an arc from all input places of \(t \) to all output transitions of \(p \).

Using the “bullet” notation, for all pairs of places, \(p_1 \) and \(p_2 \), in an EFC net,

\[
p_1 \bullet \cap p_2 \bullet \neq \emptyset \Rightarrow p_1 \bullet = p_2 \bullet
\]
The structural restrictions are relaxed even more for asymmetric choice (AC) nets.

Definition 2.10. An **asymmetric choice (AC)** net is a Petri net such that for all pairs of places, p_1 and p_2.

\[p_1 \cap p_2 = \emptyset \Rightarrow p_1 \subseteq p_2 \text{ or } p_2 \subseteq p_1 \]

The Venn diagram of Figure 2.4 illustrates the hierarchy of the PN classes and provides examples of nets that fall in the various categories.

![Venn diagram showing the relation of PN classes.](image)

Figure 2.4: Venn diagram showing the relation of PN classes.

2.6 Petri Nets and Automata

2.6.1 Formal Languages

The modeling and representational power of various automata can be expressed in terms of the type of language the given automata is able to "speak." A list of
the different types of languages and the associated automata are described here as presented in [13].

Finite automata (both deterministic and nondeterministic) speak type 3 languages, the least powerful of the formal languages. Finite automata receive a set of symbols and react to these symbols in the sequence that they are received.

“Pushdown automata” or finite automata with stacks are capable of understanding type 2 languages. Structured high level computer programming languages are type 2 languages, thus compilers for these languages can be described as pushdown automata. Type 2 languages make it possible to handle such things as matched parentheses and begin / end pairs in programming languages.

The most advanced of the formal languages, types 1 and 0, are used by Turing machines. The Turing machine is capable of randomly accessing its stream of input signals, thus allowing for loops and many of the similar powerful features associated with modern digital computers. In fact, any sequential digital computer can (in theory) be modeled as a Turing machine. A summary of these formal languages and their associated automaton models is given in Table 2.1.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Automaton model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Regular</td>
<td>Finite state machines</td>
</tr>
<tr>
<td>2</td>
<td>Context-free</td>
<td>Pushdown automata</td>
</tr>
<tr>
<td>1</td>
<td>Context-sensitive</td>
<td>Nondeterministic bounded automata</td>
</tr>
<tr>
<td>0</td>
<td>Type-0</td>
<td>Turing machines</td>
</tr>
</tbody>
</table>

Table 2.1: The formal languages and their automaton models.

Ordinary Petri nets do not speak the most expressive of the formal languages,
but they do have advantages over standard finite automata. As an example of the increased efficiency enjoyed by Petri net models over finite automata, consider the language

\[a^k b a^l b \quad 0 \leq l \leq k \]

(2.12)

where \(a \) and \(b \) are the symbols of the language. In a Petri net, the occurrence of a language symbol can be represented by the firing of a transition. A Petri net that realizes language (2.12) is shown in Figure 2.5 (see [23]). There are an infinite number of possible states for this Petri net, but the Petri net model only requires a four place, four transition graph. Representing language (2.12) with an automaton would require an infinite graph, as shown in Figure 2.6.

![Figure 2.5: This infinite state Petri net is represented with a finite graph. It accepts a context-free language that is not regular.](image-url)

Language (2.12) is context-free, but it is not regular. A Petri net can be constructed so that the firing of its transitions represent any regular language [62], but clearly, as seen in Figures 2.5 and 2.6, not all Petri net languages are regular.

Not all context-free languages are Petri net languages either [62]. Suppose we modify language (2.12) such that we force the number of occurrences of \(a \), before
Figure 2.6: An infinite state automaton with an infinite graph. The context-free language (2.12) can not be represented with a finite automaton.

and after the first occurrence of \(b \), to be equal, i.e.,

\[
a^k ba^k b \quad k \geq 0
\]

(2.13)

In this case, the language remains context-free, but it is no longer possible to construct an ordinary Petri net that accepts this and only this language [23]. If there is a bound placed on \(k \), then a Petri net can be constructed for (2.13), as shown in section 2.6.2. Language (2.13) can be realized by a Petri net if the PN model is expanded to include the use of “inhibitor arcs” [23], but then we are no longer dealing with ordinary Petri nets.

Just as not all context-free languages are Petri net languages, not all Petri net languages are context-free either. The network in Figure 2.7 accepts the following language

\[
a^k b^l c^m \quad 1 \leq m \leq l \leq k
\]

(2.14)

which is context-sensitive, but not context-free [62].

Peterson [62] provides a useful explanation for understanding the relationship

3An inhibitor arc is an arc \(p \rightarrow t \) that prevents \(t \) from firing when \(p \) contains a number of tokens greater than or equal to the arc weight.
between the PN languages and the context-sensitive languages. The size of the state space of a pushdown automaton, speaking a context-free (type-2) language, grows exponentially with the length of the input string. However, the state space of a Petri net grows only combinatorially with the length of the input string. Clearly, the larger state space of the pushdown automata allows them to represent languages that can not be represented by Petri nets. However, at any given time, a pushdown automaton has access only to the current input and the top element of its stack. A Petri net, on the other hand, with its comparatively complex interconnections between places and transitions, has access to a large number of counters at any given time. This allows the Petri net to represent languages that can not be represented by a pushdown automaton, despite the smaller state space size.

A summary of the PN language’s relation to the other formal languages appears in the Venn diagram of Figure 2.8.
Figure 2.8: The set of Petri net languages includes all regular languages, intersects the context-free languages, and is a subset of the context-sensitive languages.

2.6.2 DES Control

Automata models may not always have the most efficient representations, but they do lend themselves to the design of supervisors that prevent forbidden or undesirable states from occurring in an automaton modeled plant. Consider the discrete event system represented as an automaton in Figure 2.9a and as a Petri net in 2.9b. Our control goal is to make sure that we never visit state (0,3) (the shaded box in Figure 2.9a) in the automaton. In terms of the Petri net, this means that we wish to insure that the number of tokens in place two, \(\mu_2 \), remains less than or equal to three, i.e. we wish to create a controller that enforces the linear constraint \(\mu_2 \leq 3 \).

It is possible to construct an automaton supervisor to solve this problem by first duplicating the structure in 2.9a. The next step is to strip out the undesirable state,
and then to assign to each of the remaining states the plant transitions that are allowed to occur. The controller is shown in Figure 2.10. The controller is used by initializing it to the analogous starting state in the plant. The current state of the controller indicates which of the plant transitions it will permit to occur. When the plant does advance to a new state, the transition is noted by the controller, and the controller advances its own state accordingly. At this time the controller has a new set of transitions that it will allow to occur. The process then continues.

Control design using Petri net models is not quite as simple. It is not possible to duplicate the Petri net structure and remove the forbidden states because a Petri net graph does not contain a unique structure for every state. Instead of attempting to
use supervisory control to prohibit certain prespecified forbidden states, the approach taken in this dissertation is to use supervisors to enforce linear predicates on the state vectors of Petri nets. Enforcement of these types of constraints can be used to solve a variety of supervisory control problems (see chapter 6) as illustrated in the example below.

Example. Given the Petri net of Figure 2.5, we wish to use supervisory control to insure that the net only speaks languages of the form

\[a^k b a^k b \quad 0 \leq k \leq K \] \hspace{1cm} (2.15)

where \(K \) is a predefined constant. Note that this language is the bounded version of (2.13). Language (2.15) is a subset of (2.12), the language of the unsupervised Petri net of Figure 2.5. Supervisory control can be used to restrict (2.12) such that all strings of transition firings for the network follow the form given in (2.15).

An examination of Figure 2.5 indicates that enforcing language (2.15) means insuring that the deadlocking transfer of a token into \(p_4 \) is not allowed to occur until after \(p_2 \) has been completely emptied of tokens. Language (2.15) indicates that \(p_2 \) may contain at most \(K \) tokens, so restricting language (2.12) to only allow (2.15) is equivalent to forcing the following constraint on the state space of the Petri net:

\[\mu_2 + K \mu_4 \leq K \] \hspace{1cm} (2.16)

Chapter 3 shows how a supervisor for enforcing a constraint in the form of (2.16) can be generated automatically. The supervised Petri net is shown in Figure 2.11
with \(K = 3 \). The figure is drawn to emphasize that the original plant model of Figure 2.5 has not been modified. The supervisor is a feedback device that places limits on the open loop behavior of the plant. The closed loop system does not include new behaviors not present in the open loop, unsupervised plant.

![Figure 2.11: A supervisor is connected to the Petri net of Figure 2.5 such that the language of the closed loop system is given by (2.15) where \(K = 3 \).](image_url)

2.7 Petri Nets in Control

Many researchers have used Petri nets as a tool for modeling, analyzing and synthesizing control laws for discrete-event systems. Murata et al. [59] defined C-nets as an extended form of safe Petri nets and used them to construct station controllers for sequencing control with quick response time. Boissel [10] used simulated annealing to compute a Petri net controller for a discrete-event system modeled by a Petri net. Zhou and DiCesare [85] proposed the adaptive design of Petri net controllers for automated manufacturing systems. They define the controller as the control logic based on the Petri net model of the process and use the model to generate...
a supervisory controller by successive augmentation. Boucher and Jafari [11] have presented a method of transforming controller designs using the “Structured Analysis and Design Technique” and the “Integrated Computer Manufacturing Definition 0” into Petri nets in order to take advantage of the their graphical and computational efficiencies.

Many problems in the field of chemical engineering process control lends itself to discrete event and Petri net representations. Cohen and Dubois presented a survey of these issues in [15], which includes Petri net descriptions and their use as a modeling and analysis tool for process control problems. In [82], Yamalidou and Kantor develop means of creating modular process control model components and logical behaviors using Petri nets.

The mathematical descriptions of the structural properties of a Petri net lend themselves to the formulation and solution of optimization problems for control and planning. Proth et al. have formulated such problems for Petri nets that have timing requirements associated with the transition firings. In [26], Hervé and Proth used deterministically-timed Petri net representations of manufacturing processes. They developed a heuristic algorithm for solving a integer linear programming problem that determines the minimum distribution of jobs in progress that leads to a full utilization of bottleneck (limiting) machines. This work is extended by Laftit, Proth, and Xie [36] to show how the initial conditions of a timed Petri net can be chosen such that the constant weighted sum of a place invariant is minimized while maintaining a

\[\text{Recall that a place invariant is a weighted sum of markings that remains constant for all reachable markings within a Petri net. The actual value of the weighted sum is determined by the} \]
given bound on the net’s cycle time. This works lends itself, for example, to the problem of maximizing
the productivity of a job shop in a manufacturing system while maintaining a minimal work-in-progress level.
Cohen and Dubois presented further analysis of these systems in [15], and the work of [36] was extended
by Proth and Xie [63] to apply to timed nets that have stochastic variations in the firing times.

Other researchers have also associated stochastic processes with the firing times of Petri nets or with
the flow of queuing networks modeled as Petri nets. Ross [68] investigated a procedure for deciding
where inputs to a set of queues should be routed based on a cost function that accounts for
the average number of units waiting in a queue. Guo, DiCesare, and Zhou [25] used
moment generating functions to associate transfer functions with transitions that have a probability
of firing (like a Markov process) and a time delay (which can be deterministic or stochastic).
The method was used to find a number of performance measures such as cycling time,
mean sojourn time, mean recurrence time, steady state probabilities, as well as some
transient performance parameters.

As in [25], other researchers have successfully applied tools traditionally associated with
continuous time systems to the field of DES. Passino, Michel and Antsaklis [60] demonstrate
how Lyapunov functions can be associated with discrete event dynamic systems, including
Petri nets, to prove certain stability and performance properties of these systems.

Sreenivas and Krogh [73] have investigated some of the implications of the infinite
initial conditions of the net.
state space of Petri net models and the implications to supervisory control. In this work, the researchers have examined nets that include inhibitor arcs, which increases the modeling power over that of ordinary Petri nets but, as a tradeoff, can decrease the computational tractability of the model as a control tool.

Giua and DiCesare [24] developed an efficient technique for transforming Petri net behavioral constraints into Petri net modeled controllers. This method produces controllers, or monitors, identical to the ones discussed in chapter 3 of this dissertation. More recently these researchers have done work on language control and realization with Petri nets [23], extending some of the control synthesis ideas for automata developed in [64, 79].

Holloway and Krogh [27] developed a method to control systems that can be modeled as cyclic marked graphs, a special class of Petri nets. They have shown how to synthesize a maximally permissive feedback controller that guarantees to prevent a set of forbidden states from occurring. Their method does not require an exhaustive search of the system’s state space, is computationally effective and polynomial in the number of forbidden conditions and in the number of places of the net. The drawback is that it is applicable to a limited class of systems. The authors present an informative study of other Petri net control issues in [28] and [29].

Li and Wonham [41–43] have extended the work of Ramadge and Wonham on DES control [64, 79] to vector DES’s (Petri nets). The problem they address deals primarily with the handling of uncontrollable transitions within the plant structure. They show how, under certain assumptions about the plant structure, a control
law can be found to enforce a set of linear constraints by solving a linear integer programming problem. The work of Li and Wonham is important to the topic of this dissertation and is discussed in more detail in section 4.5.

The controller synthesis method presented here computes a controller based on the plant's place invariants, a structural property of Petri nets. The controller consists of places that are connected to the transitions of a plant insuring that the state vector of the plant remains within bounds established by a set of linear constraints. The combined process/controller net possesses the necessary place invariants to insure that the set of constraints is not violated. The controller is easily computed (involving only matrix multiplications) and its size is proportional to the number of constraints of the process. The controller is maximally permissive in that it forces the set of constraints to be obeyed, while allowing any action that is not directly forbidden by the constraints. Analysis of this basic procedure then leads to methods for enforcing constrained behavior while accounting for uncontrollable and unobservable transitions in the plant.
CHAPTER 3

IN Variant Based Control Design

3.1 Introduction

Consider the supervisory control goal of restricting the reachable markings of a plant, μ_p, such that

$$ l^T \mu_p \leq b \quad (3.1) $$

where l is an integer weight vector, and b is an integer scalar. Constraints of the form of (3.1) are not as general as the language based behavioral constraints of Ramadge and Wonham [64, 79] used for automaton-based models. Linear state constraints are used here because of the ease with which they can be enforced on Petri net modeled systems and because, though they lack some of the full power of language based constraints, they are still quite versatile. Clearly these linear constraints on the state space can represent a large number of (convex) forbidden state problems. They are also useful for realizing “generalized mutual exclusion constraints” [24] which includes both serial and parallel mutual exclusions [19]. Many constraints that deal with exclusions between events and states, or just events themselves, can
be transformed into constraints with the form of (3.1). These linear inequalities also lend themselves to constraints dealing with the use or sharing of finite resources and can in some instances even be used to model constraints that deal with absolute and relative timing requirements. Section 3.5 shows how a slight modification of the controller behavioral rules can allow the enforcement of nonconvex constraints formed as the disjunction of multiple linear inequalities. Chapter 6 deals with the varied uses of these linear inequalities on the plants state; the chapter comes late in the dissertation because it makes use of many of the ideas and synthesis procedures that are developed in the chapters that precede it.

The method presented in this chapter is a powerful means of realizing these constraints because it is simple to calculate, and the Petri net structure of the solution makes the controller easy to implement. The supervisor structure is derived using the concept of Petri net place invariants. This derivation originally appeared in [57] and produces controllers identical to the monitors [24] of Giua et al. The approach has a number of advantages:

1. The design method is transparent for theory, analysis, and implementation as it is based on the concept of place invariants.

2. The resulting controller and consequently the overall controlled system are described by simple Petri nets.

(a) A variety of tools for analysis both graphical and algebraic are available; verification of the design is therefore rather straightforward.

37
(b) The automatic handling of concurrent events is maintained with a unified plant/controller Petri net model.

3. The design method has excellent numerical properties that make it particularly appealing for large problems or control reconfiguration applications where, because of a failure, the controller must be redesigned on-line.

The system to be controlled is modeled by a Petri net with \(n \) places and \(m \) transitions and is known as the \textit{plant} or \textit{process net}. The incidence matrix of the plant is \(D_p \in \mathbb{Z}^{n \times m} \). It is possible that the process net will violate certain constraints placed on its behavior, thus the need for control. The \textit{controller net} is a Petri net with incidence matrix \(D_c \) made up of the process net’s transitions and a separate set of places. The \textit{controlled net} is the Petri net with incidence matrix \(D \) made up of both the original plant and the added controller. The controlled net is also called the \textit{controlled system} or the \textit{closed loop system}.

The control goal is to force the process to obey constraints of the form (3.1). For example, we might wish to enforce the constraint \(\mu_1 + \mu_2 \leq 1 \), which means that at most one of the two places \(p_1 \) and \(p_2 \) can be marked, or, in other words, both places cannot be marked at the same time, and neither place can ever have more than a single token.

This inequality constraint can be transformed into an equality by introducing a nonnegative \textit{slack variable} \(\mu_c \) into it. The constraint then becomes \(\mu_1 + \mu_2 + \mu_c = 1 \).

38
or, in general

$$l^T \mu_p + \mu_c = b$$ \hspace{1cm} (3.2)

The slack variable in this case represents a new place c that holds the extra tokens required to meet the equality. The rules of Petri net state evolution insure that μ_c is, by definition, nonnegative. So if equality (3.2) can be forced on the marking of the controlled system, the weighted sum of tokens in the plant’s places will always be less than or equal to b.

The place that enforces the inequality constraint is part of a separate net called the controller net. The structure of the controller net will be computed by observing that the introduction of the slack variable introduces a place invariant,\(^1\) defined by equation (3.2), for the overall controlled system. Section 3.2 provides an overview of the monitors of Giua and DiCesare due to their relation to the invariant based controllers of section 3.3. The method is shown to be maximally permissive in section 3.4. Section 3.5 shows how a modification of the controller net’s transition enabling rule can be used to enforce disjunctions of linear inequalities as well as the standard conjunctions of section 3.3.

3.2 Monitor Based Supervisors

This section provides a summary and discussion of the Petri net control concept of monitors introduced by Giua and DiCesare in [24]. The topic is discussed here because the monitors themselves are identical to the place invariant controllers

\(^1\)A brief review of Petri net place invariants appears in section 2.3.
discussed in section 3.3. Monitors are used to enforce *generalized mutual exclusion constraints* (GMEC's), which are defined by the set

\[\mathcal{M}(l, b) = \{ \mu_p \in \mathbb{Z}^n, \mu_p \geq 0 | l^T \mu_p \leq b \} \]

where \(n \) is the number of places, and \(\mu_p \) is the marking of the plant. A group of GMEC's can be written as

\[
\mathcal{M}(L, b) = \bigcap_{i=1}^{n_c} \mathcal{M}(l_i, b_i)
\]

where \(b \) is now a vector.

A GMEC is *redundant* with respect to the marking \(\mu_p \in \mathbb{Z}^n \) if \(\mu_p \subseteq \mathcal{M}(l, b) \).

A GMEC is redundant to the Petri net \(N \) with initial marking \(\mu_{p0} \), \(\langle N, \mu_{p0} \rangle \), if \(R(N, \mu_{p0}) \subseteq \mathcal{M}(l, b) \) where \(R(N, \mu_{p0}) \) is the set of reachable markings of \(N \) starting with marking \(\mu_{p0} \).

Proposition 3.1. *Redundant GMEC’s.* If the following linear program (LP) has an optimal solution \(z^* < b + 1 \) then the GMEC, \(\mathcal{M}(l, b) \), is redundant with respect to \(\langle N, \mu_{p0} \rangle \).

\[
\begin{align*}
z &= \max l^T \mu_p \\
\text{s.t. } X \mu_p &= X \mu_{p0} \\
\mu_p &\geq 0
\end{align*}
\]

where \(X \) is the basis of the *P-semiflows* of the net.

40
Proof. See [24].

Remark. The "P-semiflows" refer to the Petri net place invariants. It is not difficult to discuss redundancy in light of invariant theory.

Demonstrating the equivalence of two GMEC's is more complicated than simply demonstrating that the two constraints are linearly dependent. Net structure plays an important role in determining case by case equivalence. Two sets of GMEC's \((L_1, b_1)\) and \((L_2, b_2)\) are equivalent with respect to \(\langle N, \mu_{p0} \rangle\) if \(R(N, \mu_{p0}) \cap \mathcal{M}(L_1, b_1) = R(N, \mu_{p0}) \cap \mathcal{M}(L_2, b_2)\). Linear programs for checking this condition are presented in [24].

The equivalence of GMEC's leads to the idea of the possible simplification of constraints. GMEC \((l_1, b_1)\) is simpler than \((l_2, b_2)\) if \(l_1 < l_2\). The simplest constraints are vectors composed of 1's and 0's and are called "unweighted" constraints. Theorem 1 in [24] shows that a weighted GMEC can always be reduced to a set of unweighted GMEC's if the net is safe.

GMEC's are not general enough to realize all forbidden state problems. This is demonstrated with a simple example. Let \(\mu_{p1}, \mu_{p2}, \mu_{p3} \in R(N, \mu_{p0})\) be reachable markings with \(\mu_{p3} = \frac{1}{2}(\mu_{p1} + \mu_{p2})\), then

\[
\mu_{p1}, \mu_{p2} \in \mathcal{M}(L, b) \rightarrow \mu_{p3} \in \mathcal{M}(L, b)
\]

because \(\mathcal{M}(L, b)\) is a convex set. However a general forbidden state problem might be to prohibit markings \(\mu_{p1}\) and \(\mu_{p2}\) while allowing \(\mu_{p3}\). Theorem 2 in [24] demonstrates
that general forbidden state problems on safe and conservative (entire net is included in a nonnegative place invariant) nets can always be represented with GMEC's.

GMEC's can be enforced on the marking behavior of a plant with monitors that are equivalent to the controllers presented in the following section. A monitor is itself a Petri net with its own set of places and arcs that are attached to the transitions of the process net. Each GMEC requires a controller place, equivalent to a slack place, and an initial condition. The equations are identical to those given in section 3.3. The only differences lie in how the equations are derived and/or justified. The following results for monitor based controllers appear in [24].

1. A monitor insures that the projection of the reachable set of the controlled system onto the uncontrolled system meets the given constraint.

2. The projection of the potentially reachable set of the controlled system is identical to the legal potentially reachable markings of the uncontrolled net.

3. The monitor minimally restricts the plant's behavior, i.e., it only prohibits transition firings that would induce forbidden markings.

4. Liveness is not necessarily guaranteed by monitor based controllers. Furthermore, given a particular initial marking, it may not be possible to reach all possible allowed markings, and it might not even be possible to return to the initial marking. These consequences are not a result of monitor based control but are due to the strict, literal enforcement of the constraints.\(^2\)

\(^2\)Means for handling liveness and deadlock issues appears in section 6.3.
There are some thoughts on the problems of enforcing constraints in the face of uncontrollable transitions in [24]. The authors note that, for safe and conservative nets, control can still be imposed even in the face of uncontrollable transitions. Li and Wonham [41, 42] have addressed the solvability of maximally permissive control problems under conditions of uncontrollability for a wider range of PN models. Chapters 4 and 5 present an approach for a computationally more efficient means of dealing with uncontrollable and unobservable transitions.

3.3 Supervisor Synthesis using Place Invariants

Each constraint of type (3.1) enforced on the net has a slack variable associated with it and each slack variable is represented in the controller net as a place. Thus the size (number of places) of the controller net is proportional to the number of constraints that are to be enforced. Every place used to control the plant adds one row to the incidence matrix D of the controlled system. Thus D is composed of two matrices, the original D_p of the process model and the incidence matrix of the controller, D_c. The arcs connecting the controller place to the original Petri net of the system are computed by the place invariant equation (2.8) where the unknowns are the elements of the new row of D and the vector x is the desired place invariant defined by equation (3.2), i.e. $x^T = [l_1 l_2 \ldots l_n 1]$.

The control problem can be stated in general as follows. All constraints of type (3.1) can be grouped and written in matrix form as

$$L \mu_p \leq b$$ \hspace{1cm} (3.4)
where μ_p is the marking vector of the plant, $L \in \mathbb{Z}^{n_c \times n}$, $b \in \mathbb{Z}^n$, and n_c is the number of constraints of type (3.1). The inequality is with respect to the individual elements of the two vectors $L\mu_p$ and b and can be thought of as the logical conjunction of n_c separate inequalities. Disjunctions of inequalities are discussed in section 3.5. Constraint (3.4) is equivalent to the grouped GMEC constraint (3.3) of Giua and DiCesare [24].

After the introduction of the slack variables, constraint (3.4) becomes

$$L\mu_p + \mu_c = b$$

(3.5)

where $\mu_c \in \mathbb{Z}^n$ integer vector that represents the marking of the controller places.

The matrix D_c contains the arcs that connect the controller places to the transitions of the process net. The incidence matrix $D \in \mathbb{Z}^{(n+n_c) \times m}$ of the closed loop system is given by

$$D = \begin{bmatrix} D_p \\ D_c \end{bmatrix}$$

(3.6)

and the marking vector $\mu \in \mathbb{Z}^{n+n_c}$ and initial marking μ_0 are

$$\mu = \begin{bmatrix} \mu_p \\ \mu_c \end{bmatrix} \quad \mu_0 = \begin{bmatrix} \mu_{p0} \\ \mu_{c0} \end{bmatrix}$$

(3.7)

Note that equation (3.5) is in the form of (2.7), thus the invariants defined by equation (3.5) on the system ((3.6), (3.7)) must satisfy equation (2.8) with z being replaced by X, a matrix specifying the n_c different invariants.

$$X^T D = [L \ I] \begin{bmatrix} D_p \\ D_c \end{bmatrix} = 0$$
\[LD_p + D_c = 0 \]

(3.8)

where \(I \in \mathbb{Z}^{n_c \times n_c} \) is an identity matrix since the coefficients of the slack variables in equation (3.5) are all equal to 1.

Theorem 3.2. Controller synthesis. If

\[b - L\mu_{p_0} \geq 0 \]

(3.9)

then a Petri net controller, \(D_c \in \mathbb{Z}^{n_c \times m} \) with initial marking \(\mu_{c_0} \)

\[D_c = -LD_p \]

(3.10)

\[\mu_{c_0} = b - L\mu_{p_0} \]

(3.11)

enforces constraints (3.4) when included in the closed loop system (3.6) with marking (3.7), assuming that the transitions with input arcs from \(D_c \) are controllable.

If inequality (3.9) is not true, then the constraints can not be enforced since the initial conditions of the plant lie outside the range defined by the constraints.

Proof. If inequality (3.9) is not true, then obviously \(L\mu_{p_0} > b \) and the initial conditions of the plant violate the constraints. If the inequality is true, then equation (3.11) shows that the initial conditions of the controller are defined as a vector representing the slack in each of the constraints represented by \(L\mu_p \leq b \).

Equation (3.10) is the solution of equation (3.8), which forces \(\begin{bmatrix} L & I \end{bmatrix} \) to be invariants of the closed loop system. Since \(\begin{bmatrix} L & I \end{bmatrix} \) are invariants we know that
\[L\mu_p + \mu_c = L\mu_{p_0} + \mu_{c_0} \] and from equation (3.11), \[L\mu_{p_0} + \mu_{c_0} = b. \] The marking of a place is always greater than or equal to zero, therefore

\[L\mu_p + \mu_c = b \]
\[L\mu_p \leq b \]

Remark. Theorem 3.2 creates a controller that will enable and inhibit various transitions in the plant. If any of these transitions are uncontrollable then the controller defined by this method is invalid. Chapter 5 shows how a transformation of the constraints can be performed so that the uncontrollable transitions in the net receive no input arcs from the controller places.

Remark. The method can control transitions that participate in self-loops in the plant, since no assumptions regarding self-loops were required in the theorem.

Remark. When an element of \(D_c \) is zero, there are no arcs at all connecting the given place and transition, i.e., there are no cancelling self-loops in the controller structure. Self-loops may occur in the controller if the graph transformation techniques (for realization of firing vector constraints) discussed in section 6.5 are used.

Example. Consider the Petri net of Figure 3.1 which is acyclic and non-safe. Its
Figure 3.1: Plant net for the example of section 3.3

The incidence matrix is

\[
D_p = \begin{bmatrix}
-1 & 0 & 0 & 1 & 0 \\
1 & 1 & -1 & 0 & 1 \\
0 & -1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{bmatrix}
\]

and its initial marking is

\[
\mu_{p_0} = \begin{bmatrix}
\mu_1 \\
\mu_2 \\
\mu_3 \\
\mu_4
\end{bmatrix} = \begin{bmatrix}
3 \\
0 \\
0 \\
3
\end{bmatrix}
\]

\(D_p\) is rank 3, thus it has one place invariant that includes the entire net, i.e., \(X^TD_p = 0\) where \(X^T = [1 1 1]\). The objective is to control the net so that places \(p_2\) and \(p_3\) never contain more than one token, i.e. we wish to enforce the constraint

\[
\mu_2 + \mu_3 \leq 1
\]
(3.12)
Using the matrix notation of (3.4) we have

\[L = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \]

\[b = 1 \]

The plant will not satisfy the desired constraint without an external controller. A slack variable \(\mu_c \) is introduced and inequality (3.12) becomes an equality

\[\mu_2 + \mu_3 + \mu_c = 1 \]

(3.13)

The slack variable \(\mu_c \) denotes the marking of a controller place, \(p_c \). Equation (3.13) represents the desired invariant \(X^T = [0 \ 1 \ 0 \ 1] \) that will be forced on the closed loop system. The incidence matrix of the controller net is computed with equation (3.10)

\[D_c = -LD_p = \begin{bmatrix} -1 & 0 & 0 & 1 & -1 \end{bmatrix} \]

The initial marking of the controller place is computed from equation (3.11)

\[\mu_{c0} = 1 - L\mu_{p0} = 1 \]

The Petri net graph of the controlled system is shown in Figure 3.2. The controller arcs are shown with dashed lines and the control place with thick lines.

Transitions 1 and 5 are enabled, but place \(c \) prevents them from firing concurrently or from firing any time that a token occupies \(p_2 \) or \(p_3 \).

Further illustrations of the basic control synthesis procedure appear among the examples of chapter 7. Section 7.2.1 uses the classic “cat and mouse” problem and
section 7.3 involves collision avoidance among “automated guided vehicles” on a factory floor.

3.4 Maximally Permissive Supervision

The invariant based control method is maximally permissive. The Petri net enabling condition indicates that a transition is inhibited only if its firing would cause the marking of any of its input places to become negative. Thus a controller place only acts to inhibit a transition when the firing would cause $\mu_c < 0$. The invariant forced by the controller on the closed loop system, $l^T \mu_p + \mu_c = b$, shows that if μ_c is negative, then $l^T \mu_p > b$. The controller will only act to inhibit in situations where the firing of a transition would cause a direct violation of the constraint inequality.

Next it is shown, by examination of the place invariants of the controlled system, that the control scheme only introduces those invariants that are required by the
constraints. Let \(X_p \) be an integer matrix of linearly independent columns representing a basis for the place invariants of the (uncontrolled) plant. Then \(X_p \) satisfies the following equation

\[
X_p^T D_p = 0
\]

where the number of columns of \(X_p \) (and thus the number of invariants) is equal to \((n - \text{rank } D_p)\) since \(D_p \) is an \(n \times m \) matrix and \(X_p \) forms a basis for the kernel of \(D_p \). Note that if \(\text{rank } D_p = n \) then the uncontrolled plant has no place invariants.

A controller is constructed using equation (3.10). The incidence matrix of the controlled net is then

\[
D = \begin{bmatrix}
D_p \\
D_c
\end{bmatrix} = \begin{bmatrix}
D_p \\
-LD_p
\end{bmatrix}
\]

The rows of \(D_c \) are linear combinations of the rows of \(D_p \), so \(\text{rank } D = \text{rank } D_p \).

Thus the number of invariants of the controlled system is equal to \(n + n_c - \text{rank } D_p \).

All of these invariants are accounted for by the uncontrolled plant invariants and the forced constraint invariants as shown below. First note that

\[
\begin{bmatrix}
X_p^T & 0
\end{bmatrix}
\begin{bmatrix}
D_p \\
D_c
\end{bmatrix} = X_p^T D_p = 0
\]

Thus the invariants of the uncontrolled plant are also invariants of the controlled plant. This is true for any Petri net control scheme that only adds places and arcs in order to control the plant. From the construction of the control law we also know that

\[
\begin{bmatrix}
L \\
I
\end{bmatrix}
\begin{bmatrix}
D_p \\
D_c
\end{bmatrix} = LD_p + D_c = LD_p - LD_p = 0
\]

50
and thus all $n + n_c - \text{rank} D_p$ invariants of the controlled net are given by $X_c^T D = 0$

where

$$X_c = \begin{bmatrix} X_p & L \\ 0 & I \end{bmatrix}$$

The rank (and number of columns) of X_c is $n + n_c - \text{rank} D_p$, since X_p is rank $n - \text{rank} D_p$ and I is a $n_c \times n_c$ identity matrix.

There are no new or unexpected invariants forced on the system as a result of the control law. The control law is maximally permissive since no action is prohibited that is not a result of the plant structure itself or a particular constraint forced on the plant.

3.5 Disjunctions of Linear Constraints

The inequality

$$L \mu_p \leq b$$

represents the logical intersection, or conjunction, of n_c separate linear inequalities. The feasible solutions to the inequalities form a convex region [22], and the behavior of a Petri net can be restricted to this region by adding further PN structures to the net as was shown above. A logical union, or disjunction, of linear constraints is, in general, nonconvex and can not be enforced with maximal permissivity on a Petri net through the use of other Petri net structures due to the linear nature of reachable PN state spaces. This claim is proved in the following lemma and proposition.
Lemma 3.3. A consequence of the PN enabling condition. Given a Petri net with initial marking μ_0 and two firing vectors q_1 and q_2, if the transition firings represented by q_1 or q_2 may occur, from the initial conditions, at least two times consecutively, i.e.,

$$D^-(kq_1) \leq \mu_0$$

(3.14)

and

$$D^-(kq_2) \leq \mu_0$$

(3.15)

for $1 \leq k \leq 2$, then q_1 and q_2 may both be fired, from the initial conditions, one after the other or concurrently.

Proof. If $D^-(q_1 + q_2) \leq \mu_0$, then q_1 and q_2 are both feasible firing vectors and may be fired either consecutively or concurrently. Since we are dealing with strictly nonnegative values,

$$D^-(q_1 + q_2) \leq \max(2D^-q_1, 2D^-q_2)$$

and according to assumptions (3.14) and (3.15)

$$\max(2D^-q_1, 2D^-q_2) \leq \mu_0$$

Thus two valid firings in a Petri net, each of which may occur at least twice, implies that both firings may occur one after the other or even simultaneously.

Proposition 3.4. A Petri net controller can not always enforce the disjunction of two linear inequalities on the PN state with maximal permissivity.
Proof. The proposition is proved simply by providing a common example for which no PN controller will be maximally permissive. Given a plant with marking μ_p and a controller with marking μ_c, a closed loop system is formed with marking $\mu^T = [\mu_p^T \, \mu_c^T]$. The controller may be any Petri net connected in any way to the plant Petri net. Given initial conditions $\mu_0^T = [\mu_p^0 \, \mu_c^0]$ and a closed loop incidence matrix D, let

\[
\begin{bmatrix}
\mu_{p1}(k) \\
\mu_{c1}(k)
\end{bmatrix} = \begin{bmatrix}
\mu_{p0} \\
\mu_{c0}
\end{bmatrix} + D(kq_1) \geq 0
\]

(3.16)

and

\[
\begin{bmatrix}
\mu_{p2}(k) \\
\mu_{c2}(k)
\end{bmatrix} = \begin{bmatrix}
\mu_{p0} \\
\mu_{c0}
\end{bmatrix} + D(kq_2) \geq 0
\]

(3.17)

be reachable states, for $1 \leq k \leq 2$, such that enabling conditions (3.14) and (3.15) are satisfied.

The controller must enforce the constraint

\[
(l_1^T \mu_p \leq b_1) \lor (l_2^T \mu_p \leq b_2)
\]

(3.18)

Let

\[
l_1^T \mu_{p1}(k) \leq b_1, \quad l_2^T \mu_{p1}(k) > b_2
\]

\[
l_1^T \mu_{p2}(k) > b_1, \quad l_2^T \mu_{p2}(k) \leq b_2
\]

for $1 \leq k \leq 2$, and let

\[
\mu_{p3} = \frac{1}{2}(\mu_{p1}(2) + \mu_{p2}(2)) \geq 0
\]

be an integer-valued vector such that

\[
l_1^T \mu_{p3} > b_1, \quad l_2^T \mu_{p3} > b_2
\]
A maximally permissive controller will permit transition firings that lead to states $\mu_{p1}(k)$ or $\mu_{p2}(k)$. Lemma 3.3 indicates that the state obtained through the firing of both q_1 and q_2 is reachable. The value of this state is calculated:

$$\begin{bmatrix} \mu_{p0} \\ \mu_{c0} \end{bmatrix} + Dq_1 + Dq_2 = \frac{1}{2} \left(\begin{bmatrix} \mu_{p0} \\ \mu_{c0} \end{bmatrix} + 2Dq_1 \right) + \frac{1}{2} \left(\begin{bmatrix} \mu_{p0} \\ \mu_{c0} \end{bmatrix} + 2Dq_2 \right)$$

$$= \frac{1}{2} \begin{bmatrix} \mu_{p1}(2) \\ \mu_{c1}(2) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mu_{p2}(2) \\ \mu_{c2}(2) \end{bmatrix}$$

$$= \begin{bmatrix} \mu_{p3} \\ \frac{1}{2}(\mu_{c1}(2) + \mu_{c2}(2)) \end{bmatrix} \geq 0 \quad (3.19)$$

Thus the forbidden plant state μ_{p3} is reachable and a maximally permissive Petri net controller for constraint (3.18) does not exist.

The maximally permissive enforcement of a nonconvex constraint requires that the supervisor is equipped to handle, model, and incorporate the nonconvexity within its own evolution rules. Proposition 3.4 showed that nonconvex constraints cannot, in general, be enforced with maximal permissivity on an ordinary Petri net using an external ordinary Petri net as a supervisor. This section will show how a slight modification to the evolution rules of the controller net can be made such that it will act as a maximally permissive supervisor for a class of nonconvex constraints.

The simple rules that govern ordinary Petri net behavior are what help to make the PN model so attractive both for analysis and implementation. The reluctance to modify this model for the enforcement of nonconvex constraints on PN plants is...
overcome for the following reasons.

1. The ability to handle the disjunction of linear constraints as well as their conjunction is a powerful advancement in the utility of the method and is necessary for the proper solution of problems in many applications.

2. Disjunctions of linear constraints are important for the enforcement of linear constraints under conditions in which transitions may be uncontrollable or unobservable. This issue is very important in DES control and is covered in section 5.4.

3. The modified rules for controller state evolution that enable the controller to enforce disjunctions as well as conjunctions of linear inequalities on the plant state space involve only a slight modification of the ordinary transition enabling rule. Analysis and implementation are very similar to that of ordinary Petri nets.

The following disjunction of linear inequalities is to be enforced on the marking of a plant with initial marking $\mu_{p_0} \in \mathbb{Z}^n$ (all elements nonnegative) and incidence matrix $D_p \in \mathbb{Z}^{n \times m}$.

$$\bigvee_{i=1}^{n_s} l_i^T \mu_p \leq b_i$$

where $l_i \in \mathbb{Z}^n$ and $b_i \in \mathbb{Z}$. Let

$$D_{c_i} = -l_i^T D_p$$

and

$$\mu_{c_i 0} = b_i - l_i^T \mu_{p_0}$$
for $1 \leq i \leq n_c$. This procedure is the same as detailed in section 3.3, thus each pair (D_{ci}, μ_{ci}) is a maximally permissive PN supervisor for enforcing the constraint $l_i^T \mu_p \leq b_i$. However if all of these supervisor elements were to be simultaneously enforced on the plant, the reachable plant states would lie in the conjunction of the inequalities in (3.20), rather than their disjunction.

In order for the controller to enforce a disjunction of constraints, at least one of the inequalities $l_i^T \mu_p \leq b_i$ must be true at every transition firing iteration of the net’s evolution. Let

$$L = \begin{bmatrix} l_1 & l_2 & \cdots & l_{n_c} \end{bmatrix}^T$$

so that

$$D_c = -LD_p$$ \hspace{1cm} (3.23)

and

$$\mu_{c_0} = b - L\mu_{p_0}$$ \hspace{1cm} (3.24)

which is identical to the controller construction from section 3.3. However, the enabling rule for the controller portion of the net must be changed such that it insures that at least one of the inequalities is being obeyed at all times rather than all of them at all times.

A firing vector q is valid (indicates the firing of an enabled transition) iff

$$D_p q \leq \mu_p$$ \hspace{1cm} (3.25)

and

$$\mu_{ci} + D_{ci} q \geq 0 \text{ for some } i \in 1 \ldots n_c$$ \hspace{1cm} (3.26)
Inequality (3.25) is the standard PN enabling condition for a plant that may include transitions with self loops. The enabling condition for the controller (3.26) does not include any D_{ci}^{-} terms because controllers constructed according to the rules in section 3.3 do not contain self loops. Condition (3.26) may also be written

$$\max_{i=1}^{n_c}(\mu_{ci} + D_{ci}q) \geq 0$$

(3.27)

Note that it is still true that

$$L\mu_p + \mu_c = b$$

(3.28)

However, unlike the standard nonnegative slack variables from before, many of the elements of this μ_c may be negative. The restriction placed by condition (3.27) insures that at least one of the elements is nonnegative, and thus at any time, at least one of the inequalities in (3.20) is being obeyed; allowed states lie in the union of all the feasible regions of the individual linear inequalities.

Proposition 3.5. Maximal permissivity of disjunction-enforcing controllers.

A controller constructed according to (3.23) and (3.24) using enabling rule (3.27) is a maximally permissive supervisor for the enforcement of constraint (3.20) on the plant (D_p, μ_{c0}) if

$$\mu_{ci} \geq 0 \text{ for some } i \in 1 \ldots n_c.$$

(3.29)

Proof. If condition (3.29) is not met, then the initial conditions of the plant violate the constraint (3.20) according to equation (3.24).
Equation (3.28) shows that the state space of the closed loop system being outside the bounds of constraint (3.20) is equivalent to the situation when all the elements of \(\mu_c \) are negative. However this is the only condition that is prevented by enabling rule (3.27). The only time the controller will intervene to disable a transition is when the firing of that transition would cause a direct violation of constraint (3.20), and thus the supervisor is maximally permissive.

Remark. In terms of Proposition 3.4, a disjunction-enforcing controller could allow some negative numbers in the elements of \(\mu_{c1} \) and \(\mu_{c2} \) in equations (3.16) and (3.17). Thus the vector \(\mu_{c1}(2) + \mu_{c2}(2) \) in equation (3.19) could contain all negative numbers making the forbidden state \(\mu_{p3} \) unreachable.

![Petri Net plant for the example of section 3.5.](image)

Example. The following constraint is to be imposed on the behavior of the net in Figure 3.3.

\[
(\mu_3 \leq 1 \text{ OR } \mu_4 \leq 1) \text{ AND } \mu_1 \leq 2
\]

(3.30)

The first two inequalities in (3.30) are involved in a disjunction. A controller place with associated arcs is constructed for each of the two inequalities. The rules for the construction of these two places is identical to the procedure of section 3.3,
however the enabling rule for transitions connected to these places will obey (3.27) rather than the standard PN firing rules.

The final inequality in (3.30) will also have a PN controller created for it according to the standard rules. However, the relationship of this inequality to the previous two inequalities is a conjunction rather than a disjunction, so the transitions connected to it will follow the standard enabling rules.

The supervised system is shown in Figure 3.4. Places c_1 and c_2 are grouped together to indicate that they are combined to implement a single disjunction. The marking of either of these places may become negative, but at all times at least one of them must be nonnegative to insure that the disjunction of the first two inequalities in (3.30) is being obeyed. The final controller place, c_3, behaves like a standard PN place: it's marking must always be nonnegative. The combined action of the supervisor is a maximally permissive enforcement of (3.30).

![Figure 3.4: The PN of Figure 3.3 with a supervisor for enforcing constraint (3.30).](image-url)
CHAPTER 4

UNCONTROLLABLE AND UNOBSERVABLE TRANSITIONS

4.1 Introduction

Consider the situation where the controller is not allowed to influence certain transitions in the plant Petri net. It is illegal (in most cases\(^1\)) for the Petri net controller to include an arc from one of the controller places to any of these un- controllable plant transitions, because these arcs are the mechanism by which the controller exerts its power to inhibit events.

A major goal in the field of discrete event system control is the synthesis of supervisors under conditions where certain state to state transitions can not be prevented by any control action [42,64,79]. For example, the plant Petri net may include models for failures or breakdowns, which obviously can not be controlled, or there may be models of irreversible processes, like many chemical reactions, which can not be

\(^1\)A controller may contain arcs to an uncontrollable transition if the controller never acts to inhibit that transition when it is otherwise enabled. See section 4.2 for details. Corollary 4.8 provides a condition under which these kinds of arcs are permitted.
stopped once started. For example, consider a constraint in a chemical processing plant that indicates that no more than five tanks should contain chemicals undergoing exothermic reactions at the same time. A control method that did not account for uncontrollable transitions might mix reactants in all of the tanks and then attempt to stop the actual reaction from taking place in enough of the tanks in order to meet the safety criterion. The problem is then to design a controller that prevents states from occurring that directly violate the behavioral constraints or that might lead to a violation of the constraints through the action of uncontrollable transitions.

In the hypothetical chemical processing plant above, the uncontrollable transitions could be dealt with by restating the constraint so that it dealt with the mixing of the reactants as well as the number of tanks containing active reactions. However for large, complex systems it may be too difficult to foresee all of the conflicts between the constraints and the uncontrollable transitions.

It is also possible that certain plant transition may be unobservable, yet still modeled in the Petri net plant. These events may be too expensive or even impossible to monitor directly, or they may be the result of sensor failures.

In this chapter, the concepts of uncontrollable and unobservable transitions are defined and explained in sections 4.2 and 4.3. The architectural limitations these transitions place on a Petri net supervisor are fundamental results used in the analysis of section 4.6 and for the synthesis procedures of chapter 5. The use of constraint transformations to deal with uncontrollable and unobservable transitions is introduced in section 4.4 through the concepts of admissible and inadmissible markings.
and constraints. The research into “vector discrete event systems” by Li and Wonham includes important results relevant to the process of transforming constraints to account for uncontrollability. An overview of these results is presented in section 4.5. The mathematical preliminaries and tools used in the procedures of chapter 5 are presented in section 4.6 at the conclusion of this chapter.

4.2 Uncontrollable Transitions

Definition 4.1. A plant transition is called *uncontrollable* if the firing of that transition may not be inhibited by an external action.

The freedom of an uncontrollable transition to fire is limited solely by the structure and state of the plant. In order for a Petri net controller to inhibit a transition, it must contain an arc from a controller place to the transition. The transition will be disabled if the number of tokens in the control place is less than the arc weight. However, this is not the only function of the arc between the two elements. When a plant transition fires, any control place connected to it will gain or lose tokens and experience a change in its marking: the firing causes the controller to undergo a state change. *For a Petri net modeled controller, the ability of the controller to inhibit a transition is intrinsically tied with its ability to change state based on observations of that transition.* Section 4.3 includes more information on this aspect of Petri net controllers in its discussion of unobservable transitions.

Definition 4.1 allows for an uncontrollable transition to be observed, thus arcs may be freely drawn from uncontrollable transitions to control places. In some situations,
a Petri net control place may even contain an arc to an uncontrollable transition, but there must be assurance that if the number of tokens in the control place ever falls below the arc weight of the connection, then the transition is also simultaneously disabled by at least one of its input places in the plant. Corollary 4.8 in section 4.6 provides a situation where this condition is guaranteed, and the example of the “three tank problem” in section 7.7 provides a practical illustration of its use.

The synthesis techniques in chapter 5 will often make use of an incidence matrix corresponding to the uncontrollable portion(s) of the plant. Let D_{uc} be an incidence matrix composed of the columns of D_p that correspond to uncontrollable transitions. $D_{uc} \in \mathbb{Z}^{n \times n_{uc}}$ where n_{uc} is the number of uncontrollable transitions. Given a set of constraints, $L \mu_p \leq b$, the Petri net controller is given by $D_c = -L D_p$. Recall that, assuming no self loops, positive elements in an incidence matrix refer to arcs from transitions to places, and negative elements refer to arcs from places to transitions. So, ignoring the few situations where a controller can observe a transition without ever inhibiting it, the controller will violate the uncontrollability condition if LD_{uc} contains any elements greater than zero. That is, the uncontrollability of a transition indicates that we cannot draw any arcs from the controller places to this transition, and the portion of the controller corresponding to the uncontrollable transitions is given by $-L D_{uc}$, thus the elements of LD_{uc} should be less than or equal to zero. This result is formally proposed in Corollary 4.7 of section 4.6.
4.3 Unobservable Transitions

It is possible that transitions within the plant may be unobservable, i.e., they are defined on the Petri net graph because they represent the occurrence of real events, but these events are either impossible or too expensive to detect directly. It is also possible, in the event of a sensor failure, that a transition might suddenly become unobservable, forcing a redesign or adaptation of the control law.

Definition 4.2. A plant transition is called **unobservable** if the firings of that transition can not be directly detected or measured.

Since the firing of an unobservable transition can not be detected, a controller state change can not be triggered by such a firing. For a Petri net based controller, both input and output arcs to the plant transitions are used to trigger state changes in the controller. *A Petri net controller can not have any connections to an unobservable transition, thus all unobservable transitions are also implicitly uncontrollable.* One can imagine a situation where the occurrence of some event in a plant could be blocked without the controller ever receiving any feedback relating directly to that event, but, in practical situations, the ability to inhibit an event is usually coupled with the ability to detect occurrences of that event. For this reason, the limitation on Petri net based controllers with regard to unobservable transitions is not too severe.

Similar to D_{uc}, let $D_{uo} \in \mathbb{Z}^{n \times n_{uo}}$ be an incidence matrix composed of the columns of D_p corresponding to unobservable transitions, where n_{uo} is the number of these transitions. The incidence matrix of a Petri net controller for the constraint $L \mu_p \leq b$
is given by $D_c = -LD_p$. Thus, in order for the controller to conform to the limitations imposed by unobservability, all of the elements of LD_{uo} must be equal to zero.

4.4 Constraint Transformations

Given a set of constraints, $L\mu_p \leq b$, a supervisor must work to insure that the constraints are never violated directly or may be violated through the firing of uncontrollable transitions or through incomplete knowledge due to unobservable transitions. One approach to this problem would be to construct a supervisor that behaved according to the rules below. The procedure assumes that unobservable transitions are also uncontrollable.

At every iteration and for each enabled controllable transition in the net:

1. If the firing of the transition would lead to a state μ_p such that $L\mu_b \leq b$ (for any element in the vector-to-vector inequality), then disable this transition.

2. Else search for any markings that are reachable through the firing of uncontrollable transitions (from the state that would be induced by the firing of the candidate transition). If any of these reachable markings violates the constraints, then disable the transition.

3. Else the transition is enabled.

Unlike the controller structures discussed in chapter 3, a supervisor acting according to the rules above would not take the form of external Petri net modifying the behavior of the plant net. The primary disadvantage of this approach lies in the
potentially expensive search for uncontrollably reachable markings, which leads to restrictions on the classes of plants that may be studied, or which may prevent the supervisor from being implemented in real time in an actual application.

A separate approach to supervising a plant with uncontrollable/unobservable transitions is to actually modify the constraints themselves such that the new constraints account for the difficult structures in the plant. If it is possible to obtain an analytic solution for the transformed constraints, then the controller logic itself will be very simple. The following definitions are useful in understanding the motivation for the transformation of constraints. The definitions are with respect to a plant with possible uncontrollable or unobservable transitions and a constraint on the marking behavior of the plant in the form $L \mu_p \leq b$. Unobservable transitions are also assumed to be uncontrollable.

Definition 4.3. An admissible marking μ_p is a marking such that

1. $L \mu_p \leq b$, and
2. For all markings μ'_p reachable from μ_p through the firing of uncontrollable transitions, $L \mu'_p \leq b$.

If either of these conditions are not met, then the marking is inadmissible.

Definition 4.4. Given a plant with initial marking μ_{p_0}, an admissible constraint satisfies

1. $L \mu_{p_0} \leq b$, and
2. \(\forall \mu_p \text{ reachable from } \mu_{p0} \text{ such that } L \mu_p \leq b, \mu_p \text{ is an admissible marking.} \)

If a constraint does not satisfy both of these conditions, then it is \textbf{inadmissible}. If a constraint is admissible\(^2\), then condition 2 of Definition 4.4 indicates that the firing of uncontrollable transitions can never lead from a state that satisfies the constraint to a new state that does not satisfy the constraint.

![Diagram](image)

Figure 4.1: Transitions 2 and 3 are uncontrollable.

Example. The Petri net of Figure 4.1 contains two uncontrollable transitions: \(t_2 \) and \(t_3 \). Tokens in places \(p_2 \) and \(p_3 \) can not be prevented from freely traveling between these two places. However \(t_1 \) can be used to stop the introduction of new tokens into \(p_2 \) and \(p_3 \), and \(t_4 \) can be used to prevent tokens from leaving.

The constraint

\[
\mu_3 \leq 1
\]

is inadmissible. The initial state of the plant \(\mu_0 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T \) satisfies the constraint, but the uncontrollable firing of \(t_3 \) would lead to the state \(\mu = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T \), which violates (4.1). The constraint fails condition 2 of Definition 4.4.

\[^2\text{Another way of stating that a constraint is admissible is to say that it is “control invariant.”}\]
The constraint
\[\mu_1 \leq 1 \] \hspace{1cm} (4.2)

is admissible. The current state of the plant satisfies the constraint, and for any
state that satisfies the constraint, there is no firing of uncontrollable transitions that
would lead to a state that does not satisfy it. The marking of \(p_1 \) is effected only by
the firings of transitions \(t_1 \) and \(t_4 \), both of which are controllable.

If \(L \mu_p \leq b \) is inadmissible, then it is desirable to find another constraint \(L' \mu_p \leq b' \)
such that \(L' \mu_p \leq b' \) is an admissible constraint, and for all \(\mu_p \) such that \(L' \mu_p \leq b' \),
\(L \mu_p \leq b \) is also true. In the example above, we could replace constraint (4.1) with
\[\mu_2 + \mu_3 \leq 1 \] \hspace{1cm} (4.3)

This constraint is admissible according to Definition 4.4, and all reachable states that
satisfy (4.3) also satisfy (4.1). Thus constraint (4.1) could be enforced by designing
a controller for constraint (4.3) using the technique of section 3.3. Unfortunately
a controller designed this way may not be maximally permissive. The method of
handling uncontrollable/unobservable transitions in chapter 5 follows along these
lines, but it also includes the idea of finding all constraints \(L' \mu_p \leq b' \) that meet the
criteria above. A controller that enforces the disjunction of these inequalities will
still be a relatively simple structure while allowing for a high degree of plant freedom.

Li and Wonham’s [41,42] research into “vector DES” is related to these issues in
that they also seek to find ways to transform constraints into new forms that contain
only admissible markings. Their work relevant to this issue is summarized in the following section.

4.5 Vector Discrete Event Systems

Important contributions to the area of uncontrollable transitions in discrete event system control have been made by the researchers Li and Wonham [41–43]. Their primary contribution relating to this dissertation involves a method for transforming a set of general constraints into a set that accounts for uncontrollable transitions in the plant. The transformation is accomplished by analytically solving an integer linear programming problem. This section contains a summary and discussion of this work.

Li and Wonham introduce and base their work around a DES model they call the vector discrete event system (VDES). The VDES is, at least in one of its forms, equivalent to a Petri net. The discussion here will refer only to the Petri net form of the VDES, which is the form used for most of the results on uncontrollability. Before proceeding with the main contribution, the following definitions are made. The definitions are illustrated using the Petri net of Figure 4.2.

\(G \): The Petri net. A four place / four transition Petri net is shown in Figure 4.2.

\(G_{uc} \in G \): The uncontrollable portion of the Petri net. In Figure 4.2, the uncontrollable transitions and associated arcs are shown as dashed rather than solid lines. \(G_{uc} \) is made up of \(p_1 \) and \(p_2 \) connected through transition \(t_1 \) and \(p_3 \) and \(p_4 \) connected through transition \(t_3 \).
Figure 4.2: A Petri net with uncontrollable transitions α, and γ.

Σ: The set of events. In Figure 4.2, $\Sigma = \{\alpha, \beta, \gamma, \delta\}$. One event is associated with the firing of each transition.

$\Sigma_{uc} \subseteq \Sigma$: The set of uncontrollable events. $\Sigma_{uc} = \{\alpha, \gamma\}$ in Figure 4.2.

$L(G, \mu)$: The language of Petri net G starting at state μ. The language is composed of all possible sequences of events due to transition firings.

$w \in L(G, \mu)$: A valid or possible string of events in the PN G starting from the state μ.

D_{uc}: Uncontrollable columns of incidence matrix D. In Figure 4.2 we have:

$$D = \begin{bmatrix}
-1 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
\end{bmatrix} \quad D_{uc} = \begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1 \\
\end{bmatrix} \quad (4.4)$$

The control goal is to enforce a single linear on the marking behavior of G:

$$l^T \mu \leq b \quad (4.5)$$
The method of Li and Wonham is used to transform (4.5) into a form that eliminates the possibility of uncontrollable transition firings leading to a violation of (4.5), i.e., transformation into an admissible constraint. Instead of using a Petri net structure, Li and Wonham define their controller as a boolean function that defines whether or not each controllable transition should be enabled given the current state.

A final state as a result of a sequence of transition firings can be represented as a single vector equation as follows. Given a sequence of N events, $w \in L(G, \mu)$, the final state is given by

$$
\mu_N = \mu_0 + Dq_1 + Dq_2 + \ldots + Dq_N = \mu + D\left(q_1 + q_2 + \ldots + q_N\right) \\
\mu_N = \mu + DQ_w
$$

(4.6)

Given (4.6), the control law $f^*(\alpha, \mu)$ is equal to 1 when event α should be enabled given the current state μ.

$$
f^*(\alpha, \mu) = \begin{cases}
1 & \text{if } \mu + Dq_\alpha \in [P] \\
0 & \text{else}
\end{cases}
$$

where

$$
[P] = \{\mu | \forall w \in L(G_{uc}, \mu), l(\mu + D_{uc}Q_{uc,w}) \leq b\}
$$

$$
= \{\mu | l(\mu + \max_{w \in L(G_{uc}, \mu)} D_{uc}Q_{uc,w}) \leq b\}
$$

(4.7)

In other words, the transition associated with the firing q_α is enabled if it is impossible that any subsequent firing of uncontrollable transitions could violate the constraint $l^T\mu \leq b$.

71
The maximization problem in (4.7) involves searching a nonconvex feasible region that may be difficult to solve. However, if the uncontrollable portion of the plant net \(G_{\text{uc}}\) contains no loops, then the set of possible strings \(w \in L(G_i, \mu)\) can be simplified as follows.

\[
\{Q_{\text{uc}, w} | w \in L(G_{\text{uc}}, \mu)\} = \{Q \in \mathbb{Z}^k | \mu + D_{\text{uc}} Q \geq 0, Q \geq 0\}
\]

With this simplification of the feasible region, the set \([P]\) of allowed states becomes

\[
[P] = \{\mu | \mu + l D_{\text{uc}} Q^*(\mu) \leq b\} \quad (4.8)
\]

where \(Q^*(\mu)\) is the solution of

\[
\max_Q l^T D_{\text{uc}} Q \\
\text{s.t.} \begin{cases}
D_{\text{uc}} Q & \geq -\mu \\
Q & \geq 0 \text{ (integer)}
\end{cases} \quad (4.9)
\]

Symbolic solutions to linear integer programming problem (4.9) will yield \(Q^*\) as a function of \(\mu\).

The structure of the uncontrollable portion of the plant net, \(D_{\text{uc}}\), will limit the types of functions that \(Q^*(\mu)\) can be. In general, if the graph of the uncontrollable portion of the net has a tree structure, then \(Q^*(\mu)\) will have a closed-form expression.

A Petri net is said to have a “general tree structure” if it is loop free and the places on one level of the Petri net graph act as sources for the transitions on the next level. These transitions then act as the exclusive source of tokens for the places in the next level of the graph. Places on one level receive tokens exclusively from
the transitions one level back and deliver tokens to the transitions one level forward. The same level-to-level relationship holds for the transitions as well. Furthermore, transitions do not share input places, i.e., each place may contain no more than one output arc. Figure 4.3a shows an example of a general tree structure. A “tree structure of type 1” exists when the Petri net has a general tree structure, and every transition has at most one output arc. A “tree structure of type 2” exists when the Petri net has a general tree structure, and every transition has at most one input arc. Figs. 4.3b and 4.3c show examples of types 1 and 2 tree structures.

![Petri nets with tree structures.](image)

Figure 4.3: Petri nets with tree structures.

The following claims, proved in [42], are made based on the structure of D_{uc}, the uncontrollable portion of the plant Petri net:

1. If D_{uc} has a type 1 tree structure, then the set $[P]$ of allowed states has the form of a disjunction of finitely many linear constraints:

 \[[P] = \bigvee_{i=1}^{t} c_i^T \mu_p \leq b \]

 (4.10)

 for some c_i and t.

2. If D_{uc} has a type 2 tree structure, then the set $[P]$ of allowed states has the form of a single linear constraint, in the same form as the original constraint
\[l^T \mu_p \leq b: \]
\[[P] = c^T \mu \leq b \quad (4.11) \]

for some \(c \).

Clearly, when situation 2 exists, a maximally permissive controller that will insure that the state remains within \([P]\) can be efficiently implemented using the control method described in section 3.3. Similarly, situation 1 can be handled by controllers designed according to the procedure of section 3.5, which deals with disjunctions of linear constraints. However the “tree structure” of \(D_{uc} \) is not a necessary condition for \([P]\) to have either of the two forms described.

Example. Given the Petri net of Figure 4.2 with uncontrollable transitions \(t_1 \) and \(t_3 \) and the incidence matrices \(D \) and \(D_{uc} \) given in (4.4), we will enforce the constraint
\[\mu_4 \leq 1 \]
so
\[l = [0 0 0 1]^T \quad b = 1 \]
The allowable states are given by (4.8), which is found by solving (4.9):
\[
\max \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}
\]
s.t.

\[
\begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
q_1 \\
q_2
\end{bmatrix}
\geq
\begin{bmatrix}
-\mu_1 \\
-\mu_2 \\
-\mu_3 \\
-\mu_4
\end{bmatrix}
\]
\quad q_i \geq 0 \text{ (integer)}

Rewriting we have

\[
\max q_2
\]

s.t.

\[
q_1 \geq -\mu_2 \quad (4.12)
\]
\[
q_2 \geq -\mu_4 \quad (4.13)
\]
\[
q_1 \leq \mu_1 \quad (4.14)
\]
\[
q_2 \leq \mu_3 \quad (4.15)
\]

Constraints (4.12) and (4.13) are trivial because we already have $q_i, \mu_i \geq 0$. The set of allowable states will be defined by (4.14) and (4.15). Substituting into equation (4.8) we have

\[
[P] = \{\mu|\mu_4 + lD_uQ_u^* \leq 1\}
\]
\[
= \{\mu|\mu_4 + q_2^* \leq 1\}
\]

where q_2^* is the solution of $\max q_2$ s.t. $q_2 \leq \mu_3$, i.e., $q_2^* = \mu_3$ and the set of allowable states is defined as

\[
[P] = \{\mu|\mu_4 + \mu_3 \leq 1\} \quad (4.16)
\]
The uncontrollable portion of this plant has a type 2 tree structure, and thus $[P]$ has the simple linear form that we would expect. The boolean control law is then

$$f^*(i, \mu) = \begin{cases} 1 & \mu + Dq_i \in [P] \\ 0 & \text{else} \end{cases} \quad 1 \leq i \leq 4$$

A Petri net controller for this problem can be found by applying the synthesis technique of chapter 3 to the set of allowed states defined in (4.16). The controlled plant is shown in Figure 4.5.

![Figure 4.4: The Petri net of Figure 4.2 with controller shown with dashed lines.](image)

In order to obtain an analytic expression for $[P]$, it was necessary to solve the integer programming problem symbolically. If this is not possible or is too cumbersome, then it is necessary for the controller to numerically solve integer programs at every iteration of the VDES's evolution. This can be computationally expensive for large problems.
4.6 Petri Net Modeled Supervisors

Unlike the controllers of Li and Wonham, the supervisors used in this dissertation are modeled by Petri nets, though this basic structure may be modified slightly as was done in section 3.5 for the enforcement of disjunctions of linear constraints. Uncontrollable and unobservable transitions can cause problems for PN based supervisors due to limitations in their modeling power, however Petri net supervisors are still useful for several reasons:

- Unified plant/controller models are elegant, facilitating implementation and closed loop system analysis.

- The evolution of Petri net models is inexpensive to compute, facilitating their use in real time control applications.

- Desirable Petri net qualities, such as automatic handling of concurrent events, are maintained with unified plant/controller PN models.

- Though the decision power of a Petri net supervisor is not unlimited, a good variety of DES control problems can be effectively and efficiently solved through their use.

- Recognizing the controller as a Petri net facilitates understanding of what can and cannot be done with the supervisor. This will become evident in the material below.
This section will be used to present theoretical results and analytical tools used in
the synthesis of Petri net supervisors for plants with uncontrollable and unobservable
transitions.

For an invariant based Petri net supervisor to be realizable on a plant with uncon-
trollable and unobservable transitions, the constraint it is enforcing must be admiss-
sible. The following proposition provides necessary and sufficient conditions for any
state or event based constraint to be admissible. It involves analyzing the behavior
of a maximally permissive controller constructed to supervise the given constraint.
Here maximally permissive is used in the sense of chapter 3, where all transitions
are assumed to be controllable. In this case, a maximally permissive controller only
prevents firings that lead to states that directly violate the given constraint.

Proposition 4.5. General constraint admissibility. A constraint on the marking and/or
firing behavior of a Petri net is admissible iff

1. The initial conditions of the plant satisfy the constraint, and

2. There exists a maximally permissive controller (constructed under the assump-
tion that all transitions are controllable) that enforces the constraint and does
not inhibit any uncontrollable transitions that would otherwise be enabled.

Proof. Clearly, if the initial conditions of a plant violate a constraint, then that
constraint can not be enforced and is inadmissible according to condition 1 of Defi-
nition 4.4. Furthermore, if the constraint is admissible, then a maximally permissive
controller would have no need to attempt to disable otherwise enabled uncontrollable transitions, as per Definition 4.4.

A maximally permissive controller will allow any reachable state or behavior that does not violate the constraint. Thus, if a maximally permissive controller never attempts to inhibit an otherwise enabled uncontrollable transition, then the constraint it is enforcing is admissible according to Definition 4.4.

The following corollary relates Proposition 4.5 to the PN controllers of chapter 3 for linear place-constraints on a plant with incidence matrix D_p and initial marking μ_{p0}.

Corollary 4.6. Place-constraint admissibility. The single vector constraint $l^T\mu_p \leq b$ is admissible iff the controller with incidence matrix $D_c = -l^T D_p$ and initial marking $\mu_{c0} = b - l^T \mu_{p0} \geq 0$ will never attempt to disable an uncontrollable transition that would otherwise be enabled.

Proof. The proof is by Proposition 4.5 since the given controller is constructed under the assumption that all transitions are controllable and is maximally permissive (see section 3.4).

Corollary 4.6 deals with individual inequality constraints rather than the block form $L\mu_p \leq b$ because each of the inequalities in the block form can be handled independently. Certain constraints in $L\mu_p \leq b$ may be admissible, while others may not.
The following equations are from Theorem 3.2

\[D_c = -LD_p \] \hfill (4.17)

\[\mu_{c0} = b - L\mu_{p0} \] \hfill (4.18)

These equations show that it is possible to construct the incidence matrix \(D_c \) of a maximally permissive Petri net controller as a linear combination of the rows of the incidence matrix of the plant. Negative elements in \(D_c \) correspond to arcs from controller places to plant transitions. These arcs act to inhibit plant transitions when the corresponding controller places are empty, and thus they can only be applied to plant transitions that permit such external control. If, as in the previous sections, we group all of the columns of \(D_p \) that correspond to transitions that can not be controlled into the matrix \(D_{uc} \), we obtain the following corollary.

Corollary 4.7. \(l^T D_{uc} \leq 0 \) implies admissibility. Given a plant with uncontrollable transitions described by the incidence matrix \(D_{uc} \) and a constraint \(l^T \mu_p \leq b \), if

\[l^T D_{uc} \leq 0 \] \hfill (4.19)

then the constraint is admissible for the given plant.

Proof. The proof follows from Corollary 4.6 and the construction of the Petri net controller whose incidence matrix is \(D_c = -l^T D_p \) as described in section 4.2. Inequality (4.19) insures that the controller draws no arcs to uncontrollable transitions.

\[\square \]
Example. Corollary 4.7 can be used to verify the results from the example in section 4.4. Since transitions t_2 and t_3 are uncontrollable in the Petri net of Figure 4.1, D_{uc} is composed of the second and third columns of the plant incidence matrix.

$$D_p = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \end{bmatrix}$$

Constraint (4.1) fails to meet condition (4.19) of the corollary.

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}D_{uc} = \begin{bmatrix} -1 & 1 \end{bmatrix}$$

Constraints (4.2) and (4.3) both meet condition (4.19) and are both admissible.

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}D_{uc} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}D_{uc} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Remark. For most practical examples, constraints that fail condition (4.19) are inadmissible and will need to be transformed if they are to be enforced, however Corollary 4.7 provides only a sufficient condition for constraint admissibility. The following corollary indicates a situation where the controller may contain arcs to uncontrollable transitions in the plant, i.e., $T^T D_{uc} \not< 0$, but the constraint is still admissible.
Corollary 4.8. **Redundant place-constraints are admissible.** Given the single vector constraint
\[
l^T \mu_p \leq b
\]
on the marking of a plant with incidence matrix \(D_p \) and initial marking \(\mu_{p0} \), if there exists a place invariant \(x \) such that for all reachable \(\mu_p \), \(x^T \mu_p = x^T \mu_{p0} \) implies that \(l^T \mu_p \leq b \) is also true, then the constraint is admissible.

Proof. The place invariant shows that \(l^T \mu_p \leq b \) is always true due to the structure of the plant. A maximally permissive controller only disables an otherwise enabled transition when the firing of that transition would cause \(l^T \mu > b \). But this situation can never occur given the natural evolution of the plant, so the controller will never disable an otherwise enabled transition, and the constraint is admissible according to Proposition 4.5. \(\square \)

Remark. Corollary 4.8 refers to the case where all reachable markings of the plant already satisfy the given constraint (hence the use of the word "redundant"). The practical use of this corollary is in conjunction with the material in section 6.5, which deals with constraints on a plant's firing vector. This technique is illustrated in the "three tank" example of section 7.7.2.

As discussed in section 4.3, it is illegal for the controller to change its state based on the firing of an unobservable transition, because there is no direct way for the controller to be told that such a transition has fired. Both input and output arcs from the controller places are used to change the controller state based on the
firings of plant transitions. Let the matrix \(D_{uo} \) represent the incidence matrix of the unobservable portion of the Petri net. This matrix is composed of the columns of \(D_p \) that correspond to unobservable transitions, just as \(D_{uc} \) is composed of the uncontrollable columns of \(D_p \).

Corollary 4.9. \(l^T D_{uo} = 0 \) **implies admissibility.** Given a plant with unobservable transitions described by the incidence matrix \(D_{uo} \) and a constraint \(l^T \mu_p \leq b \), if

\[
l^T D_{uo} = 0
\]

then the constraint is admissible.

Proof. As with Corollary 4.7, the proof follows from Corollary 4.6 and the construction of the Petri net controller whose incidence matrix is \(D_c = -l^T D_p \) as described in section 4.3. Equation (4.20) insures that the controller draws no arcs to or from unobservable transitions.

Remark. Corollaries 4.7 and 4.9 indicate that it is possible to observe a transition that we cannot inhibit, but it is illegal to directly inhibit a transition that we cannot observe.

Suppose, given a set of constraints \(L \mu_p \leq b \), we construct the matrices \(LD_{uc} \) and \(LD_{uo} \) and observe that there are violations to conditions (4.19) and/or (4.20). Since the controller is made of a linear combination of the rows of \(D_p \), it is interesting to consider the situation where we use the addition of further rows from \(D_{uc} \) in
order to eliminate the positive elements of LD_{uc} and use rows from D_{uc} to eliminate the nonzero elements of LD_{uo}, i.e., if we are going to use a place invariant forming Petri net controller, what additions to the constraints would we need to make in order to eliminate positive elements from LD_{uc} and nonzero elements from LD_{uo}? What admissible constraints, of the form $L'\mu_p \leq b'$, will also maintain the original constraint $L\mu_p \leq b$? The following lemma appeared in [55].

Lemma 4.10. **Constraint transformation structure.**

\begin{align*}
\text{Let } R_1 &\in \mathbb{Z}^{n_c \times n} \text{ satisfy } R_1 \mu_p \geq 0 \forall \mu_p. & (4.21) \\
\text{Let } R_2 &\in \mathbb{Z}^{n_c \times n_c} \text{ positive definite diagonal matrix} & (4.22)
\end{align*}

If $L'\mu_p \leq b'$ where

\begin{align*}
L' &= R_1 + R_2 L & (4.23) \\
b' &= R_2(b + 1) - 1 & (4.24)
\end{align*}

and 1 is an n_c dimensional vector of 1's, then $L\mu_p \leq b$.

Proof. The transformed constraint is $(R_1 + R_2 L)\mu_p \leq R_2(b + 1) - 1$. Because all of the elements are integers, the inequality can be transformed into a strict inequality:

$$(R_1 + R_2 L)\mu_p < R_2(b + 1)$$

Because R_2 is diagonal and positive definite,

$$R_2^{-1} R_1 \mu_p + L\mu_p < b + 1$$
Assumptions (4.21) and (4.22) imply that all elements of the vector $R_2^{-1} R_1 \mu_p \geq 0$, therefore $L\mu_p \leq b$.

Lemma 4.10 shows a class of constraints, $L'\mu_p \leq b'$, which, if enforced, will imply that $L\mu_p \leq b$ is also enforced. The following lemma is used to show the conditions under which a particular set of constraints can be enforced on a particular Petri net.

Lemma 4.11. Initial condition check for transformed constraints. The constraint $L'\mu_p \leq b'$, where $L' \neq 0$ and b' are defined by (4.23) and (4.24), can be enforced on a Petri net with initial marking μ_{p_0} iff

$$0 \leq R_1 \mu_{p_0} \leq R_2 (b + 1 - L\mu_{p_0}) - 1$$

(4.25)

Proof. Substituting L' and b' into (4.25) gives $0 \leq b' - L'\mu_{p_0}$, which is equivalent to the condition $L'\mu_{p_0} \leq b'$ that states that the initial conditions of the plant must fall within the acceptable region of the constraints. Clearly, if a controller does exist, then the initial conditions of the plant must not violate the constraints. Furthermore, as shown in chapter 3 (see also [24, 57, 84]), if the initial conditions lie within the acceptable region of the plant (inequality (3.9)), a controller to enforce the conditions can be computed with incidence matrix $D_c = -L' D_p$ and initial marking $\mu_{c_0} = b' - L'\mu_{p_0}$.

Theorem 4.12 combines Corollaries 4.9 and 4.7 with the conditions for creating a valid set of transformed constraints in Lemmas 4.10 and 4.11 to show how to construct a Petri net controller.
Theorem 4.12. **Constraint transformation and supervisor synthesis.** Let a plant Petri net with incidence matrix D_p be given with a set of uncontrollable transitions described by D_{uc} and a set of unobservable transitions described by D_{uo}.

A set of linear constraints on the net marking, $L\mu_p \leq b$, are to be imposed. Assume R_1 and R_2 meet (4.21) and (4.22) with $R_1 + R_2L \neq 0$ and let

$$\begin{bmatrix} R_1 & R_2 \end{bmatrix} \begin{bmatrix} D_{uc} & D_{uo} & -D_{uo} & \mu_p \\ LD_{uc} & LD_{uo} & -LD_{uo} & L\mu_{p0} - b - 1 \end{bmatrix} \leq \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix} \quad (4.26)$$

Then the controller

$$D_e = -(R_1 + R_2L)D_p = -L'D_p \quad (4.27)$$

$$\mu_{c0} = R_2(b + 1) - 1 - (R_1 + R_2L)\mu_{p0} = b' - L'\mu_{p0} \quad (4.28)$$

exists and causes all subsequent markings of the closed loop system (3.6) to satisfy the constraint $L\mu_p \leq b$ without attempting to inhibit uncontrollable transitions and without detecting unobservable transitions.

Proof. According to (4.17) and (4.18), equations (4.27) and (4.28) define a controller that enforces the constraint $L'\mu_p \leq b'$. Lemma 4.10 shows that if assumptions (4.21) and (4.22) are met then a controller that enforces a particular constraint $L'\mu_p \leq b'$ will also enforce the constraint $L\mu_p \leq b$. The fourth column of inequality (4.26) indicates that the condition in lemma 4.11 is satisfied, thus the controller exists and the control law can be enforced. The first column of (4.26) indicates that $L'D_{uc} \leq 0$, thus condition (4.19) is satisfied and no controller arcs are drawn to the uncontrollable transitions. The second and third columns of (4.26) indicate.
that $L'D_{uo} = 0$, thus condition (4.20) is satisfied and no arcs are drawn between the controller places and the unobservable plant transitions.

Note that $\begin{bmatrix} R_1 & R_2 \end{bmatrix}$, which is used to describe the constraint transformation, multiplies from the left in (4.26), thus these matrices represent the use of rows from D_{uc} to eliminate positive elements from LD_{uc}, and the use of rows from D_{uo} to zero the elements of LD_{uo}, as discussed above. An illustration of some of these techniques used for handling uncontrollable transitions can be found in the “cat and mouse” problem of section 7.2.2 and the “unreliable machine” example of section 7.4. The piston rod robotic assembly cell of section 7.5 also includes unobservable transitions.

Remark. The procedure above allows for the complete transformation of one set of linear constraints, $L\mu_p \leq b$, into another, $L'\mu_p \leq b'$. However the techniques described in section 4.5 indicate that when it is possible to do a simple linear transformation of the constraints, it is not necessary to change the right-hand-side of the constraint inequality, i.e., $b' = b$. The following example is used to illustrate why $b' = R_2(b + 1) - 1$ in the development above and that it is sometimes necessary to change both the left-hand and the right-hand sides of the constraint inequality in order to obtain a linear form for the optimal transformed constraint.

Example. Consider the Petri net of Figure 4.5. The control goal is to impose the condition

$$\mu_4 \leq 2 \quad (4.29)$$
or, in matrix form,

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
\mu_p \\
\end{bmatrix}_L \leq \frac{2}{b}
\]

The incidence matrices of the plant and the uncontrollable portion of the plant are

\[
D_p = \begin{bmatrix}
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 2 \\
2 & 1 & -2 & 0 \\
0 & 0 & 1 & -2
\end{bmatrix}, \quad D_{uc} = \begin{bmatrix}
0 \\
0 \\
-2 \\
1
\end{bmatrix}
\]

Transition \(t_3 \) is uncontrollable, thus \(D_{uc} \) is the third column of \(D_p \).

Figure 4.5: Should transition \(t_2 \) be allowed to fire if the constraint is \(\mu_4 \leq 2 \)?

Checking the quantity \(LD_{uc} \) we see that \(LD_{uc} = 1 \) is positive, thus a direct enforcement of (4.29) would involve an attempt to control the uncontrollable transition.

A simple row operation is then performed on

\[
\begin{bmatrix}
D_{uc} \\
LD_{uc}
\end{bmatrix}
\]

to find \(R_1 \) and \(R_2 \) that satisfy
(4.21), (4.22), and (4.26):

\[
R_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}
\]

\[
R_2 = 2
\]

which yields the following transformation of the constraint:

\[
\left(\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \right) \mu_p \leq 2(2 + 1) - 1
\]

or

\[
\mu_3 + 2\mu_4 \leq 5 \tag{4.30}
\]

Now we will obtain a similar transformation using the method described in section 4.5. The single uncontrollable transition contains one input and one output arc, giving it a type 2 tree structure. The optimal constraint transformation should then be a linear function of \(\mu_p \) given by (4.8) that requires us to solve the integer linear programming problem (4.9):

\[
\max_Q LD_{ux} Q = \max_Q Q
\]

s.t.

\[
\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} Q \geq 0
\]

\[
Q \geq 0 \text{ (integer)}
\]

The only nontrivial constraint above is \(\mu_3 - 2Q \geq 0 \). Thus \(Q^* \), the maximum possible value of \(Q \), is given by

\[
Q^* = \text{floor} \frac{1}{2}\mu_3
\]
which, according to (4.8), gives the constraint

$$\text{floor} \frac{1}{2} \mu_3 + \mu_4 \leq 2$$

(4.31)

which is indeed the optimal control law for this problem, but it is not expressed as a linear integer-valued inequality. If we naively multiplied both sides of (4.32) by 2 in order to eliminate the fraction, we would have

$$\mu_3 + 2\mu_4 \leq 4$$

(4.32)

which is a linear constraint, but is not maximally permissive. Consider the plant in the state shown in Figure 4.5. If we are to insure that μ_4 remains less than or equal to 2, should the firing of transition t_2 be allowed? Clearly the answer is yes, and (4.30) and (4.31) would both allow this, but condition (4.32) would not, thus it is not maximally permissive.

Because all of the elements in the inequalities are integers, constraint (4.30) is equivalent to the nonlinear constraint (4.31). That is, the integer valued feasible regions of (4.30) and (4.31) are identical, but (4.30) is in a form which can be instantly translated into a Petri net controller, while (4.31) can not. This is the reason why the procedure outlined above includes a transformation for b to b'.

Remark. It is possible that uncontrollable transitions in a plant might make a particular constraint impossible to realize. In this case it may still be possible to find R_1 and R_2 such that they meet the assumptions, however the transformed constraint
$L' \mu_p \leq b'$ will be trivial. For example, consider the Petri net in Figure 4.6. Suppose that we wish to limit the number of tokens that enter p_2, i.e., the untransformed constraint is $\mu_2 \leq b$. If the single transition is uncontrollable, then we will obtain a transformed constraint of $\mu_1 + \mu_2 \leq b$, which is already the case if there are b or fewer tokens in the net and is impossible if the net starts with more than b tokens.

![Figure 4.6](image)

Figure 4.6: A Petri net that yields a trivial constraint transformation.
CHAPTER 5

CONTROLLER SYNTHESIS FOR PLANTS WITH UNCONTROLLABLE AND UNOBSERVABLE TRANSITIONS

5.1 Introduction

The mathematical tools and propositions of the previous chapter provide the backbone for the control synthesis procedures presented here. In section 5.2, two techniques are introduced for generating transformations of linear constraints that will meet the conditions of Theorem 4.12. Methods for characterizing all admissible constraints for plants with uncontrollable and unobservable transitions are developed in section 5.3. These techniques are then employed in section 5.4 for the synthesis of controllers that enforce the disjunction of a set of linear constraints in order to allow a high degree of plant freedom.
5.2 Generating Constraint Transformations

The usefulness of Theorem 4.12 for specifying controllers to handle plants with uncontrollable and unobservable transitions lies in the ease in which the matrices R_1 and R_2 can be generated. Section 5.2.1 shows how the information in the proposition can be converted into an integer linear programming problem (ILP), and section 5.2.2 proposes a method based on matrix row operations.

5.2.1 An Integer Linear Program for calculating R_1 and R_2

It is possible to convert the conditions in Theorem 4.12 into an integer linear programming problem (ILP) in the standard form of

$$\min_x x^T c$$

subject to

$$x^T A = d$$

$$x \geq 0 \text{ (integer)}$$

We will consider only a single constraint on the system; multiple constraints can be handled individually and independently. Thus $n_c = 1$, L and R_1 are vectors, and b and R_2 are scalars.

To satisfy condition (4.21), we can specify that $R_1 \geq 0$, since we know that $\mu_p \geq 0$. In fact, it is necessary to specify that all of the elements of R_1 are greater than or equal to zero if the markings of the plant places are unbounded or their bounds are not known.

Condition (4.22) states that we need $R_2 > 0$. To obtain variables that fit the
conditions for x in (5.1), define

$$R'_2 = R_2 - 1 \quad (5.2)$$

Since R_2 is an integer, $R'_2 \geq 0$ implies $R_2 > 0$.

Substituting the new variable R'_2 into condition (4.19) yields

$$R_1 D_{uc} + R'_2 LD_{uc} \leq -LD_{uc}$$

A vector of slack variables, $R_3 \geq 0$, is introduced in order to convert the inequality into an equality.

$$R_1 D_{uc} + R'_2 LD_{uc} + R_3 = -LD_{uc} \quad (5.3)$$

R_3 is a row vector like R_1 but with dimension equal to the number of columns of D_{uc} (n_{uc}, the number of uncontrollable transitions).

Substituting R'_2 into condition (4.20) gives

$$R_1 D_{wo} + R'_2 LD_{wo} = -LD_{wo} \quad (5.4)$$

which is already in the form of an equality, so an additional slack variable is unnecessary.

R'_2 is now substituted into the condition given in Lemma 4.11 that indicates whether the given constraint transformation can be implemented.

$$R_1 \mu_{p0} + R'_2 (L \mu_{p0} - (b + 1)) \leq b - L \mu_{p0} \quad (5.5)$$

Let

$$R = \begin{bmatrix} R_1 & R'_2 & R_3 \end{bmatrix}$$
and the ILP can now be defined as

\[
\min_R \left(\begin{array}{c} z(R) = R \\ \begin{bmatrix} \mu_{p0} \\ L\mu_{p0} - b - 1 \\ 0 \end{bmatrix} \end{array} \right)
\]

\[
\left\{ \begin{array}{c}
\begin{bmatrix} D_{uc} & D_{uo} \\ LD_{uc} & LD_{uo} \\ I & 0 \end{bmatrix} R = -L \begin{bmatrix} D_{uc} & D_{uo} \end{bmatrix} \\
R \geq 0 \text{ (integer)}
\end{array} \right.
\]

which is in the form of (5.1).

After solving (5.6), if the minimum of the objective function \(z^* = z(R^*) \) is greater than \(b - L\mu_{p0} \) then the problem cannot be solved as there are no values of \(R_1 \) and \(R_2 \) that will satisfy the condition in Lemma 4.11. If the minimum is less than or equal to \(b - L\mu_{p0} \), then transform \(R^*_2 \) back into \(R_2 \) and generate the controller using the formulae in Theorem 4.12.

Remark. There may be minor difficulties encountered when using this method of generating \(R_1 \) and \(R_2 \). For a controller to exist, we need the objective function of the ILP, \(z(R) \leq b - L\mu_{p0} \), however it is not clear that we should attempt to minimize this function. Oftentimes, this function will have an unbounded minimum, making it necessary for the designer to introduce an additional constraint in order to achieve a bounded solution. Care must also be taken such that the ILP does not yield the pathological transformation \(L' = R_1 + R_2 L = 0 \), when there are other nonzero possibilities for \(L' \).
5.2.2 Matrix Row Operations

Algorithm 5.1 (Constraint Transformation).

Input: $L \in \mathbb{Z}_{n \times n}, b \in \mathbb{Z}_{n}, D_{uc} \in \mathbb{Z}_{n \times n_{uc}}, D_{uo} \in \mathbb{Z}_{n \times n_{uo}}, \mu_{p0} \in \mathbb{Z}_{n}$

if $(LD_{uc} \leq 0$ and $LD_{uo} = 0)$ then
 $R_1 := 0_{n \times n}, R_2 := I_{n \times n}$
else
 $M := \begin{bmatrix} D_{uc} & D_{uo} \\ LD_{uc} & LD_{uo} & I \end{bmatrix}$

Let $M(i,j)$ represent the $(i,j)^{th}$ element of matrix M.

Zero all positive elements in the LD_{uc} portion of M following the procedure in Algorithm 5.2.

if $M(n+1\ldots n+n_{c},1\ldots n_{uc})$ has any positive elements then
 FAILURE: Controller arcs were introduced by the row operations into the uncontrollable portion of the plant, and they cannot be eliminated due to lack of negative elements in D_{uc}.
end if

Zero all elements in the LD_{uo} portion of the M matrix following the procedure in Algorithm 5.3.

if $M(n+1\ldots n+n_{c},n_{uc}+1\ldots n_{uc}+n_{uo})$ has any nonzero elements then
 FAILURE: The unobservable portion of the plant contains arcs which cannot be eliminated.
end if

$R_1 := M(n+1\ldots n+n_{c},n_{uc}+n_{uo}+1\ldots n_{uc}+n_{uo}+n)$

$R_2 := M(n+1\ldots n+n_{c},n_{uc}+n_{uo}+n+1\ldots n_{uc}+n_{uo}+n+n_{c})$

end if

$L' := R_1 + R_2 L$

$b' := R_2(b + 1) - 1$

if $L'\mu_{p0} > b'$ then
 FAILURE: Control law is infeasible.
end if

Output: L' and b'.

The Algorithm

It is possible to obtain appropriate constraint transformations by performing row
Algorithm 5.2 (Elimination of positive elements from D_{uc}).

Input: Working matrix $M \in \mathbb{Z}^{(n+n_c) \times (n_{uc} + n_{uo} + n + n_u)}$

1. $i := 1$
2. while $i \leq \min(n_{uc}, n)$
 1. if $M(i \ldots n, i)$ has any negative elements then
 1. Let j be the index of a row in $M(i \ldots n, i)$ which contains a negative element.
 2. Exchange rows i and j of M
 3. Use the negative pivot value at $M(i, i)$ to eliminate all positive integers in the column $M(i \ldots n + n_c, i)$ (See Algorithm 5.4.)
 2. else if $M(n+1 \ldots n + n_c, i)$ has any positive elements then
 1. FAILURE: A controller arc can not be eliminated because there are no negative elements in the corresponding column of D_{uc}.
 3. end if
 4. $i := i + 1$
3. end while
4. Output M and i

operations on a matrix containing the uncontrollable and unobservable columns of the plant incidence matrix. The computational part of this procedure involves little more than the integer triangularization of a matrix, and thus it is simpler to compute R_1 and R_2 using this method than by using the ILP presented in the previous section.

Before presenting the algorithm itself, the following terms are clarified:

D_{uc}: An $n \times n_{uc}$ matrix consisting of the columns of the plant incidence matrix D_p that correspond to transitions that are uncontrollable, but which may be observed. n_{uc} is the number of these transitions.

D_{uo}: An $n \times n_{uo}$ matrix consisting of the columns of D_p that are unobservable (just as defined in previous sections).
Algorithm 5.3 (Zeroing of all elements in D_{uc}).

Input: Working matrix $M \in \mathbb{Z}^{(n+n_c) \times (n_{uc}+n_{uo}+n+n_c)}$ and i

while $i \leq \min(n_{uc}+n_{uo}, n)$
 if $M(i...n,i)$ contains any negative elements then
 Let j be the index of a row in $M(i...n,i)$ which contains a negative element.
 Exchange rows i and j of M
 $k := 1$
 else
 $k := 0$
 end if
 if $M(i...n,i)$ has any positive elements then
 Let j be the index of a row in $M(i...n,i)$ which contains a positive element.
 Exchange rows $i+k$ and j of M
 Use the positive pivot value at $M(i+k,i)$ to eliminate all negative integers in the column $M(i+k...n+n_c,i)$ (See Algorithm 5.4.)
 end if
 if $k = 1$ then
 Use the negative pivot value at $M(i,i)$ to eliminate all positive integers in the column $M(i...n+n_c,i)$
 end if
 if $M(n+1...n+n_c,i)$ has nonzero elements then
 FAILURE: Controller arc(s) can not be eliminated from the unobservable portion of the plant.
 end if
 $i := i + 1$
end while
Output M

In the discussions above, D_{uc} may have included columns that were unobservable as well as uncontrollable, but here all of the columns of D_{uc} are observable. Conditions (4.19) and (4.20) show that unobservability implies stricter demands than uncontrollability, and in fact, any transition labeled as unobservable is also uncontrollable. D_{uc} is defined here as being strictly observable so that we can relax our
requirements when dealing with this matrix. Algorithm 5.1 presents the procedure for determining \(R_1 \) and \(R_2 \).

Algorithm 5.4 (Column Zeroing):

Input: Working matrix \(M \in \mathbb{Z}^{(n+n_c) \times (n_{uc}+n_{uc}+n+n_c)} \) and pivot position \((p,j)\).

\[
i := p + 1
\]

while \(i \leq n + n_c \)

if \(M(i,j) \) is opposite \(M(p,j) \) in sign then

while \(M(i,j) \neq 0 \)

if \(|M(p,j)| > |M(i,j)| \) then

\[
d := \text{floor} \left(-\frac{M(p,j)}{M(i,j)} \right)
\]

if \(\text{mod}(M(p,j), M(i,j)) = 0 \) then

\[
d := d - 1 \text{ (Don’t zero-out the pivot!)}
\]

end if

\[
M(p,:) := M(p,:) + dM(i,\cdot) \text{ (row operation)}
\]

else

\[
d := \text{floor} \left(-\frac{M(i,j)}{M(p,j)} \right)
\]

\[
M(i,:) := M(i,:) + dM(p,\cdot) \text{ (row operation)}
\]

end if

end while

end if

\[
i := i + 1
\]

end while

Output \(M \)

As was done in section 5.2.1, we shall insure that condition (4.21) is met by making \(R_1 \geq 0 \). In terms of row operations, this means that elements in rows are eliminated strictly through addition, never through subtraction, and that rows can be premultiplied only by positive integers. The procedure for zeroing out the elements in a column of numbers that have the opposite sign of the “pivot” is given in Algorithm 5.4.

Algorithm 5.1 insures that condition (4.22) is met because the procedure for
choosing the “pivot” elements never picks from the LD_{uc} and LD_{uo} portions of the M matrix. Combined with the zeroing procedure of Algorithm 5.4, these steps insure that the R_2 portion of the M matrix is diagonal with strictly positive elements.

Algorithms 5.2 and 5.3 (called by Algorithm 5.1) are used to make sure that the transformed constraints meet conditions (4.19) and (4.20). The feasibility check at the end of Algorithm 5.1 directly tests the condition of Lemma 4.11 to insure that the controller does exist.

The instructions for picking positive or negative elements to act as pivots in the two main loops are left specifically vague. Different methods of choosing the pivot will lead to different constraint transformations. *It would be possible, for instance, to find a basis for all valid constraint transformations by repeating the procedures in Algorithm 5.1 whenever there was a choice of more than one pivot for a given column.*

Generality of the Algorithm

Even if all the possible pivots are used in Algorithm 5.2, there may still be other R_1 and R_2 values that yield transformed constraints that meet condition (4.19). Algorithm 5.2 forces all positive elements in the LD_{uc} portion of the matrix to go to zero. However condition (4.19) states that we need $LD_{uc} \leq 0$, so the question is, is it ever desirable or necessary to transform positive elements of LD_{uc} into negative elements? Should Algorithm 5.2 incorporate this ability? At this time, this question can not be answered definitely, however the following points, starting with the lemma
below, indicate that a procedure that causes positive elements of LD_{uc} to become
negative is undesirable.

Lemma 5.1. A single controller place can possess either an input or an output
arc (or neither) to any given plant transition, but it will never contain both, i.e., a
place invariant based controller contains no self-loops.

Proof. The proof is simply by construction of the controller incidence matrix. The
incidence matrix of the invariant forming controller for establishing the constraint
$L\mu_p \leq b$ is defined by $D_c = -LD_p$. The matrix D_c^+ consists of the positive elements
in D_c, D_c^- consists of the negative, and all other elements are zero, i.e., there are
never any cancellations between D_c^+ and D_c^- used in forming D_c. See [84] as well. □

A positive element in the matrix LD_{uc} means that the controller would draw an
arc to a transition in the uncontrollable portion of the plant. Lemma 5.1 tells us
that this element is not the result of battling input and output arcs. The controller
wishes to output to this transition, and it has no reason to receive input from this
transition. Algorithm 5.2 would then be used to eliminate the controller’s interaction
with the transition altogether, if it were uncontrollable. But what would happen if
row operations were used to change this output transition of the controller into an
input transition?

Place invariant forming controllers use their places to take up the slack that exists
in the inequality $l^T \mu_p \leq b$. Specifically, the marking of the controller, μ_c, is given by

$$\mu_c = b - l^T \mu_p$$
Negative elements in D_c correspond to transitions that decrease the slack μ_c and lead to the controller placing inhibitions on the plant's behavior. Positive elements correspond to transitions that increase the slack and give the plant a greater margin of freedom. A positive element in $l^T D_{uc}$ means that the firing of the corresponding transition will decrease the slack. If this positive number is changed, via row operations and the transformation of l to l', to a negative number, it means that an event that previously indicated a decrease in the slack and the freedom of the plant has become one that indicates an increase in slack and plant freedom. The fact that the quantity $b - l^T \mu_p$ has decreased while the quantity $b' - l'^T \mu_p$ has increased seems to indicate that the controller in the transformed system is concerning itself with matters that have gone beyond the original request of insuring that $l^T \mu_p \leq b$. This is the reason that Algorithm 5.2 makes no attempt to find row operations that would lead to this situation, however the ideas presented here are not a proof that it is never necessary to convert output arcs into input arcs in order to handle uncontrollable transitions.

5.3 Structure of Admissible Constraints and Controls

Given a plant with uncontrollable/unobservable transitions, it is useful to seek methods for transforming inadmissible constraints into admissible ones, but it is also logical to ask, in general, what are the admissible constraints for this plant? Is there a way to characterize all or most of these constraints? Section 5.3.1 provides a method for just such a characterization. Section 5.3.2 shows how this characterization may
be used to synthesize controllers.

5.3.1 Characterization of Admissible Constraints

As in the previous sections, let the matrix D_{uo} represent the incidence matrix of the unobservable portion of the Petri net. It is illegal for the controller $D_c = -LD_r$ to contain any arcs in the unobservable portion of the net, thus an admissible set of constraints will satisfy

$$LD_{uo} = 0$$

as indicated in Corollary 4.9.

Any L that satisfies (5.7) will lie within the kernel of D_{uo}. Let X satisfy

$$XD_{uo} = 0$$

where X is an integer matrix with dimension $(n - \text{rank } D_{uo}) \times n$. The rows of X form a linearly independent basis for the kernel of D_{uo} (X is full rank). The process of finding X is equivalent to finding the place invariants (an algorithm appears in [45]) of the unobservable portion of the plant Petri net. All realizable constraints must lie within the basis described by the rows of X, and thus can be formed as linear combinations of these rows. Every admissible constraint can be described by $k^T X$ where k is an integer vector with dimension $(n - \text{rank } D_{uo})$. In general, the coefficient matrix of any set of feasible constraints $L' \in \mathbb{Z}^{n_c \times n}$ can be written

$$L' = KX$$

where $K \in \mathbb{Z}^{n_c \times (n - \text{rank } D_{uo})}$. Equation (3.10) can then be used to calculate the
incidence matrix of the controllers that will enforce these constraints:

\[D_c = -K X D_p \] \hspace{1cm} (5.10)

A characterization of all admissible constraints and controls is not quite as transparent for the case of uncontrollable transitions as it is for unobservable ones. For unobservable transitions we have an equality, \(LD_{uo} = 0 \), which must be satisfied, but for uncontrollable transitions it is an inequality, \(LD_{uc} \leq 0 \), so we cannot simply find the kernel of \(D_{uc} \). In this case, the following equality can be formed

\[LD_{uc} + \Delta = 0 \]

where \(\Delta \) is a positive semidefinite diagonal matrix of slack variables. The previous equation is rewritten

\[\begin{bmatrix} L & \Delta \end{bmatrix} \begin{bmatrix} D_{uc} \\ I \end{bmatrix} = 0 \]

A kernel \(X \), solving

\[X \begin{bmatrix} D_{uc} \\ I \end{bmatrix} = 0 \]

can then be used to construct a basis for all admissible linear constraints that may be placed on the plant. \(X \) must be computed so as to insure that the elements of \(X \) that correspond to \(\Delta \) are nonnegative. Because the matrix whose kernel is being found contains \(I \), the elements corresponding to \(\Delta \) in \(X \) will be independent of each other: any negative numbers in this portion of \(X \) can be corrected by a row-premultiplication of \(-1 \). After insuring that none of the slack variables are negative,
all admissible constraint matrices L can be found in the linear combinations of X that leave nonnegative values in the slack columns.

5.3.2 Constraint Transformations for Unobservability

Suppose we have a set of constraints $L \mu \leq b$ such that $LD_{uo} \neq 0$. It is necessary to create new constraint matrices (L', b') with two properties.

1. $L'D_{uo} = 0$

2. $\forall \mu_p, L' \mu_p \leq b' \rightarrow L \mu_p \leq b$

Property 1 is necessary to insure that the new controller will not utilize the unobservable transitions. The characterization of all such matrices L' was described above. Property 2 indicates that the new constraints must be at least as restrictive as the original ones. Lemma 4.10 from section 4.6 is used to deal with this condition.

To perform the transformation, it is necessary to determine values for the matrices R_1 and R_2 defined in lemma 4.10 that meet assumptions (4.21) and (4.22). Computational techniques for determining these matrices were given in section 5.2, however it is possible for a designer to determine the values of R_1 and R_2 by using the kernel of D_{uo}. Combining equations (5.9) and (4.23) we see that

$$L' = KX = R_1 + R_2 L$$

The designer should premultiply each constraint in L by some positive integer (which will determine the diagonal elements in R_2) and add new positive coefficients (which will determine R_1) such that the new constraint is a linear combination of the rows
of X. This process will yield the L' matrix, and b' can be calculated using R_2 and equation (4.24). An illustration of this procedure appears in section 7.5.3 in the example of the piston rod robotic assembly cell.

A computational method for generating controllers for plants with uncontrollable transitions is detailed in section 5.4.2.

5.4 Constraint Transformations and Supervisor Synthesis

5.4.1 Illustrations of Issues

The place invariant controller method yields maximally permissive supervisors for enforcing linear constraints of the form $L\mu_p \leq b$. When these constraints are transformed, because of the uncontrollability and unobservability of certain transitions, into $L'\mu_p \leq b'$, the invariant based control method will still yield a maximally permissive realization of the transformed constraint. Unfortunately, the new constraint itself may not represent the most permissive admissible control law corresponding to the original constraint. The maximally permissive admissible constraint associated with a linear predicate on the plant's marking may be a nonlinear predicate that cannot be optimally controlled by a standard invariant based controller. However, the modified controller structure of section 3.5 may work as it permits the enforcement of nonconvex disjunctions of constraints.

At this time, a complete description of the conditions under which an optimal transformation of linear constraints is another set of linear constraints is unknown. Li and Wonham [42] have shown that when the uncontrollable portion of the plant
has a “type 1 tree structure,” the optimal transformation will be a disjunction of linear predicates, while a “type 2” structure will yield a linear transformation (see section 4.5). However these conditions are only sufficient, not necessary.

Three simple examples are presented below to illustrate the kinds of situations that can occur in deriving a proper constraint transformation.

Example 1. Unique L', Unique Controller, Optimal Control

![Figure 5.1](image.png)

Figure 5.1: A Petri net that yields an optimal constraint transformation.

The incidence matrix of the Petri net in Figure 5.1 is

$$
D_p = \begin{bmatrix}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{bmatrix}
$$

Transition t_2 is uncontrollable and the uncontrollable portion of the net has a type 2 tree structure. The control goal is

$$
\begin{bmatrix}
0 & 0 & 1 \\
L
\end{bmatrix} \mu_p \leq b
$$

Algorithm 5.1 indicates that all valid transformations of L to L', ignoring transformations that would change output arcs to input arcs as discussed in section 5.2, are
given by

\[L' = k \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \]

where \(k \in \mathbb{Z}, k > 0 \). The multiplication of the constraint inequality by a constant does not change the set of allowable states, so we shall set \(k = 1 \). Thus, for this example, there is a unique transformation of \(L \) to \(L' \). The incidence matrix of the corresponding controller is, of course, also unique.

\[D_c = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \]

and this is the optimal controller, and \(L' \) is the optimal constraint transformation, as we should expect since the uncontrollable portion of the plant has a type 2 tree structure.

Example 2. Infinite \(L' \), Unique Controller, Optimal Control

![Petri net](image)

Figure 5.2: A Petri net that yields many constraint transformations but a unique optimal controller.
The incidence matrix of the Petri net in Figure 5.2 is

\[
D_p = \begin{bmatrix}
-1 & 0 & 1 \\
1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{bmatrix}
\]

Transition \(t_2 \) is uncontrollable and the uncontrollable portion of the net does not have a type 2 tree structure (it is type 1). The control goal is

\[
L\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \mu_p \leq b
\]

An infinite number of different \(L' \) values can be obtained by Algorithm 5.1

\[
L' = \begin{bmatrix} 0 & k_1 & k_2 & k_1 + k_2 \end{bmatrix}
\]

where the constants \(k_1, k_2 \in \mathbb{Z}, k_1, k_2 \geq 0 \), and at least one constant is nonzero. However, when we obtain the controller for these transformed constraints we get

\[
D_c = k \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}
\]

where \(k = k_1 + k_2 \). Multiplying the incidence matrix of the controller does nothing to change the actual control law, it only changes the number of tokens the controller uses in its internal representation of slack. Thus the controller for this problem is unique, and in fact, the control law it enforces is the optimal (maximally permissive) control law.
Example 3. Infinite L', Infinite Controllers, Suboptimal Control

Figure 5.3: A Petri net that yields many constraint transformations and standard invariant based controllers that all lead to suboptimal control.

The incidence matrix of the Petri net in Figure 5.3 is

$$D_p = \begin{bmatrix}
-1 & -1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
\end{bmatrix}$$

Transition t_3 is uncontrollable and the uncontrollable portion of the net has the same tree structure as in the previous example. The control goal is

$$\mu_p \leq b$$

As in Example 2, an infinite number of different L' values can be obtained by Algorithm 5.1

$$L' = \begin{bmatrix}
0 & k_1 & k_2 & k_1 + k_2 \\
\end{bmatrix}$$

where $k_1, k_2 \in \mathbb{Z}, k_1, k_2 \geq 0$, and at least one constant is nonzero. This time, each
constraint yields a different controller

\[
D_c = \begin{bmatrix}
-k_1 & -k_2 & 0 & k_1 + k_2
\end{bmatrix}
\]

All of these controllers result in the enforcement of suboptimal control laws. The optimal control law is

\[
\mu_4 + \min(\mu_2, \mu_3) \leq b
\]

which cannot be realized by a standard linear place invariant forming controller.

Constraint (5.11) is equivalent to the following disjunction of two linear constraints.

\[
\mu_2 + \mu_4 \leq b \lor \mu_3 + \mu_4 \leq b
\]

This constraint can be enforced using the procedure for disjunctions of linear constraints presented in section 3.5. The associated controller would contain, as usual, two slack places, one for each of the inequalities in the disjunction. However, instead of insisting that both control places always remain nonnegative, the condition is relaxed such that, at any time, only one control place must be nonnegative. This means that the supervisor is no longer an ordinary Petri net, but the state evolution laws remain the same, and the transition enabling condition is only slightly modified. This idea is explored further in the following section.

5.4.2 Generation of Nonconvex Control Laws

Section 5.3.1 provides a means of characterizing all \textit{admissible} constraints of the form \(l^T \mu_p \leq b\) that may be enforced on a given plant with uncontrollable transitions. This characterization is based, in part, on computing the kernel of the matrix
Lemma 4.10 provides a means of characterizing linear inequalities $l^T \mu_p \leq b'$ such that

$$\forall \mu_p, l^T \mu_p \leq b' \rightarrow l^T \mu_p \leq b$$

where l' is a linear transformation of l

$$l' = R_1 + R_2 l$$

and R_1 and R_2 meet assumptions (4.21) and (4.22).

Given an inadmissible constraint $l^T \mu_p \leq b$, a possibly nonconvex control law\(^1\) for the enforcement of this constraint can be synthesized using the algorithm presented in the following subsection. The algorithm follows this basic procedure:

1. Find all inequalities $l^T \mu_p \leq b'$ that are

 (a) Valid transformations of $l^T \mu \leq b$ according to Lemma 4.10 and

 (b) Admissible constraints according to the theory developed in section 5.3.1.

There may be an infinite number of inequalities that meet these two requirements, but they may be expressed with a finite number of inequalities since linearly dependent constraints do not represent different restrictions on the behavior of the plant.

\(^1\)A control law is called nonconvex when the set of states reachable under the control law are a convex set. $L \mu_p \leq b$ always describes a convex set of states, while disjunctions of the inequalities are, in general, nonconvex.
2. Construct the controller incidence matrices associated with these constraints using $D_c = -l^TD_p$. There may be fewer unique D_c rows than there are inequalities as was seen in Example 2 of section 5.4.1.

3. Enforce the logical union of the individual control actions by following the procedure of section 3.5.

The procedure above is similar to the idea of the supremal controllable sublanguage [64, 79] from the supervisory control literature. In both cases, all of the valid behaviors of the plant are characterized based on the plant’s structure and the desired, constrained behavior, and the supervisor is then used to insure that the behavior of the plant is limited to this set of admissible behaviors.

To say that the procedure above will always result in a maximally permissive control law, the following two points would have to be proved.

1. The maximally permissive control law associated with a plant and constraint $l^T\mu_p \leq b$ can always be expressed as the disjunction of other linear state inequalities.

2. The transformation procedure in Lemma 4.10 covers all valid constraint transformations, i.e., if for all $\mu_p \geq 0$ such that $l'^T\mu_p \leq b'$, $l'\mu_p \leq b$ is also true, then (l', b') can be expressed as a linear function of (l, b) according to the rules and assumptions of Lemma 4.10.

Li and Wonham [42] have shown that condition 1 is true when the uncontrollable
portions of a plant have a certain “tree structure” (see section 4.5). But for the general case, the answer is not known.

5.4.3 Supervisor Synthesis Algorithm

An algorithm is presented below to implement the procedure described in section 5.4.2. To combine the set of valid constraint transformations from Lemma 4.10 with the set of admissible constraints described in section 5.3.1 we introduce the transformation parameters, R_1 and R_2, into the admissibility condition, $i^T D_{uc} \leq 0$,

$$(R_1 + R_2 l)^T D_{uc} \leq 0$$

where the elements of the vector R_1 are nonnegative and the scalar $R_2 > 0$ to insure compliance with assumptions (4.21) and (4.22) of Lemma 4.10. A slack variable is now introduced.

$$(R_1 + R_2 l)^T D_{uc} + \Delta = 0$$

$$\begin{bmatrix} R_1^T & R_2 & \Delta \end{bmatrix} \begin{bmatrix} D_{uc} \\ i^T D_{uc} \\ I \end{bmatrix} = 0$$

The procedure for finding valid transformations will involve finding the kernel of

$$\begin{bmatrix} D_{uc} \\ i^T D_{uc} \\ I \end{bmatrix}$$
and manipulating the result such that it yields nonnegative R_1 and Δ values and positive R_2 values.

The steps of the algorithm are illustrated by the plant from Example 3 of section 5.4.1. The incidence matrix and constraint for this problem are repeated here.

\[
D_p = \begin{bmatrix}
-1 & -1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 1
\end{bmatrix}_{p} \mu_p \leq b
\]

Constructing $l^T D_p$

\[
l^T D_p = \begin{bmatrix}
0 & 0 & 1 & -1
\end{bmatrix}
\] \hspace{1cm} (5.12)

shows that there is a positive number in the third column, which is the column associated with the uncontrollable transition, and the constraint is inadmissible. The algorithm for constructing a controller follows.

1. **Find the kernel, M, of**

\[
\begin{bmatrix}
D_{\text{uc}} \\
l^T D_{\text{uc}} \\
l^T l^T D_{\text{uc}} \\
I
\end{bmatrix}
\]

and ensure that all elements of M that correspond to the slack variable Δ are nonnegative.
For the example, D_{uc} is the third column of D_p.

$$
\begin{bmatrix}
0 \\
-1 \\
-1 \\
1 \\
1 \\
1
\end{bmatrix}
\quad =
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\quad R_2 \quad \Delta
$$

Each row of M represents a single kernel vector. The first four columns correspond to R_1^T, the fifth column corresponds to R_2, and the last column corresponds to the slack variable Δ. All of the slack elements are nonnegative. Premultiplication of a row by -1 would have been used to change the sign of any negative slack values.

2. Check if M contains any rows where the $R_1 = 0$ and $R_2 = 1$. In this case the original constraint $l^T \mu_p \leq b$ is admissible. Construct a supervisor for the constraint using the standard procedure and STOP.

The constraint in the example was already determined to be inadmissible, and none of the rows of M meets the conditions of this step in the algorithm.

3. Eliminate rows from M that contain independent R_1 values, i.e., rows where $R_2 = 0$ and R_1 contains a single 1 with all other elements equal to 0.

Rows that meet this condition represent places that may be independently
added to the control law and are unnecessary to the search for valid transformations. Rows 1 and 5 of the example M meet this condition and are eliminated.

$$M = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

4. Perform row operations on M to insure that all R_2 values are positive, while maintaining nonnegative Δ values. If this is not possible, then the algorithm has failed, STOP.

Rows 1 and 2 of M contain zeros in the R_2 column, so row 3 is added to each of these to make them positive.

$$M = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

5. Eliminate any remaining negative numbers in the matrix through further row operations. If a row contains negative numbers that can not be eliminated, then remove the entire row from M. If M is reduced to an empty matrix then the algorithm has failed, STOP.

All negative numbers have been removed from the M matrix of the example.

6. Create L' using the rows of M. Each row of M starts with R_1^T and R_2, each row of L' is constructed as $(R_1 + R_2l)^T$. Construct b' as $R_2(b + 1) - 1$ in the same manner.
7. Compute $L'D_p$ and remove rows that are linearly dependent with other rows.

$$L' = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}$$

$$L'D_p = \begin{bmatrix}
0 & 1 & 0 & -1 \\
2 & 0 & 0 & -2 \\
1 & 0 & 0 & -1 \\
\end{bmatrix}$$

Rows 2 and 3 dependent

$$\Rightarrow \begin{bmatrix}
0 & 1 & 0 & -1 \\
1 & 0 & 0 & -1 \\
\end{bmatrix}$$

8. Eliminate any row in $L'D_p$ that contains a negative number in the same position that l^TD_p contained a positive number. Do not leave $L'D_p$ as an empty matrix due to this step.

This step is included because of the intuition that if the original constraint were admissible and yielded a supervisor that would cause the slack-token count to diminish upon the firing of a certain transition, then the supervisor for the modified constraint should not experience an increase in the slack-token count upon the firing of the same transition.

In the example, $L'D_p$ contains negative numbers in the fourth column, but the fourth column of l^TD_p is also negative, so no rows are deleted.

9. Construct a supervisor Petri net

$$D_c = -L'D_p \quad \mu_{co} = \nu - L'\mu_{po}$$
If D_c contains more than one row, then its enabling rules should be treated as in section 3.5 in order to make it enforce a disjunction of linear inequalities rather than a conjunction.

$$D_c = \begin{bmatrix} 0 & -1 & 0 & 1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

contains two rows, and should be implemented using the rules of section 3.5.

Note that, for this example, the controller is maximally permissive.
CHAPTER 6

CONTROL SPECIFICATIONS

6.1 Introduction

Constraints of the form $L \mu_p \leq b$ (inequality (3.4)) are useful for representing a large variety of forbidden state problems. This chapter will show how several common varieties of system constraints can be written in the form of (3.4), enabling the use of invariant based control.

Constraints need not have an upper bound on the range of feasible μ_p solutions. For example, some systems may require resource reserve constraints. Consider a multiprocessor computer with processor allocation modeled by a Petri net. One constraint on the system might be that two processors must always be available to handle user I/O. The constraint could be written $\mu_i \geq 2$, which is equivalent to $-\mu_i \leq -2$ and is in the form of inequality (3.4).

Section 6.2 shows how the management of finite resources can be automatically handled using invariant based control.

A system may contain reachable states for which no transition is enabled, or this
condition may be an unattended consequence of the enforcement of other constraints on the plant's behavior. The problem of *deadlock avoidance* is very important for supervisory controllers. Section 6.3 shows how invariant based supervisors can be used to prevent deadlock or guarantee liveness for a large, useful class of Petri nets.

Equality constraints, \(L \mu_p = b \), should be handled in the original design of the system, rather than being forced on the system by a supervisor. Section 6.4 discusses equality constraints and demonstrates how attempts to enforce them with invariant based controllers can lead to deadlock.

System constraints may be written in terms of events rather than plant states. For example, one might wish to prevent the simultaneous firing of two transitions. This constraint would be written \(q_i + q_j \leq 1 \), i.e., in terms of the firing vector, rather than the plant marking. A direct enforcement of this constraint would involve using a supervisor to disable one of these transitions whenever the other transition fires. The constraint could also be enforced indirectly by using a supervisor to eliminate states that would leave both of the transitions simultaneously enabled. Section 6.5 explains how both direct and indirect enforcement of these constraints can be handled using the invariant based control method.

In section 6.6, a class of logical predicates on plant behavior are transformed into systems of linear inequalities to be enforced by a supervisor. Section 6.7 explains how the techniques for supervision of ordinary Petri nets can be expanded to timed Petri nets. This section includes techniques for enforcing constraints that make reference to time. The chapter concludes with a look at the limits of the constraint inequality
6.2 Modeling of Finite Resources

A finite resource is a tool or material with limited supply that is required by one or more agents for the completion of a job or to carry out some action. The availability of finite resources places implicit constraints on feasible actions within a system. These constraints can be written as linear inequalities on the state. Let \(b_i \) be the total number of available units for resource \(i \). Let \(R_i \) be a set of places associated with finite resource \(i \). Every token in the places making up the set \(R_i \) represents the use of one of the resources. A linear constraint on the marking can then be written

\[
\sum_{\mu_j \in R_i} \mu_j \leq b_i
\]

(6.1)

and can enforced by an invariant based supervisor.

Suppose that a resource suddenly becomes available or the number of available resources changes in some other way during the operation of the plant. This situation could be handled by modifying the token count in the appropriate controller slack place, i.e., the number \(b_i \) on the right hand side of (6.1) could be modified dynamically. Dynamic modifications to \(b \) in a constraint inequality will not change the structure of the controller. The arcs and their associated weights will remain the same. The only change would be in the marking of a controller place to correspond to the new slack value. Though this scheme would work, it is not very elegant from the point of view of Petri nets, i.e., tokens should not appear and disappear from a net without the corresponding firing of transitions.
Figure 6.1 shows how the resource controller places can be augmented with two uncontrollable transitions and a place in order to model the loss of finite resources while maintaining the standard Petri net framework of the model. Under normal operation, the token in the resource place is used to permit the firing of the plant transition. However the loss of the finite resource now corresponds to the firing of an uncontrollable transitions which robs the “resource is available” place of its token and stalls the operation of the plant. Another uncontrollable transition is then used to replace the missing token when the resource once again becomes available.

![Diagram of resource controller](image)

Figure 6.1: Modeling the loss of a finite resource using uncontrollable transitions.

Finite resource constraints are illustrated in the example of the piston rod robotic assembly cell of section 7.5.

6.3 Deadlock Avoidance

6.3.1 Introduction

Deadlock avoidance is an important and difficult problem in the area of supervisory control. When the discrete event system is modeled by a Petri net, the net is
said to be *deadlocked* if no transition in the net is able to fire. A net is called *live* if every transition can be, eventually, fired again and again. A deadlock-free net may not necessarily be completely live.

The supervision procedure of chapter 3 allows the control designer to restrict the marking behavior of a Petri net in a way that is maximally permissive. This means that the constraint inequalities are obeyed literally; if the feasible region of these inequalities includes a state in which no transition is enabled, the supervisor will allow the Petri net to enter this deadlock state.

The detection and avoidance of deadlock as well as the verification and insurance of liveness are important areas of research in net theory as well as discrete event system control. Corbett and Avrunin [16] have examined this issue and presented some solutions for the problem when the DES is modeled as an automaton. There are several contributions to solving or dealing with liveness and deadlock issues with Petri nets that fit very well into the supervision method of this dissertation. Details of these approaches are presented later in this section.

Important structural and dynamic conditions relating to deadlock and liveness are described in section 6.3.2. Section 6.3.3 presents a procedure developed by Lautenbach and Ridder [38] for testing a sufficient condition for liveness for a class of nets. Several researchers have studied deadlock avoidance in their work on the modeling and control of manufacturing systems; these include Ezpeleta *et al.* [21], Huang, Tacconi, Lewis *et al.* [9,31,32,40,76], and Xing *et al.* [80]. Many of these results are relevant to invariant based control since they reduce to the enforcement of linear
inequalities on the plant state. This is discussed in section 6.3.4. A less application-specific approach from Barkaoui and Abdallah [8] that works seamlessly with invariant based controllers is presented in section 6.3.5. This section includes a discussion of the work of Sreenivas [71,72] regarding the existence of liveness-enforcing supervisors.

6.3.2 Structural Conditions for Liveness

Siphons (see section 2.4) are of particular interest in the area of deadlock avoidance; once a siphon becomes emptied of tokens, it will forever remain empty and all of the transitions that receive input arcs from these places will be dead. Barkaoui and Abdallah [8] have introduced the notion of a controlled siphon.

Definition 6.1. For a Petri net with initial marking μ_0, a controlled siphon is a siphon that remains marked for all markings reachable from μ_0.

A controlled siphon may be either trap-controlled or invariant-controlled. A trap-controlled siphon contains a trap that is initially marked, thus preventing the siphon from ever losing all of its tokens. An invariant-controlled siphon's marking is guaranteed by the presence of a place invariant. If the constant weighted sum of markings indicated by a place invariant insures that a siphon will never lose all of its tokens, then that siphon is invariant-controlled. Given an invariant vector x, with elements $x_1 \ldots x_n$, and a siphon S in a plant with initial marking μ_{p_0}, the invariant controls the siphon iff

1. $x_i > 0 \rightarrow p_i \in S$
2. \(x_i < 0 \rightarrow p_i \notin S \)

3. \(x^T \mu_{p_0} > 0 \)

Example. The Petri net of Figure 6.2 contains two siphons, \(S_1 = \{p_2, p_3\} \) and \(S_2 = \{p_2, p_3, p_4\} \), where \(S_1 \) is the only minimal siphon since \(S_1 \subset S_2 \). The net contains no traps, so clearly the minimal siphon is not trap-controlled, however an analysis of the net’s behavior reveals that this siphon will never be emptied.

The net contains a single place invariant:

\[
\mu_2 + \mu_3 - \mu_4 = 1
\]

where \(\mu_i \) is the marking of place \(p_i \). Thus \(\mu_2 + \mu_3 \geq 1 \) is always true and the siphon is invariant-controlled.

![Figure 6.2: A Petri net with a controlled siphon but no trap.](image)

The following propositions relate controlled siphons to deadlock freedom and liveness.

Proposition 6.2. Deadlock condition. A deadlocked Petri net contains at least one empty siphon. Any net with an unmarked siphon is not live.
Proof. See [18, 58, 66].

Proposition 6.3. **Deadlock-freedom.** A Petri net is *deadlock-free* if every siphon in the net is a controlled siphon.

Proof. The standard form for this proposition [18, 58, 66] deals only with marked traps within every siphon. It is easily extended to the more general idea that every siphon is controlled (by a trap or an invariant).

Proposition 6.4. **Commoner's Theorem.** An extended free choice (EFC) Petri net is *live* if and only if every siphon in the net is trap-controlled.

Proof. See [18, 58, 66].

Remark. Note that (extended) free choice nets do not require the notion of invariant controlled siphons.

Proposition 6.5. **Liveness for AC nets.** An asymmetric choice (AC) Petri net is live if and only if every siphon in the net is a controlled siphon.

Proof. See [7, 8].

Remark. See section 2.5 for definitions of free choice and asymmetric choice nets.

Remark. Nonminimal siphons always contain at least one minimal siphon, so it is only necessary to examine a net’s minimal siphons when applying the propositions above.
Example. The Petri net of Figure 6.2 is live. This follows from Proposition 6.5 since it is an AC net and its single minimal siphon is invariant-controlled.

There are other Petri net classes for which the condition that all siphons are controlled is sufficient for demonstrating that the Petri net is live. These include linear manufacturing lines [47], and production Petri nets [6, 80]. The presence of controlled siphons is then sufficient to insure liveness for a wide variety of Petri nets, and will, at the very least, insure freedom from complete deadlock for Petri nets outside this class. Another sufficient test for liveness is presented below.

6.3.3 A Sufficient Test for Liveness

Lautenbach and Ridder present an algorithm in [38] for determining if a net is live, given that it contains a covering nonnegative transition invariant (T-invariant). The first two steps of the algorithm involve transformations of the of the PN graph such that the transformed net contains a minimal covering canonical T-invariant\(^1\) while maintaining the same reachable state space as the original net. Finally, a check involving the siphons and invariants of the transformed net may prove the liveness of the original net. The steps of this algorithm are outlined below.

If a Petri net is covered by a nonnegative T-invariant, then there exists an integer vector \(y\) with strictly positive elements such that \(Dy = 0\), where \(D\) is the incidence

\(^1\)An invariant is, in general, an element of the kernel of a Petri net incidence matrix. Assuming the kernel of an incidence matrix is nonempty, there will be an infinite number of invariants within the net. Canonical or minimal representations provide unique representations for the basis of an integer matrix. See [58, 62, 66] for details. See [45] for an algorithm for computing invariants in minimal form.
matrix of the Petri net. If the vector y contains any elements that are greater than one, then the net will be transformed so that it contains an invariant of the form $y = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$.

Transformation 1: Simplification of covering invariant.

Given a Petri net with incidence matrix D and a nonnegative covering invariant y, let y_i be the i^{th} element of y. For all i such that $y_i = k > 1$, augment the Petri net with $k - 1$ copies of transition i (including all input and output arcs).

Remark. Transformation 1 does not alter the reachable state space of the original net, but the transformed net will be covered by a T-invariant that has a known and simple form.

![Figure 6.3](image)

Example. The Petri net of Figure 6.3a has a single minimal transition invariant

$$y = \begin{bmatrix} 1 & 1 & 2 & 1 \end{bmatrix}^T$$
Since $y_3 = 2$, the net is augmented with a single copy of t_3, as shown in Figure 6.3b.

The new net contains the following minimal T-invariants

\[
y_1 = \begin{bmatrix} 1 & 1 & 2 & 0 & 1 \end{bmatrix}^T
\]
\[
y_2 = \begin{bmatrix} 1 & 1 & 0 & 2 & 1 \end{bmatrix}^T
\]

Thus the net is covered by the (nonminimal) invariant $y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^T$

The second transformation will add “regulation circuits” to the PN such that the net’s minimal invariants are fused into a single minimal covering canonical invariant.

Transformation 2: Fusion of minimal invariants.

For all pairs of transitions $(t_i, t_j, i \neq j)$ with at least one common input place but of different minimal T-invariants, add a *regulation circuit* to the transition pair. The regulation circuit includes two new places, r_1 and r_2, such that

\[
\bullet r_1 = t_i \quad \bullet r_2 = t_j
\]
\[
r_1 \bullet = t_j \quad r_2 \bullet = t_i
\]

Example. The Petri net of Figure 6.4 contains the following minimal T-invariants:

\[
y_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^T
\]
\[
y_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T
\]

Thus it is covered by $y = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ and it is not necessary to apply Transformation 1. The two minimal invariants will be fused into a single invariant using Transformation 2.
Figure 6.4: A bounded net with a covering T-invariant.

Transitions t_2 and t_4 are included in different invariants but are both enabled by p_2. Similarly, t_3 and t_4 are enabled by p_3. Thus regulation circuits are set up around the two pairs, $\{t_2, t_4\}$ and $\{t_3, t_4\}$, as shown in Figure 6.5. The augmented net is covered by the unique, minimal invariant $y = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$.

Remark. The initial conditions of the places in a regulation circuit are completely arbitrary, as will be shown below. The initial markings of p_1 through p_4 in Figure 6.5 were chosen such that t_2 and t_3 must fire before t_4 can fire, but this is not necessary.

Proposition 6.6. Sufficient condition for liveness. Given a bounded Petri net covered by a nonnegative T-invariant, apply Transformations 1 and 2 above to the net such that the transformed net is covered by a minimal canonical T-invariant. Let D' be the incidence matrix of the transformed net. The original, untransformed
Figure 6.5: Addition of regulation circuits to the net of Figure 6.4.

net is live if for all minimal siphons \(s \) of the transformed net,

\[
\exists z \geq 0 \text{ s.t. } z^T D' = s^T D' \text{ and } (s - z)^T \mu_0' > 0
\]

where \(\mu_0' \) is the initial marking of the transformed net. The marking of the regulating places may be given any positive values in order to meet the inequality.

Proof. See [38]

Remark. Technically a siphon is a set of places. The variable \(s \) in Proposition 6.6 is a nonnegative integer place-vector with support equal to one of the net’s minimal siphons.

Remark. A place invariant \(z \) satisfies \(z^T D = 0 \). Let \(X \) be a matrix whose columns form a basis of the kernel of \(D' \), then all solutions for \(z \) that satisfy \(z^T D' = s^T D' \) can be written

\[
z = s + Xa
\]
where a is an arbitrary integer vector. In order to satisfy the conditions of Proposition 6.6, a must be chosen such that z is nonnegative. Thus the condition of the proposition can also be expressed

$$\exists a \text{ s.t. } s + Xa \geq 0 \text{ and } -a^TX^T\mu_0' > 0$$

Remark. The nonnegative place invariants of a net also correspond to siphons in that net. In this case $x = s$. Let $z = 0$, so

$$z^TD' = 0 = x^TD' = s^TD'$$

In this case we need only check that $s^T\mu_0' > 0$, i.e., we need only check that the siphon is initially marked.

Example. The Petri net of Figure 6.4 is not a member of the class of free choice or asymmetric choice nets, so the propositions of 6.3.2 are not sufficient for guaranteeing that the net is live. However the net is covered by a T-invariant, so its liveness can be tested using Proposition 6.6. The transformation required by the proposition was shown in Figure 6.5. The incidence matrix of the transformed net is

$$D' = \begin{bmatrix}
-1 & 0 & 0 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{bmatrix}$$
where the last four rows of D' correspond to the regulating places r_1 through r_4.

Four vectors form the basis for the place invariants of this net:

$$x_1 = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}^T$$
$$x_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$$
$$x_3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}^T$$
$$x_4 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}^T$$

Each of these vectors also corresponds to a siphon, and all of these siphons are marked. Using the algorithm from section 2.4 we find the net contains two more minimal siphons that are not equal to place invariants:

$$s_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}^T$$
$$s_2 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}^T$$

For s_1,

$$z = s_1 - (x_4 - x_2) = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T \geq 0$$

Because z is equal to s_1 plus elements of the kernel of D', we have $z^T D' = s_1^T D'$.

134
The inequality from the proposition is now verified:

\[
(s_1 - z)^T \mu'_0 = (x_4 - x_2)^T \mu'_0 = \begin{bmatrix}
1 & 1 & 0 & 0 & -1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{bmatrix} = 1 > 0
\]

Note that it is possible to choose any positive values for the last four elements of \(\mu'_0 \) in order to meet the inequality.

Siphon \(s_2 \) is handled analogously:

\[
z = s_2 - (x_1 + x_2 - x_4) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}^T \geq 0
\]

\[
(s_2 - z)^T \mu'_0 = (x_1 + x_2 - x_4)^T \mu'_0 = \begin{bmatrix}
1 & 0 & 1 & 0 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{bmatrix} = 1 > 0
\]

All the net’s siphons meet the conditions of Proposition 6.6, so the net is live.
6.3.4 Deadlock Avoidance in Manufacturing Systems

The specific structures of particular applications can lend themselves to the development of specialized methods for achieving desired plant performance, including deadlock avoidance. The work of Huang, Tacconi, Lewis et al. [9, 31, 32, 40, 76] is driven by the function and needs of manufacturing systems. Deadlock avoidance involves a search for the critical siphons of the net and the enforcement of linear inequalities based, in part, on this search. The work of Lewis et al. integrates techniques from Petri net theory, industrial engineering and the factory automation literature, as well as some novel techniques, to develop an approach to the control of factory/assembly related DES's.

The design method takes assembly operation specifications, e.g., which resources are required to complete which jobs, and which jobs rely on the completion of other jobs, etc., and produces a sequencer/controller with the firing dynamics of a Petri net. Valid firings are obtained based on system structure, deadlock avoidance, and optimization criteria, e.g., maximum throughput. These three criteria are implemented through boolean logic in a rule based production engine. The resulting controller is a hierarchical intelligent controller that uses a maximally permissive supervisor to avoid deadlock and a higher level controller to direct the firings based on the desired performance goal.

The work in [31, 32, 40] on deadlock avoidance only applies to a specific class of nets that are relevant to the manufacturing concerns the authors are studying. The assumptions made on the plant are true for most manufacturing systems, these
include the properties of “nonpreemption, mutual exclusion, and hold-while-waiting” (see references for details). The structures and concepts in the following definitions are used in the deadlock avoidance procedure presented below.

Definition 6.7. The system’s operation involves the use of a number of finite resources. Let \(r_i \) represent the \(i \)th resource.

Definition 6.8. If the release of resource \(r_i \) is conditional on the availability of \(r_j \), then \(r_i \) waits for \(r_j \), or \(r_i \leftarrow r_j \). If \(r_i \) can be released immediately upon the availability of \(r_j \), then there is a **first order wait** relation between \(r_i \) and \(r_j \): \(r_i \rightarrow r_j \).

Remark. The wait relation is transitive, e.g., if \(r_1 \rightarrow r_2 \rightarrow r_3 \rightarrow r_4 \), then \(r_1 \leftarrow r_4 \).

Definition 6.9. A **circular wait** (CW) is a set of resources that all wait on each other. A **simple circular wait** is described as \(r_1 \rightarrow r_2 \rightarrow \ldots \rightarrow r_q \rightarrow r_1 \). A set of resources \(C \) is a **general circular wait** if \(\forall r_i, r_j \in C, r_i \leftarrow r_j \).

Remark. All circular waits involve at least one shared resource. The assumptions made on the plant indicate that deadlock can only occur if the plant contains a circular wait.

Each CW is associated with a “critical siphon” that includes the places that make up the CW. An empty CW may not be blocked, but if its associated siphon is empty, then it will be. A critical siphon indicates all the places that must become empty in order for a CW to be blocked.
Definition 6.10. A critical subsystem is a minimal covering of the places of a CW by a place invariant.

Remark. In this work, every resource loop is a place invariant, i.e., a resource together with its job set forms a place invariant. Note that this is also true when finite resources are modeled using invariant based controllers as described in section 6.2.

Deadlock is avoided through the following design procedure.

1. Find the place invariants in the net.
2. find all the circular waits (loops in the net that use a finite resource).
3. Find all of the critical siphons (one is associated with each circular wait).
4. Find all of the critical subsystems (a minimal covering over a critical siphon by a place invariant).
5. For each critical subsystem S associated with CW c, enforce

$$
\sum_{p_i \in S} \mu_i < c^T \mu_0 \quad (6.2)
$$

In words, inequality (6.2) indicates that the total number of jobs-in-progress in a given subsystem must be less than the total number of resources in the associated CW. If this inequality can be enforced on all subsystems, then deadlock will be avoided.
Procedures are provided by the authors for finding all of the structures in steps 1) through 4). The constraints that are to be enforced in 5) are in the spirit of supervisory control, i.e., they are maximally permissive constraints and may be enforced using the methods of chapter 3. Another level of the controller is used to make decisions as to which transitions are to be fired (when there is a choice) based on its own optimization criteria and assuming that the supervisor is allowing the desired event to occur.

The work of Xing et al. [80] deals with another PN model motivated by manufacturing concerns called the production Petri net (PPN). A PPN includes strings of places, representing steps in one or more processes, with resource usage constraints imposed on them. PPN's can be created using the technique of section 6.2.

A deadlock state is reachable in a PPN when it contains a deadlock structure, which is similar to a siphon but is defined specifically for PPN's on sets of transitions rather than places; see [80] for details. Deadlock avoidance policies must insure that

$$\sum_{p_i \in S_j} \mu_i < r_j$$ \hspace{1cm} (6.3)

where S_j is the the set of process places associated with deadlock structure j, and r_j is the number of resources associated with deadlock structure j. Note the similarity of (6.2) and (6.3) in both form and meaning.

Methods are provided in [80] for creating deadlock-avoiding Petri net supervisors. The supervisors are shown to be maximally permissive when there is more than one of each available resource. These supervisors are equivalent to the invariant based
controllers that would result from the enforcement of the indicated linear inequalities.

The deadlock avoidance technique of the following section presents a less application specific approach to the problem.

6.3.5 Deadlock Avoidance through Supervisory Control

Siphon Controlling Supervisors

A supervisory control technique is introduced in [8] for handling the problem when not all of the siphons in a given Petri net are controlled, i.e., when certain siphons within the net may lose all of their tokens and thus produce local deadlocks. The method involves adding a place for each uncontrolled siphon in the net such that they become controlled. These controller places act to restrict behaviors in the original plant that would lead to deadlock, thus they play the part of a supervisory controller, allowing the plant’s state to evolve unrestricted except to prevent transition firings that lead to “forbidden states.” An outline of this technique is described below.

Definition 6.11. A **conservative** Petri net is covered by a nonnegative place invariant.

Remark. Clearly a conservative PN is bounded, though a bounded PN is not necessarily conservative.

Definition 6.12. All of the siphons of a **well-marked** Petri net are initially marked, i.e., each siphon starts with at least one token.
Remark. A net that is not well-marked can not be live. The places of an unmarked siphon will never become marked, thus all of the transitions to which the siphon’s places direct their arcs are dead.

The deadlock-avoidance procedure in [8] follows. Given a conservative, well-marked Petri net with uncontrolled siphons, for each uncontrolled siphon \(S \), create a control place \(c \) such that

\[
\begin{align*}
c & = \{ t \in S : |t \cap S| > |t \cap S| \} \\
\bullet c & = \{ t \in S : |t \cap S| > |t \cap S| \}
\end{align*}
\]

(6.4)

where the notation \(|x|\) refers to the number of elements in the set \(x \), and the weights of the arc transitions are given by the differences \(|t \cap S| - |t \cap S|\) and \(|t \cap S| - |t \cap S|\) for the controller place’s output and input arcs respectively. The initial marking of the control place, \(\mu_c \), is given by

\[
\mu_c = \sum_{p \in S} \mu_{p_0} - 1
\]

(6.5)

where \(\mu_{p_0} \) is the initial marking of place \(p_i \) in the plant.

Each control place insures that its siphon will never be emptied of all of its tokens. An analysis of the synthesis technique, (6.4) and (6.5), shows that this is done by creating place invariants in the controlled Petri net. For each control place \(c \), associated with siphon \(S \), the following place invariant is established in the controlled Petri net.

\[
\sum_{p_i \in S} \mu_i - \mu_c = 1
\]

(6.6)
Thus the synthesis technique causes formerly uncontrolled siphons in the plant to become invariant-controlled siphons in the closed loop system.

Figure 6.6: A free choice Petri net with uncontrolled siphons.

Example. The free choice Petri net of Figure 6.6 is conservative: it contains a covering place invariant $x = [1 1 1]^T$. The three places form a trap, and this trap is minimal. The net contains three siphons:

\[S_1 = \{p_1, p_2\} \]
\[S_2 = \{p_1, p_3\} \]
\[S_3 = \{p_1, p_2, p_3\} \]

Place p_1 is marked with two tokens, and it is involved in all three of the net’s siphons, thus the net is well-marked.

Siphon S_3 is both trap and invariant-controlled, however it is not minimal. Neither minimal siphon, S_1 nor S_2, is controlled. It is easy to see that deadlock would result if the two tokens in p_1 were to both transfer to p_2 or p_3.

142
A deadlock-avoiding controller is constructed according to (6.4) and (6.5). Control places c_1 and c_2 are associated with siphons S_1 and S_2 respectively. All of the siphons in the closed-loop system, shown in Figure 6.7, are controlled, and the net is live. Note that the resulting net is no longer a free choice net, though it is asymmetric choice.

Controlling all of the formerly uncontrolled siphons in a net is sufficient for insuring liveness for a class of Petri nets. However, as pointed out by Ezpeleta et al. in [21], the act of adding supervisors to control siphons may actually introduce new uncontrolled siphons into the net, allowing the closed loop system to become deadlocked. The designer should recheck the siphons of the closed loop system as a whole after using this procedure to verify that the system is indeed deadlock-free. If the system is not, it may be possible iterate and create supervisors for controlling
the new uncontrolled siphons, or the designer may wish to try a different technique, such as that in [21].

For nets that can not be made live using siphon controlling supervisors, the following proposition is presented in [8].

Proposition 6.13. Loss of liveness in controlled nets. If the siphons in a Petri net are controlled using (6.4) and (6.5), but the net is not live (at least one of the transitions has become “dead”), then the marking of at least one of the control places has become zero.

Proof. See [8].

Based on this proposition, an algorithm appears in [8] that determines which transitions should fire in order to cause the filling of control places in the fewest number of steps. Because this algorithm actively seeks transitions that should fire, rather than the simple enabling and disabling of transitions of a supervisory controller, it is not discussed here.

Relation to Invariant Based Control

The controllers of Barkaoui and Abdallah enforce the invariant equation (6.6). This is equivalent to enforcing the following inequality

$$\sum_{p_i \in S} \mu_i \geq 1$$

where μ_c plays the part of a (nonnegative) excess variable. The inequality is intuitively appealing, simply stating that the siphon should never be emptied of tokens.
This is the primary consideration of the deadlock and liveness conditions of Propositions 6.2 through 6.5.

Inequality (6.7) can be enforced using an invariant based supervisor. Framing the problem this way extends the deadlock avoidance method of [8] to the control procedures of this dissertation. Equivalently, it adds the ability to handle a variety of other supervisory constraints as well as uncontrollable and unobservable transitions to the method of [8].

As usual, the form of an individual constraint imposed on the plant state is

\[l^T \mu_p \leq b \]

(6.8)

For inequality (6.7),

\[l_i = \begin{cases}
-1 & \text{if } p_i \in S \\
0 & \text{else}
\end{cases} \]

(6.9)

for \(i = 1 \ldots n \), where \(l_i \) is the \(i \)th element of \(l \). The definition of (6.9) shows that both sides of inequality (6.7) were multiplied by \(-1\) to achieve the “less-than-or-equal-to” form of inequality (6.8).

The use of linear inequality constraints to prevent deadlock is illustrated in section 7.2.2 for the “cat and mouse” problem. The “unreliable machine” problem of section 7.4 shows how safety and resource constraints, uncontrollable transitions, and deadlock avoidance can all be handled in a unified manner with the invariant based control method.
Existence of Liveness-Enforcing Supervisors

Some nets cannot be made live by any supervisory controller. For example, there is clearly no transition enabling/disabling supervisory control law that will make the net of Figure 6.8a live.

![Figure 6.8: A net for which no liveness-enforcing controller exists. b) A siphon controlling supervisor is added to the net.]

Sreenivas has studied the existence of liveness-enforcing supervisors in [71,72]. The existence of such a supervisor depends on the structure of the net, the initial conditions, and the uncontrollable transitions. A necessary and sufficient condition for the existence of a static-state feedback liveness-enforcing supervisor appears in [72]. The problem of testing this condition is decidable when the net is bounded, or all of its transitions are controllable, otherwise it is undecidable.

A theorem in [71] states that a static state feedback supervisory policy will enforce liveness in a free choice net if and only if all of the plant’s siphons remain marked for all reachable markings, *and the supervisor always permits some transition to fire*. The invariant based controller shown in Figure 6.8b insure that the plant’s single siphon will never be emptied, however it does not permit any transition to fire, so it is not a liveness-enforcing supervisor.

The controllers considered in [71,72] are static maps, indicating whether every
controllable transition is enabled or disabled based on the current state. Invariant
based controllers are dynamic but also enforce static state feedback laws (see Propo-
sition 6.19 of section 6.8). The PN representation of the supervisor is advantageous
when it comes time to analyze the closed loop system. For example, analysis of
the controlled system in Figure 6.8b shows that the addition of the supervisor also
introduced a new uncontrolled siphon. This siphon is not only uncontrolled, but it
is also unmarked. The closed loop system is not well marked, thus the supervisor
will not enforce liveness. Siphon-based analysis of the closed loop system can not be
performed when the controller is modeled by some external function rather than a
structurally integrated and connected Petri net.

The analysis above is consistent with the result in [72] that states that the exis-
tence of a liveness-enforcing supervisor is a decidable problem for a bounded Petri
net. Suppose, given the net in Figure 6.8b, we decide to add another control place to
regulate the newly created uncontrolled siphon. This new constraint will state that
the number of tokens in the first control place should be greater than or equal to
one. However, the initial number of tokens in this place was already determined to be
zero. This means that the new constraint will violate condition (3.9) of Theorem 3.2,
and there is no supervisor (invariant based or otherwise) that will solve the problem.
As long as the number of tokens in the plant of Figure 6.8a is finite, the iterative
addition of siphon controlling supervisors will finally end in a situation that violates
condition (3.9).
6.4 Equality Constraints

Equality constraints have the form

\[L \mu_p = b \] \hspace{1cm} (6.10)

Equation (6.10) defines place invariants on the original process net. This is really a specification for the system and should have been incorporated into the Petri net model before attempting to use supervisory control. If this invariant is not already part of the Petri net model, it should become one by modifying the incidence matrix \(D_p \) of the plant so that equation (2.8) holds, where \(x^T = L \) in equation (6.10). The new elements of \(D_p \) represent the arcs which should be added to the Petri net so that the place invariants are enforced.

It may seem feasible to use the place invariant control method to force \(L \mu_p \leq b \) and \(L \mu_p \geq b \) in order to achieve the constraint of equation (6.10). Unfortunately this approach will produce undesirable results as described by the following proposition.

Proposition 6.14. Enforcement of equality constraints leads to deadlock.

Enforcing constraint (6.10) by creating invariant based controllers for the constraints

\[L \mu_p \leq b, \text{ and} \]
\[-L \mu_p \leq -b \] \hspace{1cm} (6.11)
\hspace{1cm} (6.12)

will

1. have no effect on the plant’s behavior, or
2. create a local deadlock in the plant (the system will not be live).

Proof. Suppose that the natural behavior of the plant already meets the desired constraint. In this case, L describes a set of place invariants in the plant and $LD_p = 0$. Equation (3.10) shows that the controller for constraint (6.11) or (6.12) is given by $D_c = \pm LD_p = 0$. Thus the controller will have no arcs to the plant transitions, and it will have no effect on the plant’s behavior.

Now suppose that L does not include natural invariants of the plant. In this case, the controller incidence matrices for (6.10) and (6.11) are given by

\[
D_{c1} = -LD_p \neq 0 \\
D_{c2} = LD_p = -D_{c1}
\]

Since $D_{c1} = -D_{c2}$, all output arcs of the places in D_{c1} are input arcs of the places in D_{c2} and vice versa. Thus the set of control places forms a siphon.

The initial marking, μ_{p0}, of the plant must satisfy $L\mu_{p0} = b$ or it would not have been feasible to attempt to enforce (6.10). Equation (3.11) gives the initial markings of the control places:

\[
\mu_{c10} = b - L\mu_{p0} = 0 \\
\mu_{c20} = -b + L\mu_{p0} = 0
\]

Thus the set of control places forms an unmarked siphon and all of the transitions to which these places are connected will be dead according to Proposition 6.2.
6.5 Constraints involving the Firing Vector

Certain control goals may involve the firing vector of the Petri net as well as or opposed to the places. For example one might need to insure that two transitions do not fire simultaneously or that a certain transition is never allowed to fire when a certain place holds a token. As mentioned in the introduction to this chapter, there are two ways that constraints like these may be viewed. For the constraint

\[\mu_i + q_j \leq 1 \]

(6.13)
do we mean that transition \(j \) should be disabled whenever place \(i \) contains a token, or do we mean that all plant states that would allow transition \(j \) to be enabled are forbidden whenever place \(i \) contains a token? The answer to this question lies in the particulars of a given plant and its operation. Both means of enforcing the constraint can be useful for different problems.

Section 6.5.1 describes rules for enforcing firing vector constraints using the “direct” interpretation, i.e., transitions are explicitly disabled in order to satisfy the inequality. Algebraic schemes for handling the “indirect” interpretation of firing vector constraints were proposed in [84]. A new approach is presented in section 6.5.2 that uses the concept of uncontrollable transitions to force a correct interpretation of each constraint, thus avoiding the enumeration of separate cases that appeared in [84].
6.5.1 Direct Realization

Assume that the plant must satisfy constraint (6.13). The direct interpretation of this constraint implies that transition t_j cannot fire if place p_i is marked, and, of course, place i can never contain more than one token. The invariant based control technique requires that all variables in a constraint inequality be members of a Petri net marking vector. To bring this constraint to a form that contains elements of the marking vector only, the plant structure is temporarily transformed. Transition j is replaced by two transitions and a place between them, as shown in Figure 6.9. This transformation is artificial and will not effect the Petri net model of the process. Its sole purpose is to introduce the place p_j', which records the firing of the transition t_j. After the controller has been computed the plant will be transformed back to its original form.

![Figure 6.9: Transformation of a Transition.](image)

The marking μ_j' of p_j' replaces q_j in constraint (6.13), which becomes

$$\mu_i + \mu_j' \leq 1 \quad (6.14)$$

The constraint now contains only μ''s and the controller can be computed using the place invariant control method. Since the method produces a controller consisting of places and arcs only, no part of the controller is connected directly to the place
of the transformation. After the controller structure is computed, the two transitions and the place of the transformation collapse to the original transition thus restoring the original form of the plant while maintaining the enforcement of the new constraint. The same transformation is done to all the transitions that appear in the constraints. Those constraints that contain only \(q\)'s are treated in the same way.

In terms of Figure 6.9, output arcs from the controller would normally be connected to transition \(t_j\), and input arcs to the controller would be connected to \(t'_j\). The act of collapsing the transformed structure back to its original form will cause both the input and output arcs to be connected to the original transition \(t_j\). This means that the controller will contain self loops to the transitions indicated in the constraints. Separate \(D_c^+\) and \(D_c^-\) matrices must be maintained for the controller, and enabling rule (2.1) must be used to check the feasibility of firing vectors.

In summary, given a plant \((D_p, \mu_{p0})\) and constraint

\[
\begin{align*}
\ell^T \mu_p + f^T q \leq b, f \geq 0
\end{align*}
\]

The invariant based controller \((D_c = D_c^+ - D_c^-, \mu_{c0})\) is given by

\[
\begin{align*}
D_c^+ &= D_{lc}^+ + D_{fc}^+ \\
D_c^- &= D_{lc}^- + D_{fc}^- \\
\mu_{c0} &= b - \ell^T \mu_{p0}
\end{align*}
\]

where

\[
D_{fc}^+ = D_{fc}^- = f
\]
and

\[
D_{lc}^+(j) = \begin{cases}
D_{lc}(j) & \text{if } D_{lc}(j) > 0 \\
0 & \text{else}
\end{cases}
\]

(6.17)

\[
D_{lc}^-(j) = \begin{cases}
-D_{lc}(j) & \text{if } D_{lc} < 0 \\
0 & \text{else}
\end{cases}
\]

(6.18)

where

\[
D_{lc} = -t^T D_p
\]

(6.19)

and \(D_{lc}(j)\) is the \(j\)th element of the vector \(D_{lc}\). Examples involving an asynchronous transfer mode switch and a continuous/discrete hybrid system in sections 7.6 and 7.8 illustrate the enforcement of direct firing vector constraints.

The remainder of this section provides an analysis of the admissibility of firing vector constraints using the direct interpretation. Similar to Corollary 4.6, the following corollary defines when a constraint on the firing vector of a Petri net is admissible.

Corollary 6.15. **Transition-constraint admissibility.** The single vector constraint \(f^T q \leq b\), where \(f, b \geq 0\), is admissible under direct transition-constraint implementation on a plant with controllable transitions \(T_c\), if \(\forall j \text{ s.t. } f_j \neq 0, t_j \in T_c\).

Proof. The proof is by Proposition 4.5 on general constraint controllability. The direct transition-constraint enforcement method for the constraint \(f^T q \leq b\) is maximally permissive since it is constructed as an invariant based controller. The initial marking of the controller \(\mu_{co} = b\) is valid if \(b \geq 0\). The incidence matrix of the
controller \(D_c^+ = D_c^- = f^T \) contains input arcs to all transitions \(j \) such that \(f_j \neq 0 \).
If all of these transitions are controllable, then the controller draws no arcs to uncontrollable transitions and the constraint is admissible.

The admissibility of combined marking/firing constraints, \(l^T \mu_p + f^T q \leq b \), requires the following definition.

Definition 6.16. A constraint of the form (6.15) is called **uncoupled** if

\[
T_l \cap T_f = \emptyset
\]

where \(T_l \) is the set of transitions that are connected to the controller induced by the \(l^T \mu_p \) portion of the constraint (transitions \(t_j \) such that \(D_{lc}(j) \neq 0 \) in equation (6.19)), and \(T_f \) is the set of transitions connected to the controller induced by the \(f^T q \) portion of the constraint (transitions \(t_j \) such that \(f_j \neq 0 \)).

Constraint (6.15) is uncoupled if the transitions involved in the \(l^T \mu_p \) and \(f^T q \) portions of the constraint are mutually exclusive.

Proposition 6.17. **Uncoupled place/transition constraints.** A vector constraint of form (6.15) is uncoupled iff

\[
\forall i \text{ s.t. } f_i \neq 0, l^T D_p e_i = 0 \tag{6.20}
\]

where \(e_i \) is a zero-vector with a 1 in the \(i^{th} \) place.

Proof. The set of plant transitions that will contain arcs to or from the controller is determined from the controller synthesis equations. This set is the union of the
transitions connected by arcs induced by the $l^T \mu_p$ and $f^T q$ portions of the constraint, i.e., $T_f \cup T_i$. Equation (6.16) indicates that

$$T_f = \{t_j | f_j \neq 0\} \quad (6.21)$$

and equations (6.17) and (6.18) show

$$T_i = \{t_j | l^T D_p e_j \neq 0\} \quad (6.22)$$

Combining these with condition (6.20) implies

$$T_i \cap T_f = \emptyset \quad (6.23)$$

The sets of transitions used by the two portions of the controller are mutually exclusive and the constraint is uncoupled according to definition 6.16.

It is easy to see that if the constraints are uncoupled, i.e. $T_i \cap T_f = \emptyset$, then (6.20) must be true by working backward through the development above. If (6.20) were not true, then there would exist some $t_i \in T_f$ and $t_i \in T_i$, which would imply through equations (6.21) and (6.22) that $T_i \cap T_f \neq \emptyset$ and the constraints were coupled. \(\square\)

Proposition 6.18. Place/transition constraint admissibility. An uncoupled vector constraint of form (6.15) is to be imposed on a plant (D_p, μ_p) with uncontrollable transitions T_{uc} and controllable transitions $T_c, T_{uc} \cap T_c = \emptyset$.

If the constraints

$$l^T \mu_p \leq b \quad (6.24)$$

$$f^T q \leq |b| \quad (6.25)$$

are both admissible then $l^T \mu_p + f^T q \leq b$ is admissible.
Proof. If the admissibility of constraints (6.24) and (6.25) imply that (6.15) is admissible, then the inadmissibility of (6.15) will imply that either (6.24) or (6.25) is inadmissible or both. For \(l^T \mu_p + f^T q \leq b \) to be inadmissible, it must lie outside the range of the plant's initial conditions, or a maximally permissive controller that enforces the constraint would attempt to inhibit an otherwise enabled transition in the set \(T_{uc} \). Because (6.15) is uncoupled, the transitions that are connected to the controller places, \(T_f \) and \(T_l \), are mutually exclusive. This means that at least one of the following three cases must be true for \(l^T \mu_p + f^T q \leq b \) to be inadmissible.

1. The initial conditions of the plant violate the constraint.

2. The controller would attempt to inhibit a transition \(t_j \in T_{uc} \), where \(t_j \in T_f \).

3. Or the controller would attempt to inhibit an otherwise enabled transition \(t_j \in T_{uc} \), where \(t_j \in T_l \).

Case 1: The initial state of the plant is \(\mu_{p0} \). The firings indicated by the vector \(q \) are determined after the system commences its run, thus if the initial conditions of the plant violate constraint (6.15), then

\[
l^T \mu_{p0} > b
\]

This condition would also indicate that the constraint \(l^T \mu_p \leq b \) is inadmissible according to Corollary 4.6.

Case 2: According to the construction of the maximally permissive controller for direct transition constraints, the transitions in the set \(T_f \) are identical to the
transitions that receive controller arcs in the constraint $f^T q \leq |b|$. If the controller attempts to inhibit an uncontrollable transition in this set, then the constraint $f^T q \leq |b|$ is inadmissible according to Corollary 6.15.

Case 3: The construction of the maximally permissive controller for the constraint $l^T \mu_p \leq b$ shows that the transitions that receive controller arcs for this constraint are identical to the set T_l. If the controller for constraint (6.15) attempts to disable an otherwise enabled transition in the set T_l, then the constraint $l^T \mu_p \leq b$ will be inadmissible according to Corollary 4.6.

Thus if both $l^T \mu_p \leq b$ and $f^T q \leq |b|$ are admissible, then $l^T \mu_p + f^T q \leq b$ is also admissible.

The use of the propositions and definitions above are illustrated in the “three tanks” example of section 7.7.2.

6.5.2 Indirect Realization

Firing vector constraints can be realized by preventing the states that would allow the undesirable transition firing; this situation is analogous to the case when a transition is uncontrollable but is involved with regular marking constraints. Illegal states are prevented in the presence of uncontrollable transitions by preventing those states that could lead, through uncontrollable transitions, to the explicitly forbidden states. The results for uncontrollable transitions can be applied to constraints involving the firing vector through utilization of the graph transformations discussed in the previous section.
The procedure is illustrated in the example below.

Figure 6.10: A simple net that will have a firing constraint enforced.

Example. For the plant of Figure 6.10, we wish to enforce the constraint

\[\mu_2 + q_3 \leq 1 \] \hspace{1cm} (6.26)

Place \(p_2 \) is never to have more than one token and transition \(t_3 \) should never fire when this place is occupied. This problem could be solved simply by applying the technique of the previous section, but suppose instead of directly controlling the transition we want to prevent the states that could lead to the constraint being violated. Because the Petri net is so simple, we can see by inspection that the job can be done by enforcing the constraint \(\mu_2 + \mu_3 \leq 1 \). But how can this new constraint be generated automatically based on (6.26)?

Suppose we perform the graph transformation on this net as shown in Figure 6.11. The transformation changes (6.26) to

\[\mu_2 + \mu_3^I \leq 1 \] \hspace{1cm} (6.27)
If we continue to follow the procedure described in section 6.5.1, we would end up with a controller that directly enables and disables transition t_3. In order to prevent this from occurring, we will label transition t_3 as uncontrollable and then continue with the procedure.

![Diagram](image)

Figure 6.11: The graph transformed net of the net in Figure 6.10.

Applying the method for constraint transformations in the presence of uncontrollable transitions from chapter 5 to (6.27), we obtain the following transformed constraint:

$$\mu_2 + \mu_3 + \mu_3' \leq 1$$

(6.28)

The controller that enforces this constraint can be automatically generated using the place invariant method and is shown in Figure 6.12.

The final stage is then to collapse the controlled net back to the form it had before the graph transformation was performed. The final controlled version of the net is shown in Figure 6.13. Transition t_3 will not fire when place p_2 contains a token because the controller only allows one token at a time in places p_2 and p_3, which is
Figure 6.12: The net of Figure 6.11 with its Petri net controller.

The procedure used in the example is summarized below. Given a constraint

$$l^T \mu_p + f^T q \leq b$$

(6.29)

where l may be zero, indicating a constraint on the firing vector alone, first perform a transformation of the plant such that each transition specified by a nonzero entry in f includes a dummy place to mark its firing as described in section 6.5.1. The marking vector μ' is associated with the dummy places and the constraint becomes

$$\begin{bmatrix} l^T & f^T \end{bmatrix} \begin{bmatrix} \mu_p \\ \mu' \end{bmatrix} \leq b$$

(6.30)

Next mark all transitions specified by nonzero entries in f as uncontrollable. Use
Figure 6.13: The untransformed net of Figure 6.10 with its Petri net controller.

the techniques of chapter 5 to find an admissible constraint that enforces the inadmissible constraint (6.30) and construct a supervising controller for this constraint. This will have the effect of preventing the states that could lead to (6.30) being violated. It will prevent the transitions specified by f from being enabled such that constraint (6.29) could be violated.

Finally, collapse the net back to its original form by removing the dummy places and extra transitions as described in section 6.5.1. A more complex example of this procedure is given in section 7.3 for the “automated guided vehicle.”

6.6 Logical Constraints on System Behavior

The transformation of logic-based constraints on system behavior into systems of linear inequalities has been studied by Yamalidou and Kantor [81, 82]. These transformations apply to safe nets, meaning that no place in the network can have
more than one token at any time. In this case, all places have two states: either they contain a token or they do not. Similarly all transitions can be viewed as having two states: either they will fire in the current iteration of the system's evolution or they will not. This means that both places and transitions have binary valued states in a safe net and they can be viewed as boolean variables.

Consider the network in Figure 6.14a. We wish to enforce the constraint

$$\text{if } \mu_1 \neq 0, \text{ then } q_3 = 0$$

One method of doing this would be to introduce an inhibitor arc into the Petri net model as shown in Figure 6.14b. The arc between p_1 and t_3 is terminated with a circle indicating that the arc will inhibit the firing of transition 3 whenever place 1 contains any tokens. Unfortunately, with the addition of an inhibitor arc, we are no longer dealing with an ordinary Petri net and have lost some of the ability to analyze the net in a convenient manner due to the increased complexity of the transition enabling rule.

![Figure 6.14: Two methods (b and c) of enforcing constraint (6.31) on network a.](image-url)
If we assume that the net is safe, constraint (6.31) can be implemented by transforming it into a linear inequality:

\[\mu_1 + q_3 \leq 1 \] \hfill (6.32)

The controller for enforcing this linear inequality is shown in Figure 6.14c. It was constructed using the direct method for implementation of firing vector constraints (section 6.5.1).

If the network in Figure 6.14a were not safe, i.e., transition 1 could fire multiple times allowing tokens to pile up in \(p_1 \), then it is still true that the controller in Figure 6.14c would enforce constraint (6.31). Unfortunately it also has the secondary effect of preventing \(p_1 \) from ever containing more than one token. This is due to the literal interpretation of inequality (6.32) and thus, if the net were not safe, constraint (6.32) would be more restrictive than constraint (6.31) and the supervisor could not be considered maximally permissive.

A formal procedure for translating logical implications into linear inequalities appropriate for use as constraints on Petri net behavior appears in [81] (see also [30]). The general form for an implication is

\[A \rightarrow \Phi \] \hfill (6.33)

where \(A \) is an action (transition firing) or the result of an action (place marking). \(\Phi \) is a “well formed” boolean expression describing the state of the system. It contains boolean variables (place markings) and any of the logical operators And, Or, Not,
Implication, or Equivalence. Assuming the net is safe, (6.33) may be transformed into a set of linear inequalities through the following procedure.

First Φ must be written in conjunctive normal form (product-of-sums form). For example, the boolean expression $A + BC$ would be transformed to $(A + B)(A + C)$. At this point, implication (6.33) has become

$$A \rightarrow \phi_1 \phi_2 \cdots \phi_g$$ \hspace{1cm} (6.34)

where

$$\phi_i = \psi_1 + \psi_2 + \cdots + \psi_h$$ \hspace{1cm} (6.35)

Each variable ψ is boolean and is valued true or false according to the marking of a corresponding Petri net place (which can only be 1 or 0 since the net is assumed to be safe).

The implication can now be broken down into a system of g simultaneous linear inequalities, where g is the number of product terms in (6.34). Each inequality will have the form

$$(1 - \mu_{\psi_1}) + (1 - \mu_{\psi_2}) + \cdots + (1 - \mu_{\psi_h}) + A \leq h$$ \hspace{1cm} (6.36)

where h is number of summed terms in the corresponding ϕ value and μ_{ψ_i} is the marking of the place associated with ψ_i.

Example. A system of inequalities will be derived to enforce the constraint

if transition 1 fires then places 1 and 2 must contain tokens
on a safe Petri net. The action, \(A \), is the firing of transition 1, while \(\Phi \) is the logical AND of the truth of places 1 and 2 containing tokens. Though it is a slight notational abuse, for convenience the implication is expressed as

\[q_1 \rightarrow \mu_1 \mu_2 \]

which is in conjunctive normal form. Following the procedure outlined above, the transformation into a system of linear inequalities results in

\[1 - \mu_1 + q_1 \leq 1 \]
\[1 - \mu_2 + q_1 \leq 1 \]

or

\[q_1 - \mu_1 \leq 0 \]
\[q_1 - \mu_2 \leq 0 \]

which will insure that the original implication is true when the inequalities are enforced on the system behavior using either direct or indirect methods from section 6.5.

6.7 Constraints Involving Time

The control methods of this dissertation are driven by sequences of events (firings of transitions) occurring in the plant. Some transitions fire before others, some may fire simultaneously. The states of the plant and controller evolve through time, but
there is no direct representation of time. The controller may respond to the firing of transition \(t_i \) and then respond to the firing of transition \(t_j \), but there is no indication of how much time has elapsed between the firings of these two transitions. This section will be used to discuss the issues that arise when time is introduced into the control framework.

The most common way of introducing time into a Petri net model of a system is through the use of timed Petri nets [65,70]. A timed net works like an ordinary Petri net but includes a new function defined on either the transitions or the places of the net. The function indicates the amount of time required for particular transitions to fire or the amount of time that must elapse between the arrival of a token in a place and when it is allowed to take part in enabling and firing another transition. In many cases the function is simply a constant vector that indicates the timing requirements for each of the net’s transitions or places, but it may also be quite complicated with the firing times relying on the state of the net, the current time, and other factors.

Timed nets are useful for a variety of temporal analysis tasks. They can be used to determine the mean variation or mean value of the Petri net state over time, to determine steady state values in the net’s invariants, or to calculate cycle times in cyclic nets. A control designer may wish to use timed nets to optimize or otherwise regulate some of these criteria.

Normally timed nets are used when the designer wishes to improve the operation of the plant relative to some time based metric or simply wishes to analyze the temporal behavior of the plant. In these situations a hierarchical control structure [1–4]
can be used where optimization and analysis are performed after supervisory control has been used to insure certain safety constraints have been met. In these situations, the invariant based supervisory control technique may be seamlessly incorporated into the design.

Timed nets are a useful extension of ordinary nets because they do not alter the basic behavior of these nets, they simply provide more information about their evolution. This means that the standard PN definitions, including structural invariants, still hold true. A controller that enforces certain state constraints and sequential behaviors on an ordinary Petri net will enforce these same behaviors on the net after timing information is added to it.

The invariant based control method is implemented through new places and arcs that connect to existing plant transitions. If the timing information of the plant net were associated with the transitions, then the control method could be used without any changes in the method itself. Because the controller has no new transitions of its own, it is not necessary to establish any new timing properties for the controller. It will react to the firings of the plant and will evolve naturally using the plant’s own timing. Control goals such as mutual exclusions, deadlock avoidance, regulation of finite resources, or avoiding forbidden states may be implemented on timed Petri nets using the method exactly as described.

Unfortunately, when time delays are associated with transitions, the resulting behavior of the controlled plant may not be entirely what the control designer expected.
Consider the constraint

\[\mu_1 + q_1 \leq 1 \]

In an ordinary Petri net, transition firings are considered to be instantaneous. Because of this, the constraint above means two things: 1) place 1 may never have more than one token, and 2) transition 1 may not fire if \(p_1 \) contains a token. Now consider if this constraint were to be placed on a Petri net that contained timed transitions.

The constraint would take on a third meaning: 3) place 1 may not contain any tokens while transition 1 is in the process of firing. In some cases, this may be exactly what the designer wants, however the designer must be aware of these subtle changes in the meaning of the constraint inequalities when designing the system.

It is possible to maintain the original meaning of the constraint inequalities by using nets that place their timing information on the places rather than the transitions. Transitions undergo instantaneous firing in these nets, just like in ordinary Petri nets. The rest of the discussion will deal with these kind of timed nets.

Because a period of time must elapse before a token can take part in the firing of a transition, timed nets require a variation in the implementation of the firing rules. One method involves keeping track of two separate marking vectors, \(\mu_a \) and \(\mu_w \). The tokens represented by the vector \(\mu_a \) are available to be used to enable transitions. The elements of \(\mu_w \) are still in their waiting period and may not be used to enable transitions until this period ends. The transition enabling rule is changed to

\[D^- q \leq \mu_a \]
When a transition fires, tokens are transferred from μ_a to μ_w using

\[
\begin{align*}
\mu_a & \leftarrow \mu_a - D^- q \\
\mu_w & \leftarrow \mu_w + D^+ q
\end{align*}
\]

The elements in μ_w then transfer to μ_a after the time requirement for the particular place they are in has elapsed. Let $\mu_{wi}(q)$ be the number of tokens that were transferred to place i upon the firing q, i.e.,

\[
\mu_{wi}(q) = (D^+ q)_i
\]

Let μ_{wi} and μ_{ai} be the total number of waiting and available tokens in place i. When the time period after the firing q for place i elapses,

\[
\begin{align*}
\mu_{ai} & \leftarrow \mu_{ai} + \mu_{wi}(q) \\
\mu_{wi} & \leftarrow \mu_{wi} - \mu_{wi}(q)
\end{align*}
\]

These rules do not produce behavior that differs from that of an ordinary Petri net.

A timed net can be transformed into an ordinary net by removing the information about the required time constraints on the places and combining the two timed marking vectors to form a single marking vector: $\mu = \mu_a + \mu_w$.

Constraints may be enforced on nets with timed places using the supervisory control techniques discussed in previous chapters. The controller will add places to the plant net, and because this is a timed net, timing information must be associated with these new controller places. The tokens in a controller place are used to keep track of the plant's state. They are the controller's bookkeeping device, and do
not represent a process that requires lengthy amounts of time compared to the time associated with the evolution of the plant. For this reason, the timing requirements associated with controller places are defined as zero. The example below illustrates how standard constraints may be enforced on a time net.

Example. The Petri net of Figure 6.15 represents a buffered servicing system. Input arrives in the system through the firing of transition 1. Input may be directed through two paths. The left hand path performs several operations and then recycles the input back to the starting point in p1. Input sent to the right hand path is serviced before it leaves the system. Tokens must spend a minimum amount of time in each

Figure 6.15: A timed Petri net.
place before they are permitted to be used to fire a transition.

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 p_4 \\
 p_5 \\
\end{bmatrix} = \begin{bmatrix}
 1.0 \\
 0.5 \\
 3.0 \\
 2.5 \\
 5.0 \\
\end{bmatrix} \text{ minutes}
\]

There are two standard supervisory control constraints to be placed on the system.

Place 2 is a buffer with a maximum load of 3:

\[
\mu_2 \leq 3 \quad (6.37)
\]

Where \(\mu_2 = \mu_{a2} + \mu_{w2} \). The second constraint is to prevent an illegal state/event combination:

\[
\mu_3 + q_5 \leq 1 \quad (6.38)
\]

Neither of the two constraints directly involves time, so they can be implemented using the standard control synthesis procedures. The controlled system is shown in Figure 6.16. Constraint (6.38) is enforced using the “direct” rules of section 6.5.1.

The timing for the control places is

\[
\begin{bmatrix}
 c_1 \\
 c_2 \\
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
\end{bmatrix}
\]

If the time delay for the control places were greater than zero, then the controller might artificially delay the operation of the plant as it waited for its own tokens to be transferred from the “waiting” state to the “available” state.
Difficulties may arise when supervisory control specifications deal directly with time rather than events. Because the controller has no direct access to a clock, it is not possible to directly realize constraints that reference absolute time or relative timing offsets. Some of these kinds of situations may be tackled by including Petri net structures in the plant that the controller can use as an interface between its event-driven world and the world of continuous time.

Example. There are two more constraints to be placed on the plant of Figure 6.15. Unlike the two constraints enforced in the previous example, these constraints make reference to measured values of time:

1. Transition t_6 may not fire between 6:00 PM and 12:00 AM.
2. Transition \(t_7 \) may not fire until at least two minutes has elapsed since the last firing of transition \(t_4 \). If \(t_4 \) has never fired, then the firing of \(t_7 \) is unrestricted.

It is not possible to implement these constraints using only the structures from the previous example. The standard controller has no access to the current time of day, nor is it informed regarding the amount of time that separates the events to which it reacts. In order to enforce these constraints, new PN structures will be added to the plant, allowing an interface between the controller and time.

A one-way loop of timed PN places with a single token can be used to create a clock indicating the current time of day. For example, twenty-four places connected in a ring, with a one hour delay for each place, can be used to indicate the current hour of the day. It is not necessary that the delay in every place of the clock be equal, but the firing rules for the clock must indicate that enabled transitions fire instantly. Constraint 1 above indicates that we are concerned with the six hour period between 6:00 PM and 12:00 AM. The controller will gain access to the current time through the use of the two-place clock shown in the Figure 6.17. The time requirements for the two places are

\[
\text{Times for } \begin{bmatrix} p_6 \\ p_7 \end{bmatrix} = \begin{bmatrix} 18 \\ 6 \end{bmatrix} \text{ hours}
\]

The clock in Figure 6.17 is added to the net of Figure 6.16. It is initialized with a single token in \(p_6 \) at 12:00 midnight. After eighteen hours, the token in \(p_6 \) will be available to fire transition 8. The token in \(p_6 \) will transfer to \(p_7 \) at 6:00 PM, and it will remain there until midnight. Thus constraint 1 can be enforced by enforcing the
Figure 6.17: A two place time-of-day clock.

inequality

\[\mu_7 + q_8 \leq 1 \]

(6.39)

on the revised plant.

Constraint 2 does not involve the time of day, rather it involves a relative offset in time after the firing of transition 4. Transition 7 must wait at least two minutes after the last firing of \(t_4 \) before it is allowed to fire. A structure is added to the plant to indicate when less than two minutes has elapsed after the last firing of \(t_4 \). This can be done using the net shown in Figure 6.18, where the time delay for \(p_8 \) is two minutes. As with the clock of Figure 6.17, the firing rules must indicate that \(t_{10} \) fires whenever it is enabled.

Figure 6.18: Place 8 contains tokens whenever fewer than two minutes has elapsed since the last firing of \(t_4 \).

Using the net of Figure 6.18, we know that transition 7 should never be allowed to fire when place 8 contains tokens. An initial guess might suggest that we then enforce
the constraint $\mu_8 + q_7 \leq 1$, but constraint 2 says nothing about limiting the ability of t_4 to fire, and this constraint would prohibit p_8 from ever containing more than one token, indirectly inhibiting the freedom of t_4. Let M be the maximum number of tokens that could ever appear in place 8. This number could be determined through temporal analysis of the plant, or the designer may simply choose M as a number so ridiculously large that t_4 could never fire that many times in a reasonable amount of time. Using this value, the following constraint is then placed on the plant,

$$\mu_8 + M q_7 \leq M \quad (6.40)$$

This constraint will insure that t_7 never fires if place 8 contains any tokens. If M is too small, then transition t_4 may be indirectly inhibited by constraint (6.40), so it is necessary to determine a large enough value of M to avoid this situation.

Figure 6.19 shows the revised plant with added controller structures for constraints (6.39) and (6.40). As in the first example, the timing requirements for c_3 and c_4 are zero, as delays in these places would cause artificial delays in the plant.

In summary, the control designer should be aware of the following points when introducing timing requirements into the invariant based control method.

- Defining time delays on the places of a net, rather than its transitions, avoids certain ambiguities in the meanings of combined state/event constraints. Either method may be used, but the meanings of the constraints in each case must be understood.
Figure 6.19: The final plant model with supervisory controllers in place.

- When time is defined on the places of a net, the timing requirements associated with the controls are defined as zero to avoid artificial delays in the evolution of the plant.

- Standard supervisory control constraints dealing with the plant state or mutual exclusions can be implemented seamlessly on place-timed Petri net plants.

- External structures with appropriately timed places may be added to the plant to provide an interface between the event sequences of supervisory control and real time.

- Real time clocks, such as that made by p_6 and p_7 in the example, may be added to the net in order to enforce constraints dealing with absolute time.
Timers may be added to the plant, such as p_8 in the example, which are synchronized with the firing of plant transitions to enforce constraints dealing with relative time offsets.

The accuracy of clocks and timers is insured by firing rules that insist on the instantaneous firing of enabled transitions for these structures.

Upper bounds such as M in the example can be used to avoid unwanted consequences of state/event related constraints that deal with the conditions of timers and clocks.

Timing constraints such as "transition 2 must fire within two minutes after any firing of transition 1" may be more difficult to enforce than the constraints covered in the examples above. Supervisory control techniques are not used, in general, to force any particular event in the evolution of the plant, rather they are used to restrict the plant’s evolution from unwanted behavior. Timing requirements that demand that certain events take place would be more properly handled at another level of a hierarchical controller [1–4].

6.8 Remarks on the Limits of the Constraint Inequality

This chapter has demonstrated that many DES supervisory control problems can be solved by enforcing constraints of type (3.4) or (3.20) on a plant modeled by a Petri net, however these kind of constraints are not sufficient to realize all control goals. In this section, examples are used to illustrate certain problem areas for the
It is desirable to model DES’s with Petri nets because the PN gives a simpler and more compact model of a process than an automaton with all states and transitions between states explicitly defined. However the compactness of the Petri net model can cause difficulties for certain arbitrary forbidden state problems as illustrated in the example below.

Example. Consider the Petri net of Figure 6.20. We wish to prevent a single forbidden state $\mu_p = [1 \ 1 \ 2]^T$ (shown in the figure). This can not be enforced with maximal permissivity using constraints of the form $L\mu_p \leq b$.

![Figure 6.20: The “forbidden state” of the example.](image)

Suppose we tried to forbid the state $\mu = [1 \ 1 \ 2]^T$ with the following inequality:

$$\mu_1 - \mu_2 - \mu_3 \neq 0$$

If this constraint were implemented the controller would not be maximally permissive since it would disallow other states besides $[1 \ 1 \ 2]^T$, i.e., it would also disallow the states $[2 \ 0 \ 2]^T$ and $[2 \ 2 \ 0]^T$. A solution to this problem can be found if the net is bounded, which is true for this example. Observe that there are four tokens in the net, and the net can never have more than four tokens. We can write the constraint
using base five, with the marking of each place being a digit in a base five number. Let the marking of place 1 be the one's place, place 2's marking be the fives place, and place 3's marking be the twenty-fives place. We can then write the constraint as

\[\mu_1 + 5\mu_2 + 25\mu_3 \neq 56 \]

since \((1 \times 5^0) + (1 \times 5^1) + (2 \times 5^2) = 56\).

A controller implementing equation (6.41) would be maximally permissive, however equation (6.41) can not be written in the form of equation (3.4). Equation (6.41) represents a disjunction of two inequalities

\[\mu_1 + 5\mu_2 + 25\mu_3 \leq 55 \lor \mu_1 + 5\mu_2 + 25\mu_3 \geq 57 \]

Enforcing this constraint with invariant based controllers requires the extended PN controller form of section 3.5.

DES control is not only used to prevent forbidden states but also used to force the DES plant to realize a desired formal language [23,41,42,64]. The following two examples illustrate language realization issues in light of the given control scheme.

Example. The Petri net of Figure 6.21, which appears in [23], is unbounded: the number of tokens in \(p_2\) has no upper limit. The transitions of the net are marked either a or b corresponding to the language symbols that are generated when a given transition fires. The language spoken by this net is

\[a^k ba^l b \]
where $k \geq l \geq 0$.

![Figure 6.21: An unbounded Petri net.](image)

We wish to control the net to achieve the language

$$a^k ba^k b, \quad k \geq 0 \tag{6.42}$$

which will lead from an initial state of $\mu = [1 \ 0 \ 0 \ 0]^T$ to a desired final state of $\mu = [0 \ 0 \ 0 \ 1]^T$. It would be possible to achieve language (6.42) by placing an inhibitor arc from p_2 to the rightmost b transition. The addition of inhibitor arcs prohibits the use of the simple vector and matrix descriptions of Petri nets and will not be considered as a desirable solution here. Unfortunately a controller with the abilities of a Turing machine is required to solve the problem as stated, thus there is no (finite) Petri net controller that can force the net of Figure 6.21 to speak language (6.42).

Suppose we adjust the language in (6.42) to

$$a^k ba^k b, \quad 0 \leq k \leq K \tag{6.43}$$

That is, we have put a bound on the number of times the first a transition will be allowed to fire. This problem can be solved with the place-invariant control method.
The incidence matrix of the uncontrolled plant is

\[
D_p = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

The following constraint will enforce language (6.43):

\[
\mu_2 + K \mu_4 \leq K
\]

Choosing \(K = 3 \) we obtain

\[
D_c = -[0 1 0 3]D_p
\]

\[
= [-1 0 1 -3]
\]

The controlled net is shown in Figure 6.22. Note that the value of \(K \) can be chosen arbitrarily high. The higher the value of \(K \) the closer the controlled language becomes to the actual desired language (6.42). In Figure 6.22, the transition between the controller place and the second \(b \) transition requires three \(K \) tokens in the controller place before the transition can be enabled.

Now suppose we change the language requirement to

\[
a^K b a^K b
\]

(6.44)

where \(K \) is a constant integer greater than zero. That is we want the process net to fire the \(a \) transitions a set number of times every time it runs. This can be accomplished by augmenting the controlled net of Figure 6.22 with a memory. The
Figure 6.22: The unbounded Petri net controlled.

Memory is used to count the number of times the first a transition is fired and to not allow the first b transition to fire until all K a firings have occurred. The memory is implemented as a second controller place with a weight K arc connecting it to the first b transition. The controlled net is shown in Figure 6.23 with $K = 3$.

Figure 6.23: The memory-augmented controlled net.

The controllers produced by the place invariant control method are dynamic, however the dynamics are used to simply keep track of the slack or excess tokens in a particular desired invariant. The fact that they are dynamic gives them a compact representation and allows them to be computed easily, but they have no more decision
power than a (possibly infinite) static map of PN states to control-enabled transitions.

Proposition 6.19. Invariant based controllers enforce a static state feedback control law. The control law enforced by invariant based supervisors is a static map from the current plant state to disjoint sets of enabled and disabled transitions.

Proof. The proof of Theorem 3.2 indicates that the closed loop system of the plant and its invariant based controller contains the following set of place invariants.

\[L\mu_p + \mu_c = b \]

where \(\mu_p \) is the state of the plant, \(\mu_c \) is the state of the controller, and \(L \) and \(b \) are the constraint parameters. The sets of transitions that the controller will allow or disallow at any given point is determined by the controller state, and \(\mu_c = b - L\mu_p \) is uniquely determined by the plant state.

Language realization problems often require more than simple state feedback in order to be solved. Static controllers, mapping the current state to a set of allowed transitions, are usually not sufficient. Language realization requires the abilities that may be derived from static state feedback, but also requires some form of memory. In the previous example, the controller places were used to enforce an invariant as well as keep track of when a certain condition had occurred, however this problem could have been solved with static state feedback. In the following example the use of memory for language realization is further explored in a situation where static state feedback will not work.
Example. There are two minimal circuits in the Petri net of Figure 6.24.

\[
\begin{align*}
\text{circuit 1:} & \quad p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_1 \\
\text{circuit 2:} & \quad p_1 \rightarrow p_2 \rightarrow p_4 \rightarrow p_1
\end{align*}
\]

We wish to control this net so that it alternates between the two paths, first choosing circuit 1, then 2, then 1, etc…

![Petri net diagram]

Figure 6.24: The two-circuit net.

The incidence matrix of this Petri net is

\[
D_p = \begin{bmatrix}
-1 & 0 & 0 & 1 & 1 \\
1 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -1
\end{bmatrix}
\]
and its single place invariant is given by

\[X_p = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \]

i.e., the entire net is an invariant.

A possible Petri net controller for this problem is given in Figure 6.25. The token in the controller jumps back and forth between the two controller places, alternately enabling transition 2 or transition 3.

![Figure 6.25: The controlled two-path net.](image)

The incidence matrix for the controller is

\[D_c = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{bmatrix} \]
and the invariants for the *controlled* net are given by

\[
X^T \begin{bmatrix}
D_p \\
D_c
\end{bmatrix} = 0 \rightarrow X = \begin{bmatrix}
0 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0
\end{bmatrix}
\]

Note that the *controller places form their own invariant*, completely separate from the process net. Section 3.4 showed that, for an invariant based controller, each place in the controller forms an invariant with other places in the plant. Clearly the controller in Figure 6.25 could not be synthesized using this method. A method for using the invariant-based control method to obtain a solution like this is not obvious. The controller can be thought of as switching between two invariants involving \(\{p_1, p_2, p_3\} \) and \(\{p_1, p_2, p_4\} \), however a method for defining the constraint equations that would produce the controller shown in Figure 6.25 (or a similar, working controller) is not readily apparent.
7.1 Introduction

Each of the sections of this chapter is intended to illustrate the synthesis techniques and procedures from the preceding chapters.

The "cat and mouse problem" of section 7.2.1 and the automated guided vehicle (AGV) coordination problem of section 7.3 illustrate the basic control design procedure when all of the transitions in the plant net are controllable and observable. The AGV example also includes an enforcement of "indirect" firing vector constraints (see section 6.5.2).

Plants with uncontrollable transitions are introduced for the cat and mouse in section 7.2.2 and for an "unreliable machine" in section 7.4. Both of these plants are also prone to deadlock. The deadlock avoidance methods of section 6.3 are used to prevent this condition and insure liveness.

The piston rod robotic assembly cell of section 7.5 illustrates the modeling of finite resources, reconfiguration due to sensor failures, and the characterization of
admissible controls in the face of transition uncontrollability and unobservability.

Sections 7.6, 7.7, and 7.8 provide examples of handling constraints on events as well as states (section 6.5.1) using an asynchronous transfer mode switch, a three-tank process control system, and a hybrid (continuous/discrete) system.

7.2 The Cat and Mouse Problem

7.2.1 Supervision with all transitions controllable

The “cat and mouse” problem, introduced by Wonham and Ramadge [79], is a popular example in the field of discrete event system control. The problem involves a maze of five rooms where a cat and a mouse can circulate. The rooms are connected with doors through which the animals can pass as shown in Figure 7.1.

![Figure 7.1: The Cat and Mouse Maze.](image)

The problem is to control the doors so that the cat and the mouse can never be
in the same room at the same time. The controller should be maximally permissive: it should grant maximum freedom of movement to both the cat and the mouse. The Petri net model of the cat and mouse problem is taken from [10] and is shown in Figure 7.2. The upper net concerns the cat while the lower net concerns the mouse. Each net has five places that model the five rooms of the maze. The transitions model the ability of each animal to pass from one room to the other according to Figure 7.1.

![Petri Net Model of the Cat and Mouse Problem](image)

Figure 7.2: The Petri Net Model of the Cat and Mouse Problem.
The incidence matrix of the Petri net model is

\[
D_p = \begin{bmatrix}
-1 & 0 & 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

The presence of a token in a place indicates that the animal modeled by the token is in the room modeled by the particular place. Initially the cat is in room 3 and the mouse is in room 5, so the initial marking is

\[
\mu_{p0} = \begin{bmatrix}
\mu_1 & \mu_2 & \cdots & \mu_{10}
\end{bmatrix}^T = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}^T
\]

Assume that all the doors of the maze are controllable. The control goal is to ensure that the cat and the mouse are never in the same room simultaneously. This means that each pair of places, one from the upper net and one from the lower net, that model the same room must never contain more than one token. This requirement is translated into the following five constraints, which are forced into equalities by
introducing slack variables.

\[\mu_1 + \mu_6 \leq 1 \Rightarrow \mu_1 + \mu_6 + \mu_c = 1 \]

\[\mu_2 + \mu_7 \leq 1 \Rightarrow \mu_2 + \mu_7 + \mu_c = 1 \]

\[\mu_3 + \mu_8 \leq 1 \Rightarrow \mu_3 + \mu_8 + \mu_c = 1 \]

\[\mu_4 + \mu_9 \leq 1 \Rightarrow \mu_4 + \mu_9 + \mu_c = 1 \]

\[\mu_5 + \mu_{10} \leq 1 \Rightarrow \mu_5 + \mu_{10} + \mu_c = 1 \]

The five slack variables correspond to five controller places, i.e. \(\mu_c = [\mu_{c_1}, \mu_{c_2}, \mu_{c_3}, \mu_{c_4}, \mu_{c_5}]^T \).

Using the matrix notation of equation (3.5) we have

\[
L = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]

The controller incidence matrix is given by equation (3.10)

\[
D_c = -LD_p =
\begin{bmatrix}
1 & 0 & -1 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & -1 & 1 & 0 & -1 \\
-1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & -1 \\
\end{bmatrix}
\]
The initial marking of the slack places is given by equation (3.11)

$$\mu_{\infty} = 1 - L \mu_0 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \end{bmatrix}^T$$

The supervisor prevents the cat and mouse from ever entering the same room but allows all other legal moves. The controlled cat and mouse system is shown in Figure 7.3. Dashed arcs and thick-lined places are used to represent the elements of the controller Petri net.

![Figure 7.3: The Cat and Mouse Petri Net and its Petri Net Controller.](image-url)
7.2.2 Introduction of uncontrollable transitions

The cat and mouse problem presented in [79] specifies that transitions c_7 and c_8 are uncontrollable. Following the techniques of chapter 5 the D_{uc} matrix is then constructed from the seventh and eighth columns of D_p. Admissible constraints will satisfy $LD_{uc} \leq 0$.

$$LD_{uc} = \begin{bmatrix}
0 & 0 \\
-1 & 1 \\
0 & 0 \\
1 & -1 \\
0 & 0
\end{bmatrix}$$

The second and fourth constraints yield positive numbers in the product LD_{uc}, so they must be transformed.

An addition of the fourth row of D_{uc} to the second row LD_{uc} will eliminate the positive number of that row. This indicates the constraint transformation

$$\mu_2 + \mu_7 \leq 1 \Rightarrow \mu_2 + \mu_4 + \mu_7 \leq 1$$

Similarly, an addition of the second row of D_{uc} to the fourth row LD_{uc} will eliminate the positive number of that row.

$$\mu_4 + \mu_9 \leq 1 \Rightarrow \mu_2 + \mu_4 + \mu_9 \leq 1$$

This leaves us with the following following set of admissible constraints

$$\mu_1 + \mu_6 \leq 1$$
\[
\begin{align*}
\mu_2 + \mu_4 + \mu_7 & \leq 1 \\
\mu_3 + \mu_8 & \leq 1 \\
\mu_2 + \mu_4 + \mu_9 & \leq 1 \\
\mu_5 + \mu_{10} & \leq 1
\end{align*}
\]

The second and fourth constraints both contain the expression \(\mu_2 + \mu_4\) added to the marking of a place in the mouse's subnet. Because this subnet (places \(m_1\) through \(m_5\)) forms a place invariant, we know that

\[
\mu_7 + \mu_9 \leq 1
\]

is always true due to the structure of the plant. Thus we can reduce the two constraints involving \(\mu_2 + \mu_4\) into a single constraint

\[
\begin{align*}
\mu_2 + \mu_4 + \mu_7 & \leq 1 \\
\mu_2 + \mu_4 + \mu_9 & \leq 1
\end{align*}
\]

\[
\Rightarrow \mu_2 + \mu_4 + \mu_7 + \mu_9 \leq 1
\]

without any loss of generality or permissivity.

An analysis of the plant under the current set of four admissible constraints reveals that there is the potential for deadlock. Suppose that the mouse were in room 2 and the cat were in room 1. The mouse can only move to room 1, so it is blocked by the supervisor. The cat can move to room 2 or 4, but it is also blocked by the supervisor because of the uncontrollable connection the cat has between rooms 2 and 4.

Fortunately, as indicated in section 6.3, this potential deadlock can be eliminated by the imposition of a further linear inequality causing the occupation of rooms 1, 2, and 4 to be mutually exclusive to either the cat or the mouse. This inequality is
achieved by combining the constraint $\mu_1 + \mu_6 \leq 1$ with the previously constructed constraint $\mu_2 + \mu_4 + \mu_7 + \mu_9 \leq 1$. There are now three different inequalities that will be enforced on the marking behavior of the plant in order to insure both the safety of the mouse and eternal freedom of movement for both animals.

\[
\begin{align*}
\mu_1 + \mu_2 + \mu_4 + \mu_6 + \mu_7 + \mu_9 & \leq 1 \\
\mu_3 + \mu_8 & \leq 1 \\
\mu_5 + \mu_{10} & \leq 1
\end{align*}
\]

(7.3)

At this point the controller can be computed using the method of chapter 3. The controlled plant is shown in Figure 7.4.

7.3 Automated Guided Vehicle Coordination

This example, concerning a flexible manufacturing cell, was introduced by Holloway and Krogh [27]. The cell, shown in Figure 7.5, includes three workstations, two part-receiving stations and one completed parts station. There are five automated guided vehicles (AGV's) that transport material between the stations. The vehicles and parts are modeled by tokens in the net (see [27]). The vehicular routes intersect on the plant floor, and consequently, there are zones, represented by the shaded regions in Figure 7.5, in which two vehicles could be present at the same time. This situation will be forbidden by the supervisor. An additional constraint is placed on the system, regarding the pickup of parts from the Input Parts Station, that illustrates the indirect method of firing vector constraint enforcement from section 6.5.2.
Figure 7.4: The Cat and Mouse Petri net and controller with transitions c_7 and c_8 uncontrollable.

The constraints concerning the presence of vehicles in the intersection zones are expressed by the following inequalities

$$\sum_{i \in Z_1} \mu_i \leq 1$$
$$\sum_{i \in Z_2} \mu_i \leq 1$$
$$\sum_{i \in Z_3} \mu_i \leq 1$$
$$\sum_{i \in Z_4} \mu_i \leq 1$$

where Z_j is the set of indices of places which make up zone j. Four slack variables
Figure 7.5: The Automated Guided Vehicle Petri Net.

(μ_1, \ldots, μ_4) are introduced to make the inequalities become equalities.

An additional specification is to be enforced concerning the Input Parts Station. There is only room for one AGV to enter the station at any time, so we will prevent the occurrence of two AGV’s attempting to simultaneously pick up parts. Writing this constraint as an inequality, we have

$$q_1 + q_2 \leq 1$$ \hspace{1cm} (7.4)

where t_1 and t_2 are the transitions indicating that a part has been removed by one
of the two AGV’s that service the station. Note that the actual purpose of this constraint is not to prevent the simultaneous pick up of parts, but to prevent the two AGV’s from being in the input station at the same time. We are interested in preventing states that would enable firings such that \(q_1 + q_2 > 1 \), rather than preventing this firing itself. This is an example of a firing vector constraint that should be handled by the “indirect” rules of section 6.5.2.

The first step of the procedure involves introducing dummy places into the net to represent the firing of transitions 1 and 2 as illustrated in Figure 6.9. Constraint (7.4) is then rewritten

\[
\mu'_1 + \mu'_2 \leq 1
\]
(7.5)

and, as described in section 6.5.2, transitions 1 and 2 are now treated as if they were uncontrollable, which makes (7.5) an inadmissible constraint. It will need to be transformed using the techniques of chapter 5 into a constraint that prevents the states that could lead to (7.5) being violated, which is the desired goal of the indirect firing vector constraint.

Applying techniques from chapter 5, (7.5) is transformed into the following admissible constraint.

\[
\mu_1 + \mu_2 + \mu_3 + \mu_4 + 2(\mu'_1 + \mu'_2) \leq 2(1 + 1) - 1
\]

That is, \(R_1 = \begin{bmatrix} 1 & 1 & 1 & 0 & \cdots \end{bmatrix} \) and \(R_2 = 2 \), which meet assumptions (4.21) and (4.22) of Lemma 4.10.

Now that an admissible constraint has been found, the dummy places \(\mu'_1 \) and \(\mu'_2 \)
are eliminated and the plant is collapsed back into its original form. The constraint now becomes

\[\mu_1 + \mu_2 + \mu_3 + \mu_4 \leq 3 \]

An additional slack variable makes the transformed constraint an equality and introduces a fifth controller place, \(\mu_{c_5} \). \(D_c \) and \(\mu_{c_0} \) are computed using equations (3.10) and (3.11). The supervised plant is shown in Figure 7.6.

Figure 7.6: The Controlled AGV Net.
7.4 The Unreliable Machine

7.4.1 Plant Model

The plant of Figure 7.7 features an “unreliable machine” (see [19] and [55]). The machine is used to process parts from an input queue, completed parts are moved to an output queue by an automated guided vehicle (AGV). The machine is considered unreliable because it is possible that it may break down and damage a part during operation. This behavior is captured in the plant model. Damaged parts are moved to a separate queue by a second AGV. The Petri net model of the plant is shown in Figure 7.8, and a description of the various places and transitions is given in table 7.1.

The plant model has two uncontrollable transitions, t_2 and t_6. Transition t_6 represents machine break down and so obviously can not be controlled. Transition t_2 is considered uncontrollable because the controller can not force the machine to instantly finish a part that is not yet completed, nor does it direct the machine to stop working on an unfinished part.
Figure 7.8: Petri net model of the unreliable machine plant.

<table>
<thead>
<tr>
<th>Places</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>Machine is “up and busy,” part is being processed.</td>
</tr>
<tr>
<td>p_2</td>
<td>Part is waiting for transfer to completed-parts queue.</td>
</tr>
<tr>
<td>p_3</td>
<td>Part is being carried to completed-parts queue by AGV 1.</td>
</tr>
<tr>
<td>p_4</td>
<td>AGV 1 is free, away from part pick-up position.</td>
</tr>
<tr>
<td>p_5</td>
<td>AGV 1 is at pick-up position at machine.</td>
</tr>
<tr>
<td>p_6</td>
<td>Part is waiting for transfer to damaged-parts queue.</td>
</tr>
<tr>
<td>p_7</td>
<td>Machine is waiting to be repaired.</td>
</tr>
<tr>
<td>p_8</td>
<td>Part is being carried to damaged-parts queue by AGV 2.</td>
</tr>
<tr>
<td>p_9</td>
<td>AGV 2 is free, away from part pick-up position.</td>
</tr>
<tr>
<td>p_{10}</td>
<td>AGV 2 is at pick-up position at machine.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transitions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Part moves from input queue to machine.</td>
</tr>
<tr>
<td>t_2</td>
<td>Uncontrollable: Part processing is complete.</td>
</tr>
<tr>
<td>t_3</td>
<td>Part is picked up by AGV 1.</td>
</tr>
<tr>
<td>t_4</td>
<td>Part is deposited in completed-parts queue by AGV 1.</td>
</tr>
<tr>
<td>t_5</td>
<td>AGV 1 moves into pick-up position at machine.</td>
</tr>
<tr>
<td>t_6</td>
<td>Uncontrollable: Machine fails, part is damaged</td>
</tr>
<tr>
<td>t_7</td>
<td>Part is picked up by AGV 2.</td>
</tr>
<tr>
<td>t_8</td>
<td>Part is deposited in damaged-parts queue by AGV 2.</td>
</tr>
<tr>
<td>t_9</td>
<td>AGV 2 moves into pick-up position at machine.</td>
</tr>
<tr>
<td>t_{10}</td>
<td>Machine is repaired.</td>
</tr>
</tbody>
</table>

Table 7.1: Place and transition descriptions for Figure 7.8.
The plant has the following incidence matrix.

\[
D_p = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

The incidence matrix of the uncontrollable portion of the plant, \(D_{uc} \), consists of the second and sixth columns of \(D_p \).

7.4.2 Resource and Safety Constraints

There is room for only one AGV at a time to approach the machine and pick up a part, be it completed or damaged. Access to the machine is then restricted with the constraint

\[
\mu_8 + \mu_{10} \leq 1
\]
There is also only room for one part, once the machine is done with it, at the AGV pickup position. Thus places p_2 and p_6 must remain exclusive:

$$\mu_2 + \mu_6 \leq 1$$ \hfill (7.8)

Finally, if the machine breaks down, we must wait until the machine is repaired before starting work on a new part. This constraint corresponds to the exclusivity of places p_1 and p_7:

$$\mu_1 + \mu_7 \leq 1$$ \hfill (7.9)

Constraints (7.7) through (7.9) are now represented in matrix form

$$L = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}, \quad \mu_p \leq \begin{bmatrix} 1 \\
1 \\
\end{bmatrix}$$

The condition of Corollary 4.7 is checked to determine if the constraints are admissible with respect to the plant’s uncontrollable transitions.

$$LD_{uc} = \begin{bmatrix}
0 & 0 \\
1 & 1 \\
-1 & 0 \\
\end{bmatrix}$$

In order to meet the condition of Corollary 4.7 we need $LD_{uc} \leq 0$. Row two of the matrix fails this test.
Row operations on \(\begin{bmatrix} D_{uc} \\ L D_{uc} \end{bmatrix} \) are now performed to obtain a transformed constraint matrix that is admissible.

\[
\begin{bmatrix}
-1 & -1 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
-1 & -1 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\]

Row 12 = Row 1 + Row 12

The \(LD_{uc} \) portion of the matrix now has no positive elements. The row operation above corresponds to the addition of \(\mu_1 \) to constraint (7.8), i.e., \(\mu_2 + \mu_6 \leq 1 \) becomes \(\mu_1 + \mu_2 + \mu_6 \leq 1 \). Equivalently, using the \(R_1 \) and \(R_2 \) matrices of section 4.6, we have

\[
R_1 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\quad R_2 = I
\]
Given an admissible set of constraints, the controller is now calculated

\[D_c = -L' D_p = -(R_1 + R_2 L) D_p = \begin{bmatrix}
0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \]

\[\mu_c = b' - L' \mu_{\mathcal{P}_0} = R_2(b + 1) - 1 - (R_1 + R_2 L) \mu_{\mathcal{P}_0} = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \]

Figure 7.9 shows the supervisor added to the plant Petri net.

Figure 7.9: The supervised unreliable machine, before accounting for deadlock avoidance.

7.4.3 Deadlock Avoidance

It will be shown below that the combined action of the supervisory mechanisms above create the potential for the plant to become deadlocked. There are seven
minimal siphons (see section 2.4) in the supervised model of the plant. Five of these,
\{p_1, p_7, c_3\}, \{p_1, p_2, p_6, c_2\}, \{p_3, p_4, p_8\}, \{p_5, p_{10}, c_1\} and \{p_8, p_9, p_{10}\} also correspond to
place invariants. Each of these invariants is marked, and thus these siphons can
be considered either trap or invariant-controlled (see section 6.3.2). However, the
remaining two siphons are uncontrolled:

\begin{align*}
S_1 &= \{p_1, p_2, p_{10}, c_1, c_2\} \\
S_2 &= \{p_1, p_5, p_6, c_1, c_2\}
\end{align*}

Note that both uncontrolled siphons involve places \(c_1\) and \(c_2\). The interaction of
the mutual exclusions being enforced by these two places can result in a deadlock
condition. Suppose that AGV 1 moves into position at the machine while it is
working on a part, i.e., \(t_6\) fires while \(\mu_1 = 1\). Now suppose the machine breaks down
\((t_6\) fires\). AGV 1 is stuck waiting for a completed part, and AGV 2 is stuck waiting
for AGV 1 to move out of the way: deadlock has occurred. This deadlock condition
corresponds to \(S_1\), \(S_2\) represents the analogous situation with the roles of the two
machines reversed.

According to Proposition 6.3 and the method of section 6.3.5, we will attempt
to avoid deadlock by insuring that these two siphons remain marked. Further su-
pervisors will be added to cause the two siphons to become "controlled," i.e., for
each siphon, a control place will be created that insures that sum of the tokens in
the siphon remains greater than or equal to one. Using the notation \(L_{\mu_p} \leq b\) and
assignment (6.9), we have,

\[
L = \begin{bmatrix}
-1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
-1 \\
-1 \\
\end{bmatrix}
\]

where rows 1 and 2 correspond to the conditions for \(S_1 \) and \(S_2 \) respectively. Note that \(c_1 \) through \(c_3 \) are now being treated as places \(p_{11} \) through \(p_{13} \) in the plant.

Just as in the previous section, the condition of Corollary 4.7 is checked to determine if the constraint matrix is admissible.

\[
LD_{uc} = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

We need all elements of \(LD_{uc} \) to be nonpositive to meet inequality (4.19). If the supervisor were created using the given value of \(L \), the first row of \(LD_{uc} \) indicates that it would attempt to achieve its goal by inhibiting transition \(t_6 \), which corresponds to machine break down. Unfortunately the unreliable machine is not impressed by requests from the controller to simply not break. A similar situation holds with row 2 of \(LD_{uc} \) and \(t_2 \). We will transform the constraint to eliminate the influence of the controller on these two uncontrollable transitions.

Again, the transformed constraint is constructed using positive row operations
Adding row 1 of D_{uc} to eliminate the positive numbers in LD_{uc} corresponds to adding 1 to the first element of both rows of L to construct the new constraint matrix L'.

$$L' = \begin{bmatrix}
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & -1 & -1 & 0
\end{bmatrix}$$
The new constraint, $L' \mu_p \leq b'$, represents the following inequalities:

\[
\begin{align*}
\mu_2 + \mu_{10} + \mu_{c1} + \mu_{c2} & \geq 1 \\
\mu_5 + \mu_6 + \mu_{c1} + \mu_{c2} & \geq 1
\end{align*}
\]

This inequality will insure that the number of tokens in S_1 remains positive and is also admissible with respect to the plant’s uncontrollable transitions.

Note that with positive “less-than-or-equal-to” constraints, transforming an inequality usually results in adding new places to the constraint. Here the “greater-than-or-equal-to” nature of the inequalities resulted in the elimination of places.

Figure 7.10: The unreliable machine model is now live.
The incidence matrix and initial marking of the control place are now calculated.

\[
D_c = -L' D_p = \begin{bmatrix}
-1 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[\mu_{c1_0} = b' - \mathbf{b}'^{T} \mu_{p_0} = 1\]

The controls for siphons \(S_1\) and \(S_2\) are shown as places \(c_4\) and \(c_5\) respectively in Figure 7.10. The supervised plant meets the constraints of section 7.4.2 and the controller will attempt no inhibition of uncontrollable transitions. Analysis of the closed loop system reveals that all of the net's siphons are controlled and the system is live.

7.5 Piston Rod Robotic Assembly Cell

7.5.1 Plant Definition and Constraints

The piston rod assembly cell application comes from chapter 8 of [19]. The Petri net model of the plant is shown in Figure 7.11. Table 7.2 details the meaning of each place in the net. A token in any of the Petri net places signifies that the action or condition specified in Table 7.2 is taking place. The piston rod assembly is performed by two robots, and the primary feedback mechanism is a vision system. An S-380 robot is used to prepare and align the parts for assembly, and an M-1 robot installs the cap on the piston rod. The specific duties of each robot are described below.

S-380: The S-380 robot remains idle until a new engine block and crank shaft become available. This event is represented by the appearance of a token in place \(p_l\) in Figure 7.11. The firing of transition \(t_1\) indicates the start of the process. At this
time the S-380 moves the crank shaft into alignment and brings a new piston rod into the work area. These actions are represented by places p_2 and p_3. The firing of transition t_3 indicates that the S-380 has completed its duties for the particular engine block.

\[\text{Figure 7.11: The base Petri net model for the piston rod robotic assembly cell.} \]

\[M-1: \] The M-1 robot starts its duties by picking up a piston pulling tool (place p_4) and, assuming the S-380 has brought a piston rod into position, pulls the piston rod into the engine block and replaces the pulling tool (place p_5). The M-1 then picks up a cap and secures it to the piston rod using two bolts (places p_6 and p_7). The firing of transition t_8 indicates that the M-1 has successfully installed the cap.
Work area clear, engine block and crank shaft ready to be processed.

S-380 robot aligns the crank shaft.

S-380 robot picks up new piston rod and positions it in work space.

M-1 robot picks up the piston pulling tool.

M-1 robot pulls the piston rod into the engine block, returns pulling tool.

M-1 robot picks up a cap and positions it on piston rod.

M-1 robot readies two bolts and uses them to fasten cap to piston rod.

Table 7.2: Place descriptions for Figure 7.11.

and the engine block has been conveyed out of the work space. At this time work can begin on a new engine block.

The incidence matrix, D_p, and initial marking, $\mu_p(0)$, of the plant are given by

$$D_p = \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix} \quad \mu_p(0) = \begin{bmatrix} 1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \end{bmatrix} \quad (7.10)$$

There are a number of constraints that must be imposed on this assembly cell in order to properly synchronize the robots and to insure that physical limitations are obeyed. There is only one S-380 and one M-1 robot available for the assembly process, thus only one of each robot can be working at any given time. Places p_2 and p_3 represent activity for the S-380 and places $p_4, p_5, p_6,$ and p_7 represent activity for
the M-1, thus

\[\mu_2 + \mu_3 \leq 1 \] (7.11)

\[\mu_4 + \mu_5 + \mu_6 + \mu_7 \leq 1 \] (7.12)

The plant graph already insures that the S-380 will not begin its task until an engine block and crank shaft are available and the work space is clear, however we need to make sure that the M-1 does not try to pull the piston rod into the engine until the S-380 has finished aligning the crank shaft and readying a new piston rod. In other words, we must insure that transition \(t_5 \) does not fire until after transition \(t_3 \) has fired. A review of the graph structure of the plant net shows that we can write this constraint as

\[\mu_1 + \mu_2 + \mu_3 + \mu_5 + \mu_6 + \mu_7 \leq 1 \] (7.13)

Note that this constraint allows the M-1 robot to ready its pulling tool, the task of \(p_4 \), at the same time that the S-380 robot is performing one of its tasks.

There are several finite resources that are used in the assembly process. A piston rod is readied at \(p_3 \), a pulling tool is required at \(p_4 \) and \(p_5 \), a cap is required at \(p_6 \), and two nuts are used at \(p_7 \). The plant controller will need to know if any of these resources is unavailable in order to stall operation until the parts are ready. Section 6.2 shows that it is possible to provide the controller with the necessary hooks to manage these resources by associating a constraint with each of the places (or sets of places) that requires the use of a finite resource:

\[\mu_3 \leq 1 \] (7.14)
These constraints are not intended to prohibit forbidden states, but rather to provide for the modeling of finite resource usage.

7.5.2 Uncontrollable Transitions and Control Synthesis

One final constraint placed on the assembly cell involves the smooth and uninterrupted operation of the M-1 robot. Perhaps due to the nature of the M-1 robot’s dynamics or programming, we would prefer that its operation not be interrupted from the point that it pulls the piston rod into the engine block until it has completed fastening the cap on the piston rod. We can model this constraint by marking transitions t_6, t_7 and t_8 as uncontrollable. Thus we have told the controller that once a token passes into p_5, it can not stall the plant’s progress until the token has passed on to places p_6, p_7 and completion. This means that if the controller does want to stall the M-1 robot, it should do it before it starts its primary operation.
Constraints (7.11) – (7.17) are now combined into matrix form.

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
\mu_1 \\
\mu_2 \\
\mu_3 \\
\mu_4 \\
\mu_5 \\
\mu_6 \\
\mu_7 \\
\end{bmatrix} \leq \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]

(7.18)

The controller that enforces these constraints will have seven places (one for each row of \(L \)), but first we must insure that our constraints meet the uncontrollability requirements. Transitions \(t_6, t_7, \) and \(t_8 \) are uncontrollable, so the matrix \(D_{uc} \) is composed of the last three columns of \(D_p \). According to chapter 5, the matrix \(LD_{uc} \) must be checked for any positive values, which would indicate that the current constraints may violate the uncontrollability conditions.

\[
LD_{uc} =
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1 \\
\end{bmatrix}
\]
Rows 6 and 7 of LD_{uc} contain positive values, thus it will be necessary to manipulate the sixth and seventh constraints (constraints (7.16) and (7.17)) so that their enforcement will not generate a controller with arcs directed toward the uncontrollable transitions. Based on the procedure outlined in chapter 5, the offending rows of LD_{uc} can be eliminated by adding rows from D_{uc}. Keeping track of the row operations performed will yield the matrices R_1 and R_2 which will be used to generate the transformed constraint matrix L'. The row operations are as follows.

\[
\begin{align*}
\text{Rows 6 and 7 of } LD_{uc} &= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \\
&\Rightarrow \text{Add row 5 of } D_{uc} \Rightarrow \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \\
&\Rightarrow \text{Add row 5 of } D_{uc} \Rightarrow \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
\end{align*}
\]

Now that the matrix no longer contains any positive numbers, we can use the row operations performed to create the matrices R_1 and R_2:

\[
R_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}
\]

\[
R_2 = I
\]

Constraints (7.16) and (7.17) have been transformed as follows:

\[
\mu_6 \leq 1 \Rightarrow \mu_5 + \mu_6 \leq 1 \quad (7.19)
\]
The new constraint matrix is given by

\[L' = R_1 + R_2L = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{bmatrix} \]

and the incidence matrix and initial marking of the controller are calculated according to equations (3.10) and (3.11):

\[D_c = -L'D_p = \begin{bmatrix}
-1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 \\
\end{bmatrix} \quad (7.21) \]

\[\mu_{co} = \begin{bmatrix}
1 & 1 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}^T \quad (7.22) \]

The controlled net is shown in Figure 7.12 with dashed controller arcs and thick-lined controller places. Table 7.3 describes the meaning of each of the controller places.
when a token is present within them. Note that place c_3 insures that the M-1 robot will wait to start working on the engine block until the S-380 has completed its task, but it is capable of readying the piston pulling tool while the S-380 is working. Also note that the controller directs no arcs to the uncontrollable transitions, however it still manages to enforce constraints (7.16) and (7.17).

![Figure 7.12: The assembly cell model with Petri net controller.](image)

An examination of the enforced constraints represented by the matrix L' shows that some of these constraints are actually implied by others. For example, constraint (7.14) says that there can be at most one token in place p_3, but constraint (7.11) says that there can be at most one token, at any given time, in places p_2 and p_3. If
Table 7.3: Controller place descriptions for Figure 7.12.

<table>
<thead>
<tr>
<th>c_1</th>
<th>S-380 robot is available for work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>M-1 robot is available for work.</td>
</tr>
<tr>
<td>c_3</td>
<td>S-380 robot has completed preparations, M-1 may begin.</td>
</tr>
<tr>
<td>c_4</td>
<td>A piston rod is available.</td>
</tr>
<tr>
<td>c_5</td>
<td>The piston pulling tool is available.</td>
</tr>
<tr>
<td>c_6</td>
<td>A cap is available.</td>
</tr>
<tr>
<td>c_7</td>
<td>Two nuts are available.</td>
</tr>
</tbody>
</table>

constraint (7.11) is enforced then constraint (7.14) can not be violated, so why not remove constraint (7.14) as redundant? The answer is that constraint (7.14) and its associated controller place c_4 are not actually being used to prohibit a forbidden state, but to provide the controller with a means of dealing with finite resources, in this case, the availability of a new piston rod. This is the same situation with constraints (7.15), (7.16), and (7.17) and their associated places c_5, c_6, and c_7. The use of constraint inequalities for the modeling of finite resources is discussed in section 6.2.

7.5.3 Handling Sensor Failures

The piston rod assembly cell presented in [19] uses a vision system to provide sensory feedback to the controller. Suppose that an obstruction has appeared between the camera and the work space, partially obscuring the view of the M-1 robot’s area. The controller can still observe the M-1 robot starting and completing its task, but it can no longer track the robot while it performs its duties. Transitions t_5, t_6, and t_7 have become unobservable (see section 4.3). This means that there should be no arcs from any of these transitions to the controller places, however it can be
seen from (7.21) that the current version of the controller incidence matrix contains nonzero elements in columns five through seven. Let D_{uo} be a matrix composed of the unobservable columns of D_p. In order to compensate for the sensor failure, we will follow the procedure of section 5.3, starting by computing the kernel of D_{uo}.

There are seven rows in D_{uo}, and the rank of the matrix is three. The kernel X will have $7 - 3 = 4$ rows.

\[
X = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
D_{uo} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{bmatrix}
\]

Rows one through three of X tell us that constraints involving only μ_1, μ_2, and μ_3 are independent and will not have to be transformed in order to meet the unobservability requirements. However, row four of X indicates that the coefficients on μ_4, μ_5, μ_6, and μ_7 must be equal. It is now a simple matter to rewrite the set of constraints in
order to meet this requirement:

\[
\mu_2 + \mu_3 \leq 1 \Rightarrow \text{Unchanged}
\]

\[
\mu_4 + \mu_5 + \mu_6 + \mu_7 \leq 1 \Rightarrow \text{Unchanged}
\]

\[
\mu_1 + \mu_2 + \mu_3 + \mu_5 + \mu_6 + \mu_7 \leq 1 \Rightarrow
\]

\[
\mu_1 + \mu_2 + \mu_3 + \mu_4 + \mu_5 + \mu_6 + \mu_7 \leq 1
\] \hspace{1cm} (7.23)

\[
\mu_3 \leq 1 \Rightarrow \text{Unchanged}
\]

\[
\mu_4 + \mu_5 \leq 1 \Rightarrow \mu_4 + \mu_5 + \mu_6 + \mu_7 \leq 1
\]

\[
\mu_5 + \mu_6 \leq 1 \Rightarrow \mu_4 + \mu_5 + \mu_6 + \mu_7 \leq 1
\]

\[
\mu_5 + \mu_6 + \mu_7 \leq 1 \Rightarrow \mu_4 + \mu_5 + \mu_6 + \mu_7 \leq 1
\]

In all cases, each transformed constraint can be realized by simple additions of new coefficients to the original constraints. This insures that the conditions of lemma 4.10 are obeyed: the new constraints will not allow states prohibited by the originals.

The constraints in (7.23) are now used to generate a reconfigured controller. The incidence matrix and initial marking are

\[
D_c = \begin{bmatrix}
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1
\end{bmatrix}
\] \hspace{1cm} (7.24)

\[
\mu_{c0} = \begin{bmatrix}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}^T
\]
Observe how the fifth through seventh columns of D_c have been completely zeroed.

The reconfigured control is shown in Figure 7.13.

![Figure 7.13: The assembly cell model with a controller that accounts for a sensor loss making transitions t_5, t_6 and t_7 unobservable.](image)

The last three transformed constraints in (7.23) are identical, however all constraints will be implemented separately in the reconfigured version of the controller. This is because the different controller places have different interpretations (see table 7.2) and because we intend to transform the controller arcs back to their original configurations once the sensor obstruction has been removed.
7.6 Control of an Asynchronous Transfer Mode Switch

This section provides an illustration of the graph transformation technique described in section 6.5.1 used for handling constraints on allowable events (as opposed to allowable states). The example involves the control logic of the output-port controllers (OPC) of an asynchronous transfer mode (ATM) switch. The plant description is taken from [43]. An ATM switch is used to route segments of a 53 byte data stream referred to as ATM cells. Incoming cells are directed by a series of routing networks to the OPC's. Each OPC holds the outgoing cells in a buffer as they wait to be transmitted. If an OPC buffer is full then any further cells that the routing network might send to the OPC are lost until a new space is cleared in the buffer. The OPC is capable of inhibiting the transmission of further cells from the routing networks if its buffer is too full. The transmission of data in the ATM switch is extremely fast and the ATM cells are often independent of each other; for these reasons the output-port controllers' buffers are capable of receiving more than one cell at a time, however we will assume here that the buffers may lose data if an attempt is made to simultaneously deliver more than two cells to any OPC's buffer.

A Petri net model of the portion of interest of the ATM switch is shown in Figure 7.14. Three routing networks are represented by p_1, p_2, and p_3. These networks receive ATM cells through the uncontrollable firings of t_1, t_2, and t_3. Places p_4 and p_5 are the output buffers. Transitions t_{10} and t_{11} fire to represent the transmission of ATM cells in the buffers. From the point of view of the OPC, these transitions are uncontrollable, i.e., if its buffer is running out of room, it can not clear space by
Figure 7.14: Petri net model for the output portion of an ATM switch.

forcing the transmission of a cell in the buffer, instead it must inhibit the transmission of further cells from the routing networks. Each OPC buffer has a capacity of five cells, thus the first two constraints are

\[
\mu_4 \leq 5 \quad \text{(7.25)}
\]

\[
\mu_5 \leq 5 \quad \text{(7.26)}
\]

Data may be lost if more than two ATM cells enter the OPC buffer at any one time, so the final two constraints are constraints on the firing vector:

\[
q_4 + q_5 + q_6 \leq 2 \quad \text{(7.27)}
\]

\[
q_7 + q_8 + q_9 \leq 2 \quad \text{(7.28)}
\]
To use the controller generation procedure of chapter 3 we first perform the transformation of all transitions involved in the constraints as described in section 6.5.1.

The result is shown in Figure 7.15. The transformation permits constraints (7.27) and (7.28) to be written

\[
\mu_4' + \mu_5' + \mu_6' \leq 2
\]
(7.29)

\[
\mu_7' + \mu_8' + \mu_9' \leq 2
\]
(7.30)

Figure 7.15: The Petri net of Figure 7.14 with dummy places and transitions to account for firing vector constraints.

The controller is allowed to take direct action to prevent any OPC buffer from receiving too many ATM cells at a time, so the procedure for the direct enforcement of firing vector constraints from section 6.5.1 is used to enforce (7.29) and (7.30). After synthesizing the controller for the four constraints, ((7.25),(7.26),(7.29),(7.30)), the
dummy places \((p'_4, \ldots, p'_9)\) and the dummy transitions \((t'_4, \ldots, t'_9)\) of Figure 7.15 are collapsed to put the plant model back into its original form. The resulting controlled system is shown in Figure 7.16. Control places \(c_1\) and \(c_2\) are used to prohibit further transmission from the router networks when an OPC buffer is full (five ATM cells). Places \(c_3\) and \(c_4\) only allow two transition firings at any given time to a single output buffer using the inherent rules for the handling of concurrent firings for Petri net models.

![Diagram](image_url)

Figure 7.16: The ATM switch with output-port control logic in place.
7.7 The Three Tanks Problem

The plant \([14, 35]\) of Figure 7.17 consists of three fluid-filled tanks and a pump that can add fluid to each of them. Tank \(i\) drains at a constant rate \(d_i\). The pump can be moved to fill any of the three tanks. It fills tanks at a constant rate \(F\). The control goal is to make sure that the fluid level in each of the three tanks stays within a safe boundary area. The fluid in tank \(i\) is not to rise above \(h_i\) nor is it to drain below \(l_i\). It is possible, by switching the pumps to different tanks, to meet these constraints by making the following three assumptions:

1. The time required to move the pump from a tank to any other tank is 0.

2. The net flow out of the tanks is equal to the net flow in:

\[
F = d_1 + d_2 + d_3 \tag{7.31}
\]

3. The initial fluid levels are well within the safety ranges.

These assumptions are not too unrealistic. Assumption 2 can be established by using a feedback controller to regulate \(F\) such that it is equal to the net flow out of the tanks. Assumption 1 can be eliminated by modifying assumption 2 such that \(F\) accounts for the time required to move from tank to tank as well as the net outflow. For the purposes of this discussion, and for supervisory control, we will leave the assumptions as they are written.
Figure 7.17: Three fluid filled tanks serviced by a single mobile pump.

There are three actions that can be made by the controller, u_1, u_2, u_3, where $u_i \in \{0,1\}$ and

$$u_i = \begin{cases}
1 & \text{Move to tank } i \text{ and fill.} \\
0 & \text{No command regarding tank } i.
\end{cases}$$

Because the pump can only service one tank at a time, we have

$$u_1 + u_2 + u_3 \leq 1$$

The pump is always filling one of the tanks, so the control-action constraint could actually be written $u_1 + u_2 + u_3 = 1$ if we assume that the command “Move pump to tank i” has no effect on the system when the pump is already servicing tank i. This assumption will be made in the discussion that follows.

The controller’s feedback measurements of the tanks’ situation comes from periodic samplings. The sampling period, T, and the fill rate, F, are then combined in
order to find pseudo upper \((h') \) and lower \((l') \) bounds for the fluid levels in the tank.

\[
h'_i \leq h_i - FT \quad (7.32)
\]
\[
l'_i \geq l_i + 2FT \quad (7.33)
\]

These bounds mean that if tank \(i \) is currently being filled by the pump, and its fluid level rises above \(h'_i \), then the tank may overflow past \(h_i \) during the next sampling period unless the pump moves immediately to a different tank. The lower bounds, \(l'_i \), are constructed similarly, except that two sampling periods are allowed before the pump must respond in order to allow for the possibility that two tanks may reach a dangerously low level during the same sampling period. Finally, a bound is placed on the minimum distance between \(h'_i \) and \(l'_i \), insuring that each tank has an achievable safety region:

\[
h'_i > l'_i + FT
\]

With the given assumptions and control actions, the constraint to keep the fluid levels within the \(h' \) and \(l' \) bounds can be met by implementing the following control law:

1. Move to tank \(i \) when its fluid level drops below \(l'_i \)

2. Move to tank \(j \neq i \) when the fluid level in tank \(i \) rises above \(h'_i \).

Nothing is specifically stated about the dynamics of the flowing fluid. The inputs coming into the controller are events indicating fluid levels, and the control output is one of three discrete commands. For these reasons, the problem can be handled with
DES supervisory control. Two approaches to designing the controller are investigated in the following sections.

7.7.1 Forbidden State Elimination

Supervisory controllers that use automata are generally derived by creating an automaton model of the plant, and deleting states from the model such that the modified model speaks a desired language. The controller automaton is then equivalent to this modified model. Controllable and uncontrollable events mark the passage from state to state in the automaton. If a set of forbidden states can be identified and then extracted along with all the states that might lead uncontrollably to the forbidden states, then the controller is equal to this reduced plant model. At any stage in the evolution of the plant, the controller automaton is consulted in order to determine the set of valid controllable actions that may be taken at that time.

In order to model one tank in the fluid-filled tank problem, we can use a five state automaton. Let \(x \) be the fluid level in the tank, then the five states are

1. Overflow: \(x \geq h \)

2. Pseudo overflow \(h' \leq x < h \).

3. Fluid level OK: \(l' < x < h' \).

4. Pseudo underflow \(l < x \leq l' \).

5. Underflow: \(x \leq l \)
The tank starts in state 3, according to the assumptions. The action of pumping fluid into the tank will, given enough time, result in the transition from higher numbered states to lower numbered states. When no fluid is pumped into the tank, transitions from lower numbered states to higher numbered states will take place.

A complete automaton model of the three tank system would have $5^3 = 125$ states. A controller could be constructed by creating a duplicate automaton and then removing the states that involve over/underflow of any of the tanks. At any point, the state of the controller could then be used to determine which tanks may (or must) have fluid pumped to them at any given time.

A similar approach can be taken using Petri nets. A Petri net model of the three tank system is shown in Figure 7.18. The model consists of three unconnected nets representing each tank. For tank 1, place i is equivalent to state i in the single tank automaton described above. Since place three is marked, this means that, currently, the fluid level in tank 1 is within acceptable bounds: $l'_1 < x_1 < h'_1$. Note that the Petri net model of the problem is superior to the automaton in terms of space used by the model. The Petri net model grows polynomially with the number of tanks, while the automaton grows exponentially.

The transitions in Figure 7.18 would be fired in unison with observed events in the real system. The transitions are labeled with the control actions that could have been in effect at the time that the transition occurred. For example, the token in p_3 can only move to p_2 if the pump is servicing tank 1, so the transition is labeled u_1. Similarly, the token in p_3 can only move to p_4 when either tank 2 or tank 3 is being
serviced, so this transition is labeled u_2, u_3.

In order to create a controller, the forbidden states are prevented from containing any tokens:

\[
\begin{align*}
\mu_1 &= 0 \\
\mu_5 &= 0 \\
\mu_6 &= 0 \\
\mu_{10} &= 0 \\
\mu_{11} &= 0 \\
\mu_{15} &= 0
\end{align*}
\]
The Petri net model of the controller is then given in Figure 7.19. A constraint of the form \(\mu_i = 0 \) can be implemented using the standard PN control techniques on the equivalent constraint \(\mu_i \leq 0 \), but the net in Figure 7.19 simply shows empty places added to the net to disable the appropriate transitions.

![Diagram of Petri nets for tanks](image)

Figure 7.19: The fluid-filled tank model with entrances to forbidden states disabled.

The controller net is used as follows. Observations of the plant will lead to transition firings in the controller net. After any transition firing, determine which transitions are disabled at every place in the net that contains a token. The labels on these transitions \((u_1, u_2, \text{or} u_3)\) indicate control actions that can not be taken at this time. Choose a control action from those that remain.

The approach above has several problems. It does not really take advantage of the analysis and control-synthesis powers of Petri nets. It is little more than a lookup
table modeled as a Petri net. The Petri net implementation of the controller does involve a smaller model than a single automaton model of the system, but there is nothing preventing a control designer from using three separate automata and then combining their control action indicators as was done with the Petri nets above. In this situation, the models, PN or automata, would require the same amount of space and would be virtually identical.

Another problem with the solution presented here is that it may lead to deadlock. Suppose two tanks drained below their pseudo lower bound during the same sampling time. The choice of available control actions would then be the empty set if the description of how to choose the control actions above were taken literally. This problem could be overcome by using careful rules which determine how the states in the net are allowed to evolve, but instead a more graceful method of dealing with the problem is presented in the next section. There the control is designed in a way that takes advantage of the dynamic properties of Petri nets and the ability to automatically enforce constraints on them.

7.7.2 Event Driven

There are three states of interest with regard to any tank:

1. Tank fluid level is greater than pseudo overflow.

2. Tank fluid level is OK.

3. Tank fluid level is less than pseudo underflow.

There are four relevant events associated with the evolution of any given tank:
1. Tank fluid level has raised past pseudo overflow.

2. Tank fluid level has lowered below pseudo overflow.

3. Tank fluid level has lowered below pseudo underflow.

4. Tank fluid level has raised above pseudo underflow.

These events are uncontrollable, they occur upon observation of processes in the plant. There are three controllable events, \(u_1, u_2, \) and \(u_3 \), associated with the placement of the pump. These states and events are combined to form the Petri net model of Figure 7.20. The meaning of each place and transition within the model is defined in Table 7.4.

![Petri net model](image)

Figure 7.20: A Petri net model of the relevant events and states for the fluid-filled tank problem.

Using the base model of the system, we will synthesize a controller Petri net such that the control \((u_1, u_2, \text{ or } u_3)\) issued to the plant is equivalent to the firings of \(t_1, \)
The first step is to determine the constraints on the plant model. The first constraint is induced by the physical realities of the plant: only one pump can be serviced at a time.

\[q_1 + q_2 + q_3 \leq 1 \quad (7.34) \]

Transitions 1, 2, and 3 are all controllable, so the direct enforcement (section 6.5.1) of constraint (7.34) is admissible by Corollary 6.15 and may be implemented.

We need to insure that the tanks will not overflow, this means that we can not deliver fluid to tank \(i \) when tank \(i \) is experiencing pseudo overflow.

\[q_1 + \mu_1 \leq 1 \quad (7.35) \]
\[q_2 + \mu_4 \leq 1 \quad (7.36) \]
\[q_3 + \mu_7 \leq 1 \quad (7.37) \]
Before implementing these constraints, we must first determine that they are admissible. This procedure starts by determining if each constraint is uncoupled (see Definition 6.16 and Proposition 6.17).

For constraint (7.35), the set T_f corresponds to the q_1 portion of the constraint and T_l corresponds to μ_1 portion of the constraint. Using the rules for controller construction and/or Proposition 6.17 we see that $T_f = \{t_1\}$ and $T_l = \{t_4, t_5\}$, thus $T_l \cap T_f = \emptyset$ and the constraint is uncoupled. The same can be shown for constraints (7.36) and (7.37). Given that they are uncoupled, the admissibility of the three constraints can be determined with Proposition 6.18.

Proposition 6.18 indicates that if the two constraints $\mu_1 \leq 1$ and $q_1 \leq 1$ are admissible, then (7.35) is admissible. Corollary 6.15 shows that $q_1 \leq 1$ is admissible, since the transition it effects (t_1) is a controllable transition. Next the admissibility of $\mu_1 \leq 1$ must be verified.

A structural analysis of the plant indicates the presence of the following place invariant:

$$\mu_1 + \mu_2 + \mu_3 = 1 \quad (7.38)$$

Since equation (7.38) is always true throughout the evolution of the plant, $\mu_1 \leq 1$ is always true, which implies that $\mu_1 \leq 1$ is admissible according to Corollary 4.8. Having determined that $q_1 \leq 1$ and $\mu_1 \leq 1$ are both admissible, we have satisfied both conditions in Proposition 6.18 and have demonstrated that constraint (7.35) is indeed admissible. The controller associated with this constraint will direct an arc to the uncontrollable transition t_4. However Proposition 6.18 and Corollary 4.8 insure
that this arc will only be used for observation and never for inhibition. A similar application of Proposition 6.18 indicates that constraints (7.36) and (7.37) are also admissible.

Finally we need to prevent underflow, which means that the pump must shift to the tank that has sent a “pseudo-underflow occurred” event. Supervisory control is not equipped to make a direct demand that a particular transition be fired. Instead, during conditions of possible underflow, we will disable all actions that do not help to solve the problem. The designer is free to choose rules under which enabled transitions fire. If we state that one of the enabled transitions, \(t_1, t_2, \) or \(t_3 \), must fire every sampling period, then disabling undesirable actions is equivalent to forcing desirable actions.

Consider the situation where we wish to disable flow to the first tank. Clearly if tank 1 is in a safe region, and the fluid level in tank 2 has lowered below \(l_2' \), then we wish to disable \(t_1 \) so that the pump will no longer have the option of filling tank 1 and be able to move to tank 2. This constraint is expressed

\[
q_1 + \mu_6 \leq 1
\]

Thus \(t_1 \) may not fire when tank 2 requires service (indicated by the presence of a token in \(p_6 \)). We also want to disable \(t_1 \) if tank 3 is experiencing underflow. The constraint is now modified:

\[
2q_1 + \mu_6 + \mu_9 \leq 2 \quad (7.39)
\]
If both tank 2 and 3 are above their underflow levels, then \(t_1 \) will be free to fire, but as soon as either of them drops below this level, \(t_1 \) will be disabled. But now suppose tank 1 is in danger of underflowing. Under no circumstances do we wish to disable \(t_1 \) if \(p_3 \) contains a token. Thus the constraint is modified a final time:

\[
2q_1 + \mu_6 + \mu_9 - 2\mu_3 \leq 2
\]

(7.40)

Now if \(p_3 \) is clear, the constraint will behave exactly as in (7.39), but if \(p_3 \) contains a token, then the modified constraint will always be true, independent of the values of \(\mu_6 \) and \(\mu_9 \), and \(q_1 \) will be free to fire. The remaining underflow-prevention constraints are

\[
2q_2 + \mu_3 + \mu_9 - 2\mu_6 \leq 2
\]

(7.41)

\[
2q_3 + \mu_3 + \mu_6 - 2\mu_9 \leq 2
\]

(7.42)

The admissibility of these constraints can be verified using proposition 6.18.

Constraints (7.39)-(7.42) allow for tanks to simultaneously fall below their pseudo lower bounds without causing deadlock, since \(t_i \) will always be enabled when tank \(i \) is in the underflow state. Constraint (7.34) will insure that the controller only tries to service one of these at any given time. Assumption (7.31) insures that at most only two tanks can experience pseudo underflow at any given time. Assumptions (7.31) and (7.33) show that the first tank to receive service will go above its \(l' \) level in one sampling period, leaving time to fill the remaining tank before it drops below its \(l \) level.
A controller for enforcing the constraints, (7.34), (7.35), (7.37), (7.39), (7.42), is automatically generated using the rules for direct implementation of firing vector constraints (section 6.5.1). The controlled plant is shown in Figure 7.21. Note that even though the diagram is fairly complex, the control places and arcs were all automatically generated. The plant is controlled through simple simulation of the Petri net’s evolution. Actual observed events from the plant are used to determine when the plant transitions fire. The control actions \((t_1, t_2, \text{ and } t_3) \) fire every sampling period. Any method can be used to determine which of the three should fire when there is a choice.

Figure 7.21: The plant of Figure 7.20 with added control structures.
7.8 Hybrid Control System Example

The plant of this example is a simple linear system that has been used extensively by Stiver [4,39,74,75] to demonstrate concepts of hybrid control. The continuous plant will be modeled as a discrete event system and its behavior will be regulated using the control techniques described in chapter 3 and section 6.5.1.

The continuous plant model is described by

\[
\dot{x}(t) = f(x,u) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \quad (7.43)
\]

where \(t \) is time, \(x(t) = [x_1(t) \ x_2(t)]^T \) is the state vector, and \(u(t) \) is the control input. The plant is referred to as a double integrator since \(x_2 \) is the integral of the input and \(x_1 \) is the integral of \(x_2 \). The control goal is to drive the state variables from their initial conditions to a unit disk centered at the origin.

The dynamics of the plant are represented as a DES by dividing the state space into several regions and assigning Petri net places to each of these regions. The borders between the regions are defined by a set of hypersurfaces. The first hypersurface, \(h_1 \), represents the target region:

\[
h_1(x) = x_1^2 + x_2^2 - 1 \quad (7.44)
\]

thus the state is within the target region when \(h_1(x) < 0 \). In order to define the other surfaces we will restrict the allowed inputs so as to limit the possible number of region-to-region transitions. Let \(u(t) \) be a piecewise constant input with values \(\pm 1 \). A desirable partitioning will yield a state transition function that indicates a
unique next state given the current state and control input. Failure to meet this requirement will yield a nondeterministic plant DES, which is difficult to use as a model for control. Following the procedure detailed in [75], an acceptable partitioning of the continuous state space will be found by placing the remaining hypersurfaces along invariant plant trajectories, i.e., the hypersurfaces will satisfy the equation

$$f(x) \cdot \nabla h(x) = 0$$

Choosing the input $u(t) = 1$ we have $f(x) = [x_2 \ 1]^T$ and

$$f(x) \cdot \nabla h(x) = x_2(\nabla h)_1 + (\nabla h)_2 = 0$$

To satisfy the equation we choose

$$\nabla h = \begin{bmatrix} -1 \\ x_2 \end{bmatrix}$$

(7.45)

Equation (7.45) is integrated to find a solution for $h(x)$:

$$h(x) = \int -1 dx_1 = \int x_2 dx_2$$

$$= -x_1 + g_1(x_2) = \frac{1}{2}x_2^2 + g_2(x_1)$$

$$\Rightarrow h(x) = \frac{1}{2}x_2^2 - x_1 + c$$

(7.46)

where c is a constant. Performing a similar procedure for $u(t) = -1$ yields

$$h(x) = \frac{1}{2}x_2^2 + x_1 + c$$

(7.47)

Two new partitioning hypersurfaces are now formed by creating tangents to the
convex region described by (7.44) from the invariant surfaces (7.46) and (7.47):

\[
\begin{align*}
 h_2 &= \begin{cases}
 \frac{1}{2}x_2^2 + x_1 + 1 & ; \ x_2 \geq 0 \\
 \frac{1}{2}x_2^2 - x_1 - 1 & ; \ x_2 < 0
 \end{cases} \\
 h_3 &= \begin{cases}
 \frac{1}{2}x_2^2 + x_1 - 1 & ; \ x_2 \geq 0 \\
 \frac{1}{2}x_2^2 - x_1 + 1 & ; \ x_2 < 0
 \end{cases}
\end{align*}
\] (7.48) (7.49) (7.50)

The surfaces where chosen so as to form regions of the state space that lead invariably toward the target region under the proper constant input. Figure 7.22 shows the three hypersurfaces as dotted lines with the corresponding regions numbered 1 – 5. The properties of each region are as follows.

Region 1 Approach target region with \(u = -1 \).

Region 2 Approach target region with \(u = +1 \).

Region 3 Approach region 1 with \(u = +1 \).

Region 4 Approach region 2 with \(u = -1 \).

Region 5 Target.

A Petri net model of the plant is constructed and shown in Figure 7.23. Place \(p_n \) in the figure corresponds to region \(n \) of the state space. The number in parentheses next to each transition corresponds to the value of \(u \) that can cause the transition to occur. Transitions \(t_5 \) and \(t_6 \) do not actually represent state transitions; they are included because they represent undesirable input values that can cause the
Figure 7.22: Two dimensional state space with three hypersurfaces and five regions. A continuous trajectory of the plant to wander far from the target region near the origin. Because the state space regions do not overlap and the transitions are deterministic with respect to the input, this Petri net is a state machine. The Petri net structure is useful because it will allow us to automatically generate a supervisor based on a set of linear constraints.

Figure 7.23: Petri net plant model for the double integrator.

The first constraint deals with the undesirable behavior described by t_5 and t_6.

244
We will disable these transitions:

$$q_5 + q_6 \leq 0 \quad (7.51)$$

The second constraint indicates that we wish the trajectory to remain within the region of the target area:

$$\mu_1 + \mu_2 + \mu_5 \geq 1 \quad (7.52)$$

This constraint poses a slight difficulty in that it is possible the condition imposed by the constraint will not be met by the initial conditions of the plant, e.g., if the initial condition lies within region 3 of the state space, constraint (7.52) will yield a control place acting as an excess variable with an initial marking of -1. Negative markings are invalid for Petri nets, however, in the spirit of more general “vector discrete event systems” [41] and the modified control structures of section 3.5, if this initial negative marking is allowed and proper Petri net rules are obeyed after the initialization, the controller will still work. Another approach to the implementation of constraint (7.52) is to wait and enforce it dynamically after the plant trajectory has progressed into a state where (7.52) is true. In this situation, the plant would progress naturally, obeying constraint (7.51), until the token entered place p_1 or p_2, at which time the token would be trapped by the addition of a controller for (7.52).

The Petri net supervisor for this problem is constructed using the method given in chapter 3 after performing the transformation of constraint (7.51) using the procedure for the direct enforcement of firing vector constraints described in section 6.5.1. The resulting controlled net is shown in Figure 7.24. Figure 7.25 shows two example
Figure 7.24: Double integrator plant model with supervisor.

trajectories of the controlled plant through the continuous state space. The initial conditions of each trajectory are marked with X’s on the graph. The figure shows the trajectories proceeding randomly after they enter the target region in order to emphasize that the Petri net controller is a supervisor: it does not inhibit or direct the behavior of the system as long as the state remains sufficiently close to the origin.

Figure 7.25: Example trajectories of the supervised double integrator.
Petri nets possess many assets as models for discrete event systems. Concurrent processes and events can be easily modeled within the framework. They provide for larger reachable state spaces, more compact representation, and increased behavioral complexity compared to automata based models. The goal of this dissertation has been to present an approach to Petri net supervisory control that is unified and tractable as well as comprehensive and practical.

The primary technical tools required for the use and analysis of the control methods presented here involve Petri net theory and matrix algebra. The techniques for deadlock avoidance and liveness insurance are derived from net theory. The main synthesis technique is based on the idea that specifications representing desired plant behavior can be enforced by making them invariants of the closed loop system. Most of the other tools in this dissertation also revolve around the creation or characterization of invariants or an analysis of the interrelation between control specifications.
and plant and controller structure. For example, the methods for handling uncontrollable and unobservable transitions are motivated by observing the nature of the arcs induced in a controller by a given plant and specification.

Because an invariant based controller is itself a Petri net, the unified plant/controller system facilitates the use of established synthesis and analysis methods. The closed loop system can be designed, analyzed, simulated, verified, and augmented using tools already established for Petri nets. The particular approach to uncontrollable and unobservable transitions in this dissertation was made possible by an initial understanding of the closed loop system as a Petri net.

The control method is able to cope with the most difficult and important aspects of supervisory control: uncontrollable events, unobservable events, and deadlock. Using the idea that the supervisor is modeled by an external Petri net has led to a novel approach to handling uncontrollability. Unobservable transitions have received little attention in the DES control literature, but they present an important problem, and systems that incorporate unobservable events are of practical concern. Here the problem of unobservability has been presented and analyzed concurrently and analogously to uncontrollability.

Methods have been presented for characterizing all feasible invariant based controllers for enforcing a linear place-constraint on a plant with uncontrollable and unobservable transitions. This characterization can be combined with an extended PN controller definition to enforce the logical union of all these feasible controls.
Supervisors designed this way will allow a high degree of plant freedom. Unfortunately it has not been demonstrated that these controllers will always be maximally permissive, since it is not known if there is a situation where the maximally permissive control law corresponding to a linear predicate is ever something other than a disjunction of other linear predicates.

Supervisors may allow or even induce local or complete deadlock in a plant if the problem of liveness is not specifically dealt with in the supervisor design. The incorporation of established deadlock avoidance procedures into the invariant based control technique greatly expands the applicability and practical use of this method. At the same time, the techniques for deadlock avoidance benefit from the added ability to handle uncontrollable and unobservable transitions as well as a variety of other system constraints.

Aside from the standard forbidden state avoidance problems, invariant based controllers have been shown to be useful for a number of other supervisory specifications. The allocation and use of finite resources can be modeled and controlled as if a forbidden state problem were being solved. The addition of PN clock structures to the net allows for real-time specifications to be enforced on timed Petri nets. Some specifications do not immediately appear to have the necessary form of a predicate on a plant’s markings but are still controllable using the techniques of this dissertation. A class of logical specifications on system events and states can be transformed into sets of linear inequalities. The transformation of the Petri net graph to include places that mark the firing of transitions allows for the design of controllers for event based
as well as state based constraints. This graph transformation can be combined with
the tools for handling uncontrollable transitions to indirectly enforce event based
constraints. Finally, the problem of deadlock avoidance can be solved for a large
class of Petri nets by enforcing sets of linear inequalities on the plant’s state.

 Each control place in an invariant based controller represents the slack variable
of a single linear inequality on the plant’s state. The PN enabling rule with regard
to the controller states that if the firing of a transition would cause the marking of
any control place to become negative, then that transition is disabled. The result
is that the set of all control places enforces the logical intersection of the individual
constraints. If the enabling rule is changed so that a transition is only disabled by the
controller if its firing would cause all control places to have negative markings, then
the controller is enforcing a (generally nonconvex) disjunction of linear inequalities.
This extended PN definition greatly expands the kinds of constraints that can be
enforced by invariant based controllers while making only a minor modification to
the standard Petri net behavioral rules. This technique is particularly important for
handling specifications on plants with uncontrollable and unobservable transitions.

Computational efficiency is one of the goals of the supervision techniques pre-
sented in this dissertation. An invariant based controller is computed very efficiently
by a single matrix multiplication, and its size grows polynomially with the number
of specifications. Since the controller is a Petri net, control actions are also simple
to compute online. At every iteration, the Petri net enabling inequality is checked
for each transition and a linear difference equation is used to update the controller
state.

Handling uncontrollable and unobservable transitions does not add any complexity to the online computation of control actions. The increased complexity is encountered only in the initial control design. Computationally tractable techniques have been presented for this process involving the solution of an integer linear program or through the triangularization of an integer matrix through constrained row operations. Other methods in the dissertation involve finding the invariants or siphons of a Petri net. Computationally, both of these problems reduce to finding elements of the kernel of an integer matrix for which established algorithms exist.

Invariant based supervisors are viable models for real time control implementations. The speed and efficiency with which they are computed also makes them appropriate for online control reconfiguration due to sensor or actuator faults, or dynamically modified system specifications.
BIBLIOGRAPHY

Mediterranean Conference on Control and Systems, volume Session MP1, Paphos, Cyprus, July 1997.

