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Abstract. We show that given a multiply-connected domain Ω with a holomorphic,

multiple-valued function F whose values are bounded on compact subsets of Ω, one

cannot always find a single-valued holomorphic function that “averages” F on some

neighborhood of the boundary of Ω. We then use this result to consider the extension

to multiply-connected domains of two theorems (one of Alexander and Wermer, and

the other of Berndtsson and Ransford) which are known to hold on the disk. In both

cases we produce counterexamples showing that the extensions fail.

0. Introduction

In translating theorems about H∞ functions on the upper half plane H into
theorems about H∞ functions on an annulus A, we have a very useful theorem.

Theorem 0. If F : A → C is a multiple-valued holomorphic function whose collec-
tive values {F (z)} are bounded on compact subsets of A, then there is a single-valued
holomorphic function f : A → C such that

(0) f(z) ∈ cch{F (z)}

for all z ∈ A (“cch” means “closed convex hull of”). We say that such an f “holo-
morphically averages” F.

Our use of the phrase “multiple-valued function” is explained in the remark at
the end of this introduction. For a simple proof of Theorem 0 see the introduction
to [2]. This theorem allows one to “pull back” questions about H∞(A) to questions
about H∞(H), answer them in the latter, simpler setting, and then “push the
answers forward” to H∞(A) via holomorphic averaging, with no increase in H∞

norm. Unfortunately, as Barrett [2] has shown, the theorem does not generalize to
domains of connectivity greater than two.
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For many applications, we do not need the full strength of Theorem 0. We
could settle for an f satisfying equation (0) only at points near the boundary of
the multiply-connected domain in question. The maximum principle would then
ensure satisfactory control of f in the interior of the domain. There are several
questions one can ask about the existence of this latter, weaker sort of averaging
function. In all three of the following questions, F : Ω → C is a multiple-valued
holomorphic function whose values are bounded on compact subsets of the open
Riemann surface Ω.

Question A. Does there necessarily exist a single-valued holomorphic function f
averaging F in the weaker sense described above?

Question B. Does the non-existence of a holomorphic average for F (in the sense
of Theorem 0) imply the non-existence of a weak holomorphic average for F?

Question C. If there exists no weak holomorphic average for F , how might one
further loosen the definition of holomorphic average to obtain useful single-valued
holomorphic functions associated with F? Would it help to allow the average to
have a pole in Ω? Would it help to require the average to take values that are only
near the closed convex hull of the values of F , rather than actually in the closed
convex hull?

We show in this paper that the answer to Question A is no whenever Ω is topo-
logically more complicated than a disk or an annulus. Our approach is to examine
a more concrete version of Barrett’s counterexample using Cauchy’s Theorem. We
thus obtain restrictions on the admissible boundary behavior of a holomorphic av-
eraging function. As corollaries to our work we show in addition that neither a
theorem of Alexander and Wermer about polynomial hulls, nor one of Berndtsson
and Ransford about bounded solutions to the ∂̄-equation generalize to all multiply-
connected domains.

We do not yet know the answer to Question B. The papers of Forelli [7] and
Earle and Marden [8] offer an answer to Question C. As Barrett points out in [2],
however, their results are not optimal for all domains Ω.

The author wishes to thank David Barrett, whose comments and encouragement
contributed much to this work.

Remark about notation. We shall refer frequently in this paper to multiple-
valued functions F : Ω → C where Ω is some open Riemann surface. Such func-
tions are more correctly thought of as single-valued functions defined on the uni-
versal cover Ω̃ of Ω, but in this paper, it will suit our purposes better to abuse
notation slightly and think of F as being defined on Ω. Covering maps will all
be holomorphic here, so there will be no confusion about what it means for a
multiple-valued function to be holomorphic (or real analytic, or smooth, etc). When
we speak of the values {F (z)} of F at a point z ∈ Ω, we will mean the set
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{F (w) : w ∈ Ω̃ is a preimage of z}. And when we speak of a branch of F on
Ω, we will mean the restriction of F to an open subset of Ω̃ on which the covering
map is injective.

1. Statement of the Main Theorem

In what follows let Ω̂ be a compact Riemann surface and Ω ⊂ Ω̂ be a domain
whose complement consists of n > 0 disjoint, simply-connected, closed sets. We
also require that none of the components of Ω̂ \ Ω be single points. Then we have
the following

Theorem 1 (Failure of Weak Holomorphic Averaging). If π1(Ω) is non-
abelian, then there exists a multiple-valued holomorphic function F : Ω → C such
that

(i) the sets {F (z)} are bounded on compact subsets of Ω
(ii) F has no “weak holomorphic average.” That is, given any K ⊂⊂ Ω, there

is no holomorphic, single-valued f : Ω → C satisfying equation (0) for all
z ∈ Ω \K.

It will suffice to prove this theorem for the case when bΩ (boundary of Ω) consists
of n real-analytic, simple, closed curves, since Ω will at least be biholomorphic to
such a domain (see [9] , for example). As corollaries to this theorem, we will see
that there are many domains Ω—in particular, those Ω whose boundaries consist
of disjoint Jordan curves—for which the function F in Theorem 1 can be taken to
be continuous or better up to the boundary of Ω and bounded on all of Ω. In this
case, it is even impossible to find a bounded holomorphic f whose boundary values
satisfy (0) almost everywhere on bΩ.

2. Proof of Theorem 1

To facilitate the proof of Theorem 1, we define some more notation. Notice that a
domain satisfying the hypothesis of the theorem will necessarily be hyperbolic. Let
G : H → Ω be a holomorphic covering map and g : Ω → H be its multiple-valued
inverse. We will use the variable z to refer to points in Ω̂ and the variable w to
refer to points in H (and occasionally to points in C). The holomorphic cotangent
bundle of any open Riemann surface is trivial (see [8, chapter 3]). Consequently,
we can choose a point p in the complement of Ω and a non-vanishing holomorphic
(1,0)-form ω on Ω̂ \ {p}. In particular, the form is defined and non-vanishing on a
neighborhood of Ω. We define multiple-valued, holomorphic functions g′, g′′ by

∂g = g′ω,

∂g′ = g′′ω.
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Note that ∂ log g′ = (g′′/g′)ω. Furthermore, since g is the inverse of a covering
map, g′ is never equal to zero. In fact, since we assume bΩ to be real-analytic, we
may also assume that all branches of g extend past bΩ with the same non-vanishing
condition on the derivative.

From the expression for the Poincaré metric on H and the formula for the pull-
back of a metric, one can readily compute that the Poincaré metric on Ω is R|ω|
where R is a positive real-valued function given by

R =
|g′|

2 Im g

for any branch of the function g. While g is not single-valued, R certainly is. Hence,
the complex-valued function c, which we obtain from the connection form for the
Poincaré metric

∂ log R =
(

g′′

2g′
+

ig′

2 Im g

)
ω = cω,

is also single-valued. Evidently then, all values of the multiple-valued function
F = g′′/2g′ evaluated at z ∈ Ω are taken on the circle with center c(z) and radius
R(z). R and c are both bounded on compact subsets of Ω, so F satisfies (i) of
Theorem 1. This construction seems more natural once one realizes that the surface
S = {(z, w) ∈ Ω×C : |w − c(z)| = R(z)} is Levi-flat. From this point of view, the
graph of F appears as a leaf in the foliation of S by complex submanifolds. It was
actually the study of Levi-flat surfaces with circular cross-sections—inspired by the
papers [4] and [5]—that led us to this example. Also, Kumagai [10] gives a more
complete description of the relationship between Levi-flat surfaces with circular
cross-sections and constant negative curvature metrics.

Now suppose that the multiple-valued function F , has a weak holomorphic av-
erage f . Then we may write

f = c + vR,

where v : Ω → C satisfies |v(z)| ≤ 1 for all z ∈ Ω \ K (K is the compact subset
referred to in the statement of Theorem 1). Since f is holomorphic, Cauchy’s
theorem tells us that ∫

Γ

fω = 0

for all curves Γ homologous to bΩ. Expanding this, we get

(1)
1
2

∫
Γ

∂ log g′ + i

∫
Γ

1 + u

2 Im g
∂g = 0,

where |u| = |v|.
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For the remainder of this section we devote ourselves to computing the possible
values of the integrals in equation (1). First we prove a technical lemma that will
provide us with the “right” curves for our residue computation. The approximate
content of the lemma is that given ε > 0 and a component of bΩ, there exists a
smooth homologous curve that is ε-close to, but also ε-distant from, this component.

Lemma 2. Given small enough ε > 0 and a component Γ : [a, b] → Ω̂ of bΩ, let
Γ̃ : [a, b] → H be a lift of Γ to the real axis in C via G. Then we can choose a
smooth loop Γε : [a, b] → Ω homologous to Γ and with a lift Γ̃ε : [a, b] → H such
that

(i) |Γ̃ε(t)− Γ̃(t)| < k1ε

(ii) |Γ̃′ε(t)− Γ̃′(t)| < k2ε

(iii) Im Γ̃ε(t) > k3ε,

for all t ∈ [a, b] and constants k1, k2, and k3 independent of ε.

Proof. With no loss of generality, we may assume that Γ̃(t) = t+i0 and [a, b] = [0, 1].
For t ∈ (−.1, .1) we set Γ̃ε(t) = t + iε, and Γ̃ε(1 + t) = g1(G(Γ̃ε(t))) where g1 is the
branch of g satisfying g1(G(0)) = g1(G(1)) = 1. For small enough ε, we will have
that

|Γ̃ε(1)− 1| < 2|(g1 ◦G)′(0)|ε < k1ε

for some constant k1. Also, since (g1 ◦ G)′(t + i0) is real, positive, and bounded
away from zero on a neighborhood of t = 0,

(2) Im Γ̃ε(t) > k3ε.

and

(3) | arg Γ̃′ε(t)| = | arg Γ̃′ε(t− 1) + arg(g1 ◦G)′(Γ̃ε(t− 1))| < k2ε

for all t near 1. If we pick k3 < 1, then (2) and (3) hold for all t near 0 as
well. Clearly, we will be able to define Γ̃ε(t) for t ∈ [.1, .9] such that the result
will be a smooth path Γ̃ε : (−.1, 1.1) → H satisfying (2) and (3) for all t ∈ [0, 1].
Restricting this path to [0, 1] will give us the preimage of a smooth loop Γε :
[0, 1] → Ω homologous to Γ. To ensure that Γ̃ε satisfies (i) and (ii) of the Lemma
(it already satisfies (iii)), we reparametrize as follows: Let L = Re(Γ̃ε(1)− Γ̃ε(0)).
Then define Γ̃ε(t) to be the point on the curve given by Re Γ̃ε(t) = t

L . The new
parametrization is well-defined because of (3). Several moments thought shows that
this parametrization also satisfies (i) and (ii)—with perhaps slightly more generous
constants k1 and k2. �
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Lemma 3. Given δ > 0 there is a union Γδ ⊂ Ω \ K of simple, closed curves
homologous to bΩ such that

(4) Im
(

1
2

∫
Γδ

∂ log g′ + i

∫
Γδ

1 + u

2 Im g
∂g

)
> −δ + Im

1
2

∫
bΩ

∂ log g′.

Remark. Since g is multiple-valued, the meaning of each individual integral in (4)
is a priori ambiguous. In order to work with the integrals, we will choose a lift of
each component of bΩ to H via G. This will determine the meaning of quantities
related to g and eliminate the ambiguity in the meaning of the integrals. However,
we note that taken together, the two integrals on the left side of (4) have a meaning
in terms of the functions R and c described earlier in this section that is independent
of the lifts that we choose. In Lemma 4 we will see that the imaginary part of the
integral on the right side of (4) is also independent of our choice of lifts.

Proof. Denote the n boundary components of bΩ by Γj for all j = 1, ..., n. For each
of these, choose a lift Γ̃j . Since these lifts are all segments [aj , bj ] of the real axis, we
will identify them with their parametrizations. Let Γδ =

⋃n
j=1 Γj,ε where Γj,ε are

the curves given by Lemma 2 corresponding to each of the Γj . Γδ will not intersect
K if we choose ε small enough. We will work with each integral on the left side
of (4) separately. In order to reduce the amount of notation, we will occasionally
suppress composition with G or with one of the Γ’s. For instance, when integrating
in H, we will write u instead of u ◦G.

First we estimate

∣∣∣∣∫
Γδ

∂ log g′ −
∫

bΩ

∂ log g′
∣∣∣∣ ≤ ∑

j

∣∣∣∣∣
∫

Γ̃j,ε

g′′

(g′)2
dw −

∫
Γ̃j

g′′

(g′)2
dw

∣∣∣∣∣
=

∑
j

∫ bj

aj

∣∣∣∣∣ g′′ ◦G ◦ Γ̃j,ε

(g′ ◦G ◦ Γ̃j,ε)2
Γ̃′j,ε −

g′′ ◦G ◦ Γ̃j

(g′ ◦G ◦ Γ̃j)2
Γ̃′j

∣∣∣∣∣ dt.

But any branch of g extends analytically past bΩ with |g′| bounded away from 0.
Therefore any fixed branch of g′′/(g′)2 along with its derivatives will be uniformly
continuous on the compact set bΩ. This fact, together with properties (i) and (ii)
from Lemma 2 give us that the entire last expression is O(ε). In particular we can
choose ε small enough so that

(5) Im
1
2

∫
Γδ

∂ log g′ > −δ

2
+ Im

1
2

∫
bΩ

∂ log g′.



FAILURE OF WEAK HOLOMORPHIC AVERAGING 7

Now we pull the second integral in (4) back to H.

Im
(

i

∫
Γδ

1 + u

2 Im g
∂g

)
= Re

(∫
Γ̃δ

1 + u

2y
dw

)
≥

∑
j

∫ bj

aj

(1− |Re u|)(Re Γ̃′j,ε)− |(Im u)(Im Γ̃′j,ε)|
2 Im Γ̃j,ε

dt

≥
∑

j

∫ bj

aj

1− |Re u| − k2ε| Im u|
2 Im Γ̃j,ε

Re Γ̃′j,ε dt

=
∑

j

∫
Γ̃j,ε

1− |Re u| − k2ε| Im u|
2y

dx.

(6)

The second inequality in (6) follows from (ii) of Lemma 2 and the fact that Γ̃′j =
1 + i0. For points in Ω \K, we know that |Re u|2 + | Im u|2 ≤ 1, so a computation
reveals

|Re u|+ k2ε| Im u| ≤
√

1 + k2
2ε

2 < 1 + k2
2ε

2.

Also, (iii) of Lemma 2 tells us that y > k3ε for points on Γ̃j,ε. Plugging both of
these pieces of information into (6) gives

(7) Im
(

i

∫
Γ

1 + u

2 Im g
∂g

)
> −

∑
j

k2ε
2

2k3ε

∫
Γ̃j,ε

dx > −δ

2

for small enough ε. (5) and (7) combine to establish the lemma. �

Lemma 4. Let κ : bΩ → C be the (positively oriented) geodesic curvature and ds
the arc-length element of bΩ with respect to the metric |ω|. Then

Im
∫

bΩ

∂ log g′ = −
∫

bΩ

κ ds.

Proof. First note that g′ (and thus, ∂ log g′) remains invariant under local biholo-
morphism. That is, if h : U ⊂ C → Ω is a local biholomorphism, and we define
(g ◦ h)′ by ∂(g ◦ h) = (g ◦ h)′ h∗ω, then (g ◦ h)′ = g′ ◦ h. Also, geodesic curvature
and the arc-length element are local invariants of the metric and the curve. So for
the purpose of computing κ locally, we may assume that we are working on a curve
in C and that ω = dz. bΩ is parametrized locally by the covering map G restricted
to a small open interval I on the real axis. Since bΩ is real-analytic, G extends
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conformally to the negative imaginary side of I. If we interpret it as a complex
number, the tangent vector to bΩ at z = G(w) = G(x + i0) will be given by

T (z) =
G′(w)
|G′(w)|

.

We deduce the value of κ from the formula

κN =
dT

ds
=

dT

dx
· dx

ds
,

where N = iT is inward pointing normal vector to bΩ. dx/ds = 1/|G′|, so expanding
the right side of the last equation shows

κN =
G′

|G′|
G′′G

′ −G
′′
G′

2|G′|3

=
(

1
|G′|

Im
G′′

G′

)
N.

So κ ◦ G =
(

1
|G′| Im

G′′

G′

)
. We rewrite G′′ and G′ in terms of g′ and g′′ and get

κ = −|g′| Im g′′

(g′)2 . Let b̃Ω be a lift of bΩ to C via G. Then∫
bΩ

κ ds =
∫

fbΩ κ ◦G
ds

dx
dx = − Im

∫
fbΩ

g′′ ◦G

(g′ ◦G)2
dw

since dy contributes nothing to an integral along the real axis. Finally we move
our path of integration from C to Ω̂. Here we use the fact that when we change
coordinates dw becomes dg = ∂g = g′ω.∫

bΩ

κ ds = − Im
∫

bΩ

g′′

g′
ω = − Im

∫
bΩ

∂ log g′. �

Proof of Theorem 1. Let δ > 0. Using Lemmas 3 and 4, we choose a union Γ ⊂ Ω\K
of simple closed curves, homologous to bΩ, such that

Im
(

1
2

∫
Γ

∂ log g′ + i

∫
Γ

1 + u

2 Im g
∂g

)
> −1

2

∫
bΩ

κ ds− δ.

Since ω is holomorphic, the metric |ω| is flat—that is, the Gaussian curvature of
|ω| is identically zero. In this case, the Gauss-Bonnet Theorem gives us∫

bΩ

κ ds = 2πχ(Ω) = 2π(2− 2 genus Ω− n),
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where χ(Ω) is the Euler characteristic of Ω. Putting these last two formulae to-
gether, we see that

Im
∫

Γ

fω = Im
(

1
2

∫
Γ

∂ log g′ + i

∫
Γ

1 + u

2 Im g
∂g

)
> π(2 genus Ω + n− 2)− δ.

(8)

The left side of (8) must be zero by Cauchy’s Theorem. Therefore, (8) can only
be true for small δ if genus Ω = 0 and n = 0, 1 or 2 (i.e. Ω is a sphere, a disk, or
an annulus), or genus Ω = 1 and n = 0 (Ω is a torus). These are exactly the cases
where π1(Ω) is abelian. Actually, our computation is invalid for the sphere and
the torus anyhow, because neither of these surfaces is hyperbolic and neither has a
boundary. In all other cases, we have a contradiction to Cauchy’s Theorem, and f
cannot exist. This concludes the proof of Theorem 1. �

Remark 1. Using similar methods this proof can be modified to allow for single
point components (punctures) as well as real-analytic curves in the boundary of Ω.
Some changes need to be made, however. The deck transformation corresponding
to traveling clockwise about a puncture point will be parabolic, and hence conjugate
via some M ∈ AutH to the map T (w) = w− 1. So we first transform the left side
of equation (4) to the analogous equation with “g” replaced by “M ◦ g”, incurring
an error term in the process. We then pull the integration back (via G ◦M−1) to
H, selecting Γ̃δ = {t + iy : t ∈ [0, 1]} as our path of integration. For large enough
y we are able to control the error term, and prove Lemma 3 with “bΩ” replaced by
“Γδ”. Finally, we modify Lemma 4 to allow for κ and ds to be the curvature and
arc-length of our path of integration, rather than of bΩ.

Remark 2. As we noted in section 1, the object of concern in this theorem is really
the complex-analytic foliation of a Levi-flat surface in Ω × C with circular cross-
sections. We defined this surface solely in terms of the Poincaré metric on Ω. It is
possible to prove Theorem 1 by developing an asymptotic expression for the metric
near the boundary of Ω. Such a proof does not refer to the holomorphic covering
map of Ω. Therefore, one might hope that the techniques used in this proof would
also help to answer questions about domains in Cn where covering maps are scarce
but metrics plentiful.

Corollary 5. Let Ω̂ and Ω (not necessarily smoothly bounded) be as in Theorem 1.
For any K ⊂⊂ Ω, there exists a smoothly bounded domain ΩK ⊂⊂ Ω that contains
K and a multiple-valued, holomorphic function F : Ω → C such that

(i) F is uniformly bounded on all of ΩK

(ii) There exists no single-valued holomorphic function f ∈ H∞(ΩK) whose
boundary values satisfy (0) for a.e. z ∈ bΩK .
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Proof. Again, it is enough to consider the case where Ω has real-analytic boundary.
For small enough ε, the curves Γε constructed in Lemma 2 will lie in Ω \ K, and
the curves corresponding to different boundary components will not intersect. In
this case, we let ΩK be the relatively compact region in Ω bounded by Γ. The
entire computation performed above in this section goes through to establish that
f cannot exist. �

In fact, with a slight additional restriction we can improve this corollary even
further to the following cleaner statement.

Corollary 6. Suppose Ω̂ and Ω are as in Theorem 1 with bΩ consisting of n disjoint
Jordan curves. Then there is a multiple-valued function F : Ω → C holomorphic
on Ω and continuous on Ω such that

(i) F is uniformly bounded on all of Ω,
(ii) There is no single-valued holomorphic function f ∈ H∞(Ω) whose boundary

values satisfy (0) for a.e. z ∈ bΩ.

Sketch of proof. We reduce to the case where bΩ is real-analytic, noting that a
conformal map of Ω onto such a domain extends continuously to the boundary. We
wish to apply Corollary 6 using Ω as our smaller domain and some other domain
with real-analytic boundary as our larger domain. That is, Ω becomes ΩK , and we
look for a new larger Ω. The problem is that we will need to justify the computations
performed in Lemmas 2 through 4 with Γδ set equal to bΩ. Careful scrutiny of these
Lemmas will reveal that it is enough to be able to choose a strictly larger domain Ω0

with real-analytic boundary and a covering map G0 that is close to the covering map
G of Ω in the following sense: we can analytically extend every branch of g = G−1

to Ω0, and any fixed branch of g along with finitely many of its derivatives is as close
as we choose (the choice being made before selecting Ω0) to a corresponding branch
and derivatives of g0 on all of Ω. The existence of these nearby larger domains can
be shown by carefully applying Schwarz reflection to G and then using the Riemann
Mapping Theorem to produce the holomorphic covering maps for larger domains.
Once this is done, the proof is finished. �

Remark. If bΩ is real-analytic (or smooth), then we can take our multiple-valued
function to be likewise on Ω.

3. Applications of Theorem 1

The shortest path to our applications of Theorem 1 will involve stating several
previously known Theorems and referring the reader to proofs occurring in other
papers. To begin with, let Ω ⊂C be a domain. In this case, it is most natural
to choose ω = dz. Let R : Ω → (0,∞) and c : Ω →C be twice continuously
differentiable functions.
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Theorem 7. Given twice continuously differentiable functions R : Ω → (0,∞) and
c : Ω → C, S = {(z, w) ∈ Ω×C : |w − c(z)| = R(z)} is Levi-flat if and only if

(i) (log R)zz̄ = |cz̄|2
R2

(ii) Rczz̄ = 2Rzcz̄.

Proof. See [2].

It is a consequence of the maximum principle that if R and c are continuous up
to the boundary of Ω, then the region S = {(z, w) ∈ Ω × C : |w − c(z)| ≤ R(z)}
is a subset of the A(Ω×C)-hull of S ∩ (bΩ×C). See [5] for further details about
this fact. Now we take R and c to be defined as in Section 2. The statement
that the Poincaré metric has constant Gaussian curvature equal to -1 translates to
the partial differential equation (log R)zz̄ = R2. From this fact, one can calculate
straightforwardly that R and c satisfy (i) and (ii) of Theorem 6. We can now rewrite
Corollary 6 in the slightly stronger form

Corollary 6a. Let Ω̂ and Ω (not necessarily smoothly bounded) be as in Corollary
6. Then there exists a Levi-flat surface S = {(z, w) ∈ Ω ×C : |w − c(z)| = R(z)},
extending continuously to Ω, and such that

(i) The circular cross-sections S(z) of S are uniformly bounded for all z ∈ Ω
(ii) There is no single-valued holomorphic function f ∈ H∞(Ω) whose boundary

values satisfy
f(z) ∈ cchS(z)

for a.e. z ∈ bΩ.

In the language of [5], S has no “analytic selector.” Corollary 6a provides us
with ample counterexamples to the following two theorems when we replace ∆ =
“the unit disk” in each of them with Ω = “a general multiply-connected domain.”
A stronger version of the first theorem was proved by Alexander and Wermer, and
independently by Slodkowski. A proof may be found in [1].

Theorem 8. Let K ⊂⊂ b∆×C be such that K(z) is convex for each z ∈ b∆ and
the A(∆×C)-hull of K is non-trivial. Then there exists a single-valued holomorphic
function f ∈ H∞(∆) whose boundary values satisfy f(z) ∈ K(z) for a.e. z ∈ b∆.

Counterexample in the multiply-connected case. Pick any domain in C satisfying
the hypothesis of Corollary 6. Let S be the Levi-flat surface with circular sections,
guaranteed by Corollary 6a. As we noted above, the A(Ω × C)-hull of S ∩ bΩ
contains S. However, Corollary 6a rules out the existence of the corresponding
holomorphic function f . �

In [5], Berndtsson and Ransford used Alexander and Wermer’s result to prove
a theorem about bounded solutions to the ∂̄-problem on the unit disk. They show
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that their theorem implies another such theorem proved by Wolff, and that it also
implies the Corona Theorem. Before we provide a counterexample to Berndtsson
and Ransford’s Theorem on multiply-connected domains, we note that it is not
clear to us what implications the counterexample has for Wolff’s Theorem or for
the Corona Theorem in this more general setting. Clearly it does not disprove
the Corona Theorem—which is known to hold for finitely-connected domains in
C. However, it may be the case that the counterexample we offer here yields a
lower bound for the constant appearing in either Wolff’s Theorem or the Corona
Theorem.

Theorem 8. Given functions u and a continuous on ∆, twice differentiable on ∆,
and satisfying

uzz̄ ≥ |a|2e−2u + |az − 2uza|e−u,

there is a solution to ∂̄g = a satisfying |g| ≤ eu for a.e. z ∈ b∆.

Counterexample in the multiply connected case. Let Ω and S be the same as in the
last counterexample. Set u = log R and a = cz̄, and note that these two functions
satisfy the differential inequality in Theorem 8. If g existed, then f = c− g would
violate Corollary 6a. �

Remark. The referee for this paper has kindly (and correctly) pointed out that
Lemmas 3 and 4 are a roundabout way of saying that if Γδ is chosen properly, then
the geodesic curvature of Γδ in the Poincaré metric is greater than 1 mod δ. It is
possible to prove Theorem 1 in a way that uses this fact more explicitly.
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