Metal-Semiconductor Transitions in Armchair Carbon Nanotubes by Symmetry Breaking

Yan Li, Rotkin Slava and Umberto Ravaioli

Beckman Institute, University of Illinois at Urbana-Champaign

Metal-Semiconductor Transition and Semiconductor-Metal Transition in carbon nanotubes (general)

Mechanical deformation

□ Stretching , bending, squashing, twisting, defects, etc

Electro-magnetic modulation Electric field magnetic field at

□ Electric field, magnetic field, etc

• Chemical, biological decoration, functionalization

And more...

Minot et al, *PRL* **90**,156401 (2003)

K.J. Chang et al, *Phys.Rev.B* **60**, 10656(1999).

Kane and Mele, PRL 78, 1932, (1997)

Li, Rotkin, ,Ravaioli, Nano Letter 3, 183 (2003)

Not all means induce a band gap in armchair CNTS!

Mirror symmetry of armchair CNTs

k along tube axis

Outline

Apply circumferential electrostatic potential

 $V_q(\theta) = V_{q0} \cos(q\theta)$ $V(\theta) = \sum_q V_q$

- Selection rules of M-S transition
 - Symmetry of external perturbation
 - > Angular quantum number q
 - Index n of (n,n) armchair CNT
- > Method
 - > Tight-Binding calculation
 - Degenerate perturbation theory

Symmetry of Armchair CNTs

	$ \pi angle$	$ \pi^*\rangle$
m	n	n
$\sigma_{_{\!V}}$	+1	-1
$\sigma_{\!h}$	+1	+1
U	-1	+1
U'	-1	+1

Conservation law of parities

 $P(|i\rangle) * P(V_q) * P(|f\rangle) = 1$

When P(V) = 1, $|i\rangle \Leftrightarrow |f\rangle$ are forbidden if they possess opposite parities.

Rule 1

All symmetries about

(1) vertical mirror planes σ_{vi} (2) C₂ rotation axes U,U'

must be broken simultaneously.

Angular quantum number m

Angular quantization

$$k_x = m \frac{1}{2\pi R}, m = 1, 2, \dots 2n$$

$$V_q = V_0 \sin(q\theta)$$

Conservation law of *m*

 $m_i + q = m_f$

Coupling order

$$\mu = \mu(q)$$
$$E_g \propto V_0^{\mu}$$

Band structure of (6,6) CNT

Angular quantum number of potential

Rule 2

Conservation law of angular quantum number *m*

 $|\pi\rangle \leftrightarrow |m_{1}\rangle \cdots |m_{i}\rangle \cdots |m_{\mu-1}\rangle \leftrightarrow |\pi^{*}\rangle \qquad m_{i+1} - m_{i} = \pm q$

$$\mu_0 = \frac{2n}{\gcd(2n,q)} = \operatorname{odd}$$

• $q = \text{odd} \rightarrow \mu_0 = \text{even}$, No M-S transition

 \rightarrow Consistent with the case of uniform field and bending (q=1)

Direct coupling

Possibility of a metallic field-effect transistor

S. V. Rotkin and K. Hess, APL 84, 3139 (2004)

Indirect coupling

•Squashing •Quadra-pole interaction •Strong local interactions

- n=even, e.g. $(8,8) \rightarrow$ no band gap from q=2 component of the perturbation
- Band gap in (8,8) case is due to local inter-layer interaction+ MSB

Mixed Fourier Components

$$V=V_0(sin[\theta]+sin[2\theta])$$

$$|\pi\rangle \stackrel{\delta m=1}{\longleftrightarrow} |n\pm1\rangle \stackrel{\delta m=2}{\longleftrightarrow} |n\mp1\rangle \stackrel{\delta m=1}{\longleftrightarrow} |\pi^*\rangle$$

$$E_g \propto V_0^3$$

• Example:

Electric field (q=1) +Mechanical deformation (q=2)

Summary

Selection rules for M-S transition in armchair CNTs

• Symmetry Breaking

• Matching between the angular quantum number **q** of perturbation and the index number **n** of the armchair CNT

$q \Leftrightarrow n$

 Efficient ways of metal semiconductor transition by combining different types of perturbations