

Electronic structure and dielectric behavior of finite-length single-walled armchair carbon nanotubes

> Deyu Lu, Klaus Schulten Yan Li, Slava Rotkin, Umberto Ravaioli Beckman Institute, UIUC 8/10/2004

Rolling up a (10,10) nanotube

By Shigeo Maruyama, University of Tokyo, Japan

Carbon Nanotube

$$\vec{C}_h = n\vec{a}_1 + m\vec{a}_2 \text{ or } (n,m) \begin{cases} \text{metallic:} & \text{mod}(n-m,3) = 0 \\ \text{semiconducting:} & \text{mod}(n-m,3) = 1 \text{ or } 1 \end{cases}$$

Armchair $\dot{e} = 30^{\circ}$

Nanotube & molecular channels

Nano-wate

Hummer et al., 2001

Noon *et al.*, 2002

Mashl et al., 2003

Noon *et al.*, 2002

simulation

Nano-water

Kolesnikov *et al.*, 2004 Experiment + simulation

Motivation: Model nano-water system A polarizable model

Kolesnikov et al., PRL, 2004

CNT does not only serve as a nmsize pore. The polarization effect of CNT may also modify the channel transport dynamics. Classic molecular dynamics: non-polarized CNT *ab initio* method: e.g. CPMD

polarizable, but slow

- Develop a fast MD method including polarization
 - CNT polarization: Tight-binding model
 - Atomic motion: Classic force field

Band gap of finite armchair CNT

(6,6) armchair

Rochefort, et al., J. Phys. Chem. B, 103:641-646, 1999.

Electronic properties of finite armchair CNT

- Frontier wave functions are from π -orbitals
- 3rd n.n. hopping integral need to be included to break the A-B degeneracy at 3n+2
- The 3rd n.n. TB calculation is able to generate the same band gap pattern as *ab* initio results
- Curvature effect is not large for HOMO/LUMO gap
- The frontier orbitals from the 3rd n.n. TB are identical with Huckel orbitals (n>7)

Axial Screening

- Infinite long CNT: external field is well screened
- Finite length CNT:
 expect the screening effect
 becomes weaker

Define:
$$\varepsilon_{\parallel} = \frac{V^{ext}}{V^{tot}}\Big|_{min}$$

Perpendicular screening

- $\neg \quad \epsilon_{\perp} \sim 5$ for infinite long CNT
- For finite length CNT, the screening is the strongest in the middle.

- Define:
$$\mathcal{E}_{\perp} = \frac{V^{\text{cal}}}{V^{\text{tot}}}\Big|_{m_{\mu}}$$

Water chain in CNT channel

Induced charges along the axis of a (6,6)

Partial charge H: 0.417 O: -0.834

water profile from MD simulation

Water chain in CNT channel

dipole moments of a water-filled

(6,6) CNT segment

H ₂ O wire length	μ_{x}	μ_{y}	μ_{z}	$ \mu $
6 (no CNT)	2.13	-0.54	-12.03	12.23
	-0.49	-0.79	16.07	16.09
6 (with CNT)	0.43	-0.12	-5.22	5.24
	0.05	-0.15	4.53	4.53

ab initio calculation: D. J. Mann and M.D. Halls, PRL, 2003

Summary

Electronic properties of finite length armchair CNT

- HOMO/LUMO gap oscillation, frontier orbitals
- Break A/B degeneracy by γ_3

Factors affecting dielectric behavior

- Tube length, cross-over of 1D and 0D
- Different subclasses (l=3n,3n+1,3n+2)

Induced charge distribution

- Screening of water dipoles (1/2), large induced Coulomb energy

Implement the polarizable carbon nanotube model into MD

- Molecular transport dynamics
- Control channel by external field and functionalization