Reversed Flapping Flight \& Inverted Hydrodynamical Drafting

Jun Zhang
Applied Mathematics Laboratory

The origin of flapping flight of large birds: from the ground up? Or from the trees down?

Q1: Can a simple, rigid, symmetric, flapping "wing" generate lateral thrust? Q2: If the answer is "yes," what would be the thresholds (Reynolds number)? (reciprocal motion leads to no net motion at low Reynolds numbers!)

Vandenberghe, Zhang and Childress, Journal of Fluid Mechanics, 2004
Alben and Shelley, PNAS, 2005
Vandenberghe, Childress and Zhang, Physics of Fluids, 2006
Rosellini and Zhang, 2009 (under review)

Flapping Mechanism and the Setup of Our Experiment

$$
h(t)=\frac{a}{2} \sin (2 \pi f)
$$

a: peak-to-peak flapping amplitude
f: flapping frequency
c : chord of the wing
$L=2 d$: total length of the wing

The experimental setups:
Generation I (2003) and generation II (2005).

Flow visualization

At higher Reynolds numbers: when eddies are still exist as the wing moves back...
The primary instability: the system is at an unstable fixed point, easily breaks symmetry

Spontaneous symmetry breaking bifurcation

The system (a flapping wing in an initially stationary fluid) losses stability to a forward, rotational motion: it performs a "forward flight"

As a result of Spontaneous Symmetry Breaking:
The wing rotates (takes off) in either directions, with roughly the same probability. Once it "takes off" in one direction, it maintains that state.

Experimental setup on passive pitching and free flight

The main effects of passive pitching in free flight

- Flapping amplitude: 2.7 cm
- Wing chord: 8 cm
- Backward free flight is
forbidden for low driving
frequencies.
- Passive pitching can
increase the speed for a
given heaving motion.
- Flexibility introduces
forward/backward
transitions.
- Forward free flight is
forbidden above a
threshold.

The backward flapping flight:

The anticipated motion of the wing

- Non-dimensional flexibility: passive pitching

Is this dimensionless number P a good control parameter?

If yes, we should be able to see "data-collapse" using P to represent different systems with varying spring constant.

With different spring constant $k=0.04 \mathrm{Nm}, 0.11 \mathrm{Nm}$ and 0.16 Nm .

Passive Pitching P
S. Spagnolie, L. Moret, M. Shelley and J. Zhang, Physics of Fluids, 2010

On swimming of "passive" fish
("swimming" of dead fish or flapping flags)
and
on "schooling" of many swimmers

What happens when deformable bodies interact?

Schools and flocks: Fish, F. E. Comments Theor: Biol. 5, 283-304 (1999)
Leaves in a breeze: Vogel, S. Life in Moving Fluids (Princeton Univ. Press, Princeton, 1994)
Waves of grain: Inoue, E. J. Agric. Met. (Japan) 11, 71 (1955).

Swimming in a water current
Giant Danio

Laminar flow

Fish rheotaxis: game fish in water tunnel, New York Univ.

Flapping frequency $f=25$ to 60 Hz , depends on the flow speed.

Details on the force measurement: a Voigt element that measures a time-averaged force

Inverted drafting -- To reduce drag, flap in front!

One of the first real-time movies from the experiment:

Flow visualization using a rigid plastic bug, sloshing water currents and shadowgraphs.

See how a downwash is produced as two pairs of vortices emerge within each cycle.

Stability !

$$
\begin{aligned}
& \text { Some related papers (as PDF files) can be found at: } \\
& \text { http://physics.nyu.edu/jz11/ }
\end{aligned}
$$

