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Abstract. We classify bimeromorphic self-maps f : X 	 of compact kähler surfaces X and classify
them in terms of their actions f∗ : H1,1(X) 	 on cohomology. We observe that the growth rate
of ||fn∗|| is invariant under bimeromorphic conjugacy, and that by conjugating one can always
arrange that fn∗ = f∗n. We show that the sequence ||fn∗|| can be bounded, grow linearly, grow
quadratically, or grow exponentially. In the first three cases, we show that after conjugating, f is
an automorphism virtually isotopic to the identity, f preserves a rational fibration, or f preserves
an elliptic fibration, respectively. In the last case, we show that there is an unique (up to scaling)
expanding eigenvector θ+ for f∗, that θ+ is nef, and that f is bimeromorphically conjugate to an
automorphism if and only if θ2

+ = 0. We go on in this case to construct a dynamically natural
positive current representing θ+, and we study the growth rate of periodic orbits of f . We conclude
by illustrating our results with a particular family of examples.

Introduction

Holomorphic dynamics on compact complex manifolds have received a lot of attention in the
past few years. The use of pluripotential theory by Hubbard-Papadopol [HP1], Bedford-Smillie
[BS1], Fornæss-Sibony [FS1], [FS2], Briend-Duval [BD], and others have much clarified our view of
such systems, especially for endomorphisms of Pn and polynomial automorphisms of C2.

One can more generally consider the dynamics of meromorphic maps. The indeterminacy sets
for such maps introduce a singular behavior which makes the pluripotential analysis much harder.
Meromorphic maps appear in a natural way when extending a polynomial map from Cn to Pn (see
[Sib], [Gue]), in Newton’s method in several variables (see [HP2]) and also in physical problems
(see [AABHM2], [AABM], [AABHM1] and Section 9).

In the present paper, we examine dynamics of invertible meromorphic maps (bimeromorphic
maps) f : X 	 on a compact Kähler surface X focusing on the behavior of curves under it-
eration by f . The case of automorphisms has been previously studied by Cantat (see [Can2]).
There are, however, many bimeromorphic maps which cannot be bimeromorphically conjugated to
automorphisms—for instance, most birational maps of P2 (see examples in Section 9).

Gromov established a relationship between the dynamical complexity of meromorphic maps and
the growth of volumes of complex subvarieties. Our work expands on this idea, the context allowing
us to restrict attention to complex curves. On a Kähler surface X, area growth of curves is controlled
in turn by the actions (fn)∗ : H1,1

R
(X) 	—that is, by the sequence of norms {‖(fn)∗‖}n≥0. We

observe that the rate of growth of this sequence does not change under bimeromorphic conjugacy.
Neither, therefore, does the first dynamical degree λ1(f) := limn→∞ ‖(fn)∗‖1/n ≥ 1 (introduced
in [RS], [Fri]). This quantity dominates the topological entropy htop(f) ≤ log λ1 and equality is
conjectured (see [Fri]).
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To relate λ1 to the spectral radius of f∗ we need (fn)∗ = (f∗)n for any n ≥ 0. When this happens
we say following [FS2] and [Sib] that f is analytically stable (AS for short). It turns out that one
can always arrange for a map to be AS by changing coordinates.

Theorem 0.1. If f : X 	 is a bimeromorphic map of a compact complex surface, then there exists
a proper modification π : X̂ → X that lifts f to an AS map.

An immediate consequence is that λ1 is an algebraic integer (compare with [BF]).
The case λ1 = 1 of low dynamical complexity is handled by

Theorem 0.2. Let f : X 	 be a bimeromorphic map of a Kähler surface with λ1 = 1. Up to
bimeromorphic conjugacy, exactly one of the following holds.

• The sequence ‖(fn)∗‖ is bounded, and fn is an automorphism isotopic to the identity for some
n.

• The sequence ‖(fn)∗‖ grows linearly, and f preserves a rational fibration. In this case, f
cannot be conjugated to an automorphism.

• The sequence ‖(fn)∗‖ grows quadratically, and f is an automorphism preserving an elliptic
fibration.

In the last two cases, the invariant fibrations are unique.

This parallels the dynamical classification of elementary polynomial automorphisms of C2 in [FM]
and the more recent classification of surface automorphisms with λ1 = 1 in [Can1].

We proceed to the case λ1 > 1. Our aim is to construct a positive closed (1, 1) current (the
Green current) representing the pull-back of a generic curve. For this purpose, we first study the
spectrum of f∗ : H1,1(X) 	. We let (α, β) be the intersection pairing of classes α, β ∈ H1,1(X),
and we say α is numerically effective (nef) when (α, β) ≥ 0 for any class β represented by a positive
closed (1, 1) current β = {T}.
Theorem 0.3. Let f : X 	 be an AS bimeromorphic map of a Kähler surface with λ1 > 1.

• The spectrum of f∗ outside the unit disk consists of the single simple eigenvalue λ1.
• The eigenspace associated to λ1 is generated by a nef class θ+ ∈ H1,1(X).

When f is an automorphism, it is easy to verify that the self-intersection (θ+, θ+) vanishes. We
show this condition is in fact sufficient to detect automorphisms.

Theorem 0.4. Under the assumptions of Theorem 0.3, the following are equivalent:

• (θ+, θ+) = 0;
• f is bimeromorphically conjugate to an automorphism.

Theorem 0.3 allows us to construct a natural and invariant positive closed (1, 1) current. Since
f∗ and f∗ are adjoint, they have the same spectra. We let θ− denote a nef class generating the λ1

eigenspace of f∗.

Theorem 0.5. Let f : X 	 be an AS bimeromorphic map of a compact Kähler surface with
λ1 > 1. Then there exists a positive closed (1, 1) current T+ in the cohomology class θ+ satisfying
f∗T+ = λ1T+. It is characterized by the property that if α is any smooth closed (1, 1) form on X,
then

lim
k→∞

λ−k
1 (fk)∗α =

({α}, θ−)

(θ+, θ−)
· T+(1)

in the weak topology on currents.
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We finally extend a theorem of [Fav1].

Theorem 0.6. Let f : X 	 be an AS bimeromorphic map of a compact Kähler surface with λ1 > 1.
Assume f admits no curves of periodic points. Let Perk be the number of periodic orbits of period
(dividing) k. Then there is a constant C > 0 such that

|Perk − λk
1 | ≤ C

for all k ≥ 0.

Throughout the paper, our main techniques come from analytic geometry. We especially rely
on a detailed understanding of the relationship between f∗ and the quadratic intersection form on
H1,1. Theorem 0.1 follows from the factorization of bimeromorphic maps of surfaces. Theorems
0.2, 0.3 and 0.4 are consequences of a push-pull formula that we state and prove in Section 3.
Theorem 0.5 follows from modifications of fairly well-known potential theoretic arguments (see e.g.
[Fav3], [Dil]). Theorem 0.6 is proven by modifying arguments from [Fav1].

We summarize our classification of bimeromorphic dynamical systems in the following table:

Growth of ‖(fn)∗‖ Up to bimeromorphic conjugacy Type of surface

‖(fn)∗‖ bounded f is an aut. and fN is isotopic to Id any surface Class [1]

‖(fn)∗‖ ∼ Cn rational fibration preserved ruled surface Class [2]
(f is never an aut.)

‖(fn)∗‖ ∼ Cn2 elliptic fibration preserved elliptic surface Class [3]
(f is an aut.)

‖(fn)∗‖ unbounded with θ2
+ = 0: f is an aut. Tori, K3, Enriques, Class [4]

exponential growth, rational surface
f∗θ+ = λ1θ+,

with λ1 > 1, θ+ nef θ2
+ > 0: f is never an aut. rational surface Class [5]

Table 1. Classification of invertible dynamics on a Kähler surface.

The next step toward better understanding bimeromorphic dynamical systems on surfaces would
be to construct an invariant measure µ := T+ ∧ T−, where T− is the Green current for f−1. In the
case of polynomial automorphisms of C2, [BS2] [BLS] described the statistical properties of this
measure (see also [Can3] in the case of automorphisms). They show that µ is mixing, that it is the
unique measure of maximal entropy and that it represents the distribution of saddle periodic orbits.
All these results are open in our setting. One might also seek to generalize the main theorems in
this paper to non-invertible meromorphic maps or to higher dimensions. We postpone these issues
to a later paper. For now, we close our introduction with a brief outline of the paper to follow.
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• Section 1 provides the necessary background. We summarize the relevant properties of mero-
morphic maps and rational surfaces, define the pullback operator f∗ and introduce the notions
of dynamical degree and algebraic stability.

• Section 2 is occupied with the proof of Theorem 0.1. We deduce that the dynamic degree is
an algebraic integer.

• In Section 3, we state and prove a push-pull formula for meromorphic maps.
• Section 4 classifies bimeromorphic maps with λ1 = 1. We break the statement of Theorem

0.2 into several parts and prove each of them.
• Section 5 discusses the expanding part of the spectrum of f∗. We prove Theorems 0.3 and

0.4.
• Section 6 concerns the Green current. We prove Theorem 0.5 and describe some further

properties of the Green current.
• In Section 7, we compare our classification of bimeromorphic dynamical systems with the

Enriques-Kodaira classification of compact complex surfaces.
• Section 8 contains the proof of Theorem 0.6.
• In Section 9, we consider a class of examples studied in [AABHM2].
• In the Appendix we treat the case of automorphism with λ1 = 1 and unbounded degrees.

Acknowledgements: The first author gratefully acknowledges Andrew Sommese for several
helpful conversations concerning this paper and the National Science Foundation for its support
through grant #DMS98-96370. The second author extends his warm thanks to the IMPA institute
in Rio de Janeiro for its support, and to Luis Gustavo Mendes for his friendly patience in explaining
some aspects of analytic geometry.

1. Generalities about meromorphic maps

1.1. Compact complex surfaces. In this paper, a surface X will always be a connected complex
analytic two-dimensional manifold. We usually assume that X is compact. A proper modification
π : X → Y is a proper surjective holomorphic map whose generic fiber π−1(p) is a point.

Given p ∈ Y the blowup of Y at p is the proper modification π : X → Y which replaces p with
the set π−1(p) ≃ P1 of holomorphic tangent directions at p and is a biholomorphism elsewhere. The
rational curve π−1(p) is called the exceptional set. An irreducible curve C ⊂ X is called exceptional
if it is the exceptional set for some blowup. In dimension 2, the structure of an arbitrary proper
modification is quite simple thanks to the following theorem.

Theorem 1.1. Any proper modification π : X → Y between compact complex surfaces is a com-
position of finitely many point blow-ups.

We have the following criterion.

Theorem 1.2 (Castelnuovo’s criterion). An irreducible curve C ⊂ X is exceptional if and only if
it is a smooth rational curve of self-intersection −1.

We say X is a minimal surface if it admits no exceptional curve. We say that a surface X is
rational when one can find a surface Y and proper modifications π1 : Y → P2 and π2 : Y → X. A
rational surface is always projective (see [BPV]).

To any surface X, one associates its Dolbeault cohomology groups Hp,q(X) and the cohomology
groups Hk(X, Z), Hk(X, R), Hk(X, C) associated to the constant sheaves Z, R, C, respectively.

We let hp,q(X) := dimC Hp,q(X) and H1,1
R

(X) := H1,1(X) ∩ H2(X, R).

We denote by C+
1 (X) the set of positive closed currents of bidegree (1, 1). A current T ∈ C+

1 (X)
can be written locally as T = ddcu for some plurisubharmonic function u. Any (possibly singular)
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complex curve defines a current of integration [C] ∈ C+
1 (X). Conversely, any positive closed current

T can be weakly approximated locally by currents of integration on analytic cycles.
Let T be a positive closed current of bidegree (1, 1) in X. Fix a point p ∈ X and local coordinates

sending p to the origin in C2. Choose a local plurisubharmonic potential u for T defined around 0
in these coordinates. The function r → sup|z|=r u(z) is a convex increasing function of log r. We
can therefore define the Lelong number of u at 0 by

ν(0, u) := max{c ≥ 0 : u(z) ≤ c log |z| + O(1)},
which is a finite non-negative real number. We then set ν(p, T ) := ν(0, u), which does not depend
on any choice we made.

Given T ∈ C+
1 (X), we denote by {T} ∈ H1,1(X) its cohomology class in the Dolbeault cohomol-

ogy of currents. As T is positive, {T} ∈ H2(X, R) is in fact real.

Definition 1.3. We let H1,1
psef(X) ⊂ H1,1

R
(X) be the closed convex cone of classes {T} of currents

T ∈ C+
1 (X).

If X is projective, then H1,1
psef(X) is the closure of classes defined by analytic cycles in H1,1

R
(X) (see

[Dem] Proposition 6.1). The cone H1,1
psef(X) is strict in the sense H1,1

psef(X) ∩ −H1,1
psef(X) = {0}.

We say α ≥ β for α, β ∈ H1,1
R

(X) if α − β ∈ H1,1
psef(X).

The operation α, β →
∫

α ∧ β̄ on smooth 2-forms induces a quadratic intersection form (·, ·) on
H2(X). Its structure is given by the following fundamental theorem.

Theorem 1.4 (Hodge Index theorem.). Assume X is a compact Kähler surface. The intersection
form has signature (1, h1,1 − 1) on H1,1(X).

We define the closed convex sub-cone H1,1
nef(X) ⊂ H1,1

psef(X) to be the set of classes α ∈ H1,1
R

(X)

so that (α, β) ≥ 0 for all β ∈ H1,1
psef(X). When X is Kähler, one can show that H1,1

nef (X) is the

closure of the set of Kähler classes (see [Dem] Proposition 6.1).
Finally we denote by KX := Λ2O∗

X the canonical bundle of X and we denote by kod(X) the
Kodaira dimension of X (see [BPV] p.23).

1.2. Meromorphic maps. Let X,Y be compact complex surfaces. A meromorphic map f :
X 99K Y is defined by its graph Γ(f) ⊂ X × Y , an irreducible subvariety for which the projection
π1 : Γ(f) → X onto the first factor is a proper modification (see [Fis]). We let I(f) ⊂ X denote the
indeterminacy set—i.e. the finite set of points where π1 does not admit a local inverse. The map
f is dominating when the second projection π2 : Γ(f) → Y is surjective. We define the critical set
C(f) ⊂ X to be the projection of the critical set of π2 i.e. C(f) := π1(C(π2)). We single out those
components of C(f) that are mapped onto points, setting E(f) := π1(E(π2)) ⊂ C(f), where E(π2)
is the set of points where π2 is not a finite map.

If g : Y → Z is another dominating meromorphic map, the graph Γ(g ◦ f) of the composite map
is the closure of the set {(x, g(f(x))) ∈ X × Z : x 6∈ I(f) and f(x) /∈ I(g)}. This is equal to the
larger set

Γ(g) ◦ Γ(f) = {(x, z) ∈ X × Z : (x, y) ∈ Γ(f), (y, z) ∈ Γ(g) for some y ∈ Y },
if and only if the latter is irreducible.

Proposition 1.5. Γ(g) ◦Γ(f) is irreducible if and only if there are no components V ⊂ E(f) such
that f(V ) ⊂ I(g).
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The proof is fairly straightforward and we leave it to the reader. Following [Sib], we call a domi-
nating meromorphic self-map f : X 	 analytically stable (AS for short) if Γ(f) ◦Γ(fn) = Γ(f ◦ fn)
for all n.

When f : X 99K Y admits a meromorphic inverse, we say that f is bimeromorphic. If in this
case Γ is a desingularization of Γ(f), the two induced projections π1 : Γ → X, π2 : Γ → Y are
proper modifications and Theorem 1.1 implies:

Theorem 1.6. Any bimeromorphic map f : X 99K Y between smooth compact complex surfaces
can be written as a composition f = f1 ◦ · · · ◦ fk where fi is either a point blow-up or the inverse
of a point blow-up.

The following result plays a key role in this paper. A fibration of a compact complex surface X
is a surjective holomorphic map ρ : X → C onto a compact curve C such that ρ−1(p) is irreducible
for generic p. We note that the genus of of a generic fiber is independent of p. If this genus is zero,
the fibration is called rational.

Proposition 1.7. Suppose that f : X 	 is a bimeromorphic map of a compact complex surface
with E(f−1) 6= ∅ and that (V, V ) ≤ 0 for every irreducible component V ⊂ E(f−1). Then either
X admits a rational fibration with some generic fiber lying in E(f−1), or there exists a proper
modification π : X → X̌ with ∅ 6= E(π) ⊂ E(f−1). In the latter case, the induced map f̌ : X̌ 	 is
AS if f is.

Proof. Let Γ be the minimal desingularization of the graph of f and π1, π2 be the projections
onto the first and second factors. Decompose each projection πj into a sequence πj1 ◦ · · · ◦ πjk of
blowups. Set Vk = E(π1k) ⊂ Γ and Vj = π2j ◦ · · · ◦π2k(Vk). Note that Vk is a smooth rational curve
with self-intersection −1, that (Vj−1, Vj−1) = (Vj , Vj) + (Vj , E(π2j)), and that V0 is either a point
or an irreducible component of E(f−1).

To rule out the first possibility, assume Vj = E(π2j) for some j. Then Vl ∩ E(π2l) = ∅ for any

j + 1 ≤ l ≤ k. We let π : Γ → Γ̌ be the map contracting Vk. The projections π1, π2 induce
holomorphic maps π̌i : Γ̌ → X and this shows that Γ was not a minimal desingularization. Hence
Vj 6⊂ E(π2j) for all j, and V0 is one dimensional.

Case 1: (V0, V0) = 0.
In this case there is exactly one j for which (Vj , E(π2j)) = 1, and for all other j the intersection

vanishes. In particular, V0 = π2(Vk) remains smooth. Hence X is a rational fibration (see [BPV],
page 142) and V0 is a generic fiber.

Case 2: (V0, V0) = −1.
In this case Vj ∩ E(π2j) = ∅ for all j, and V0 is again smooth. We let π : X → X̌ be the map

contracting V0 to a point p. It remains to see that f̌ := π ◦ f ◦ π−1 is AS if f is.
We have E(f̌) = π(E(f)) and I(f̌) ⊂ π(I(f)) ∪ {p}. Assume that f is AS. Consider a curve

W ⊂ E(f) and let W̌ = π(W ) ⊂ E(f̌). Then f̌n(W̌ ) ∩ π(I(f)) = π(fn(W ) ∩ I(f)) = ∅ for all
n. Also, if f̌n(W̌ ) = p then fn−1(W ) = f−1(V0) ∈ I(f), which is impossible if f is AS. Hence
f̌n(W̌ ) ∩ I(f̌) = ∅ for all n, and f̌ is AS.

Following [Fri] we define the natural extension of a dominating rational self-map f : X 	 to be
the closure

Γ∞ = {(pj)∞j=1 : (pj , pj+1) ∈ Γ(f), pj /∈ I(f)}
of the set of ‘honest’ orbits of f . The map f lifts to a continuous map σ : Γ∞ 	, and we declare
htop(f) := htop(σ).
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1.3. Action on cohomology groups and currents. Let f : X 99K Y be a dominating mero-
morphic map between compact complex surfaces, Γ a desingularization of its graph and π1, π2 the
natural projections.

A smooth form α ∈ C∞
p,q(Y ) of bidegree (p, q) can be pulled back as a smooth form π∗

2α ∈ C∞
p,q(Γ)

and then pushed forward as a current. Hence we define

f∗α := π1∗π
∗
2α .

This gives an L1
loc form on X that is smooth outside I(f). The action of f∗ commutes with

differentiation d(f∗α) = f∗(dα) and so descends to a linear action on De-Rham and Dolbeault
cohomology.

Definition 1.8. Let {α} ∈ Hp,q(Y ) be the Dolbeault class of some smooth form α. We set

f∗{α} := {π1∗π
∗
2α} ∈ Hp,q(X) .

This defines a linear map f∗ : Hp,q(Y ) → Hp,q(X).

In a similar way, we define the push-forward f∗ := π2∗π
∗
1 : Hp,q(X) → Hp,q(Y ).

Remark 1.9. Note that when f is bimeromorphic, f∗ = (f−1)∗.

The action of f cannot be extended in a continuous way to all (positive closed) currents (see
[Meo]). However it is possible to construct a natural extension for positive closed currents of
bidegree (1, 1). If π is a surjective holomorphic map and T ∈ C+

1 is a positive closed current with
local potential T := ddcu, we define locally π∗T := ddc(u ◦ π). One can check that this definition
does not depend on the choice of the potential and that π∗ is continuous in the weak topology of
currents (see [Sib]).

Definition 1.10. Let f : X 99K Y be a dominating meromorphic map and T ∈ C+
1 (Y ). Define

f∗T := π1∗π
∗
2T ∈ C+

1 (X) ,

f∗T := π2∗π
∗
1T ∈ C+

1 (Y ) .

These operators are continuous.

One checks the compatibility relations f∗{T} = {f∗T}, f∗{T} = {f∗T}.
In the sequel we will focus our attention on the action of f on H2 and H1,1.

Proposition 1.11. Let f : X 99K Y be a dominating meromorphic map between compact complex
surfaces.

1. The linear maps f∗, f
∗ preserve H2(R) and H2(Z).

2. The linear maps f∗, f
∗ preserve H1,1

psef and H1,1
nef .

3. If X = Y , f∗ and f∗ are adjoint for the intersection form. That is

(f∗α, β) = (α, f∗β)

for any classes α ∈ H1,1(Y ), β ∈ H1,1(X).

Proof.

(1) We work with the pullback f∗ = π1∗π
∗
2, and note that both factors on the right can be

described purely topologically. The action of π∗
2 is straightforward, whereas π1∗ acts on a class α

by pushing forward the Poincaré dual of α and taking the Poincaré dual of the result. All of these
operations preserve real and integral classes, so f∗ does too.

(2) It is sufficient to show that the cones H1,1
psef and H1,1

nef are preserved by f∗ and f∗ for any

proper holomorphic map. If T ∈ C+
1 (X), its pull-back f∗{T} = {f∗T} and its push-forward
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f∗{T} = {f∗T} also belongs to C+
1 (X). Hence f∗ and f∗ preserve H1,1

psef . Preservation of H1,1
nef now

follows from (3).
(3) Let [T, γ] denote the action of a current T on the test form γ. We have for any smooth forms

α, β of bidegree (1, 1):

(f∗{α}, {β}) = [f∗α, β] = [π1∗π
∗
2α, β]

= [π∗
2α, π∗

1β] = [π2∗π
∗
1β, α] = (f∗{β}, {α}) .

Hence f∗ and f∗ are adjoint operators.

In the sequel, we denote by ρ(f∗) the spectral radius of the linear operator f∗. We include a
proof of the following lemma for sake of convenience. It is a classical result which will be very
useful in our analysis.

Lemma 1.12. Assume f : X 	 is a dominating meromorphic map of a Kähler surface. Then
there exists a class α ∈ H1,1

nef (X) such that f∗α = ρ(f∗) · α.

Proof. Note first that ρ(f∗|H1,1(X)) = ρ(f∗|H1,1

R
(X)) because f is holomorphic and preserves real

classes. As H1,1
nef (X) is a strict cone, we can choose a basis so that H1,1

R
(X) = Rn (n = h1,1(X))

and H1,1
nef (X) ⊂ Rn

+. We let u denote f∗ in these coordinates.

Consider the affine space V := {x1+· · ·+xn = 1} and set C := H1,1
nef (X)∩V . This a closed convex

set with non empty interior inside V . The induced continuous map u : V \u−1(x1+· · ·+xn = 0) → V

sends C∩V into itself since nef classes are preserved by f∗. The set H1,1
nef(X) has non-empty interior

in H1,1
R

(X), so for a generic vector x ∈ H1,1
nef(X) we have uk(x) −→

k→∞

⊕
|λ|=ρ(f∗) ker(u − λId) ∩ C

for some eigenvalue λ of modulus ρ(f∗). The intersection of V with this last set is convex, closed,
and fixed by u, so by Brouwer’s theorem, it contains a vector α ∈ C fixed by u. This implies that
there is a constant τ ≥ 0 such that u(a) = τa. We therefore have τ = λ = |λ| = ρ(f∗) ∈ R+. This
concludes the proof.

1.4. Dynamical degrees and algebraic stability. In this subsection, we restrict our attention
to dominating meromorphic maps f : X 	 of a Kähler surface. We explicitly allow for non-minimal
surfaces X. We first give a characterization of algebraic stability that will be crucial in the sequel.
We then describe the dynamical degrees λ0(f), λ1(f), λ2(f) ≥ 1 introduced in [RS], concluding with
a corollary that equates λ1(f) and ρ(f∗) for AS maps. Let us start with

Proposition 1.13. Let X,Y,Z be compact Kähler surfaces and f : X → Y , g : Y → Z be
dominating meromorphic maps. For any α ∈ H1,1

nef (Z), we have

(g ◦ f)∗α ≤ f∗g∗α.(2)

with equality when f(E(f))∩I(g) = ∅. Conversely, if α is a Kähler class, (g◦f)∗α = f∗g∗α implies
f(E(f)) ∩ I(g) = ∅.
Proof. It is sufficient to work with a Kähler class α = {ω}. Clearly, (g ◦ f)∗ω = f∗g∗ω off
of I(f) ∪ f−1(I(g)). Both currents are positive, and the former does not charge any curve, so
f∗g∗ω − (g ◦ f)∗ω is positive. The first assertion follows.

Assume f(E(f)) ∩ I(g) = ∅. Then I(f) ∪ f−1(I(g)) is finite and we infer (g ◦ f)∗ω = f∗g∗ω. By
continuity, equality holds for any nef class.
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To conclude, suppose that V ⊂ E(f) is a curve such that f(V ) = p ∈ I(g). By Corollary 3.5
below, the Lelong number ν(p, g∗ω) > 0 is positive. It then follows from [Fav3] that the Lelong
number ν(q, f∗g∗ω) > 0 for every q ∈ V . That is, f∗g∗ω charges V and cannot equal (g ◦ f)∗ω.

The notion of analytic stability will play a central role in the construction of the Green current
(see Remark 6.4). As the following immediate consequence of Propositions 1.5 and 1.13 shows,
analytic stability implies that the action of f on H1,1(X) determines that of all higher iterates fk.

Theorem 1.14. Let f : X 	 be a dominating meromorphic map on a Kähler surface and ω a
given Kähler form. Then f is AS if and only if any of the following hold:

C1: for any α ∈ H1,1(X) and any k ∈ N, one has (f∗)kα = (fk)∗α;
C2: there is no curve V ⊂ X such that fk(V ) ⊂ I(f) for some integer k ≥ 0;
C3: for all k ≥ 0 one has (fk)∗ω = (f∗)kω.
C4: for all T ∈ C+

1 (X) and all k > 0, one has (fk)∗T = (f∗)kT

Given Kähler surfaces X and Y , we choose arbitrary hermitian norms ‖.‖ on H1,1(X, C) and
H1,1(Y, C). Note that there is a constant D > 0 such that α ≤ β implies ‖α‖ ≤ D‖β‖. Indeed,

since H1,1
psef is strict, we can choose a basis for H1,1(X) such that H1,1

psef ⊂ Rh1,1

+ . In the Euclidean

norm with respect to this particular basis, we can take D = 1. Our observation is now justified
by the fact that any other norm is comparable to this one. We do no harm to the arguments that
follow by assuming that D = 1 in general. We have

Proposition 1.15. Let h : X → Y be a bimeromorphic map. Then there exists a constant C > 1
such that for any meromorphic dominant map f : X 	

C−1‖f∗‖ ≤ ‖g∗‖ ≤ C‖f∗‖(3)

with g := h ◦ f ◦ h−1.

Proof. The assertion is independent of the choice of norms, so we take ‖.‖ to be the supremum
norm with respect to a basis {αi} of nef classes. By Proposition 1.13,

g∗αi = (h ◦ f ◦ h−1)∗αi ≤ h∗f
∗h∗αi ,

for any i. Hence ‖g∗‖ ≤ ‖h∗‖·‖f∗‖·‖h∗‖. The roles of f and g are interchangeable in this argument,
so the assertion follows.

Let f : X 	 be a dominating meromorphic map on a compact Kähler surface, and consider
f∗ : H1,1(X) 	. We are interested in the growth rate of the sequence {‖fn∗‖}n≥0, regarding
two such sequences as equivalent if their terms are uniformly comparable via some multiplicative
constant. It follows immediately from (3) that

Corollary 1.16. If f : X 	 and g : Y 	 are bimeromorphically conjugate dominating meromorphic
maps, then {‖fn∗‖} and {‖gn∗‖} are equivalent.

In particular, one sequence is bounded if and only if the other is.

Remark 1.17. Note that if ω is a Kähler class, the sequences {||(fn)∗||} and {||(fn)∗ω||} are
equivalent. Indeed, for any Kähler classes ω1, ω2, one has C−1ω1 ≤ ω2 ≤ Cω1 for some C > 0.
And since the set of Kähler classes is open, one can endow H1,1(X) with the Euclidean norm with
respect to a basis of Kähler classes.
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It is useful to have a number that describes the exponential growth of ‖(fn)∗‖. Proposition 1.13
and the remarks following Theorem 1.14 yield

‖(fn+m)∗‖ ≤ ‖(fm)∗‖ · ‖(fn)∗‖
for any n,m ≥ 0. We therefore have

Proposition 1.18. If f : X 	 is a dominating meromorphic map of a Kähler surface, then the
first dynamical degree

λ1 := lim
n→∞

‖fn∗‖1/n ≥ 1

exists and is invariant under bimeromorphic coordinate change.

Corollary 1.19. Let f : X → X be an AS dominating meromorphic map on a compact Kähler
surface. Then λ1 coincides with the spectral radius ρ(f∗) of f∗ : H1,1(X) 	.

In a similar but more straightforward way, the actions of f on H0(X) and on H4(X) = H2,2(X)
lead us to define λ0(f) = 1 and λ2(f) = the topological degree of f . These quantities are clearly
also invariant under bimeromorphic conjugacy.

2. Good compactification of bimeromorphic maps

We have stressed that analytic stability is crucial for studying dynamics of meromorphic maps.
In this section we prove Theorem 0.1—i.e. that one can always find a bimeromorphic change of
coordinates that conjugates a given bimeromorphic self-map to one that is also AS. Before beginning
the proof, we describe some consequences.

Corollary 2.1. For any bimeromorphic map f : X 	 of a compact surface X, the quantity λ1(f)
is an algebraic integer.

Proof. By Proposition 1.18 and Theorem 0.1 we can assume f is AS—i.e. that λ1 = ρ(f∗). But
f∗ : H2(X, C) 	 preserves H2(X, Z) and thus has algebraic integers as eigenvalues.

When f : X 	 is AS with X rational and minimal (hence isomorphic to P2 or to a Hirzebruch
surface), the first dynamical degree λ1(f) is quadratic. This is not the case in general (see Remark
9.9 in Section 9).

Since H1,1(P2) is one dimensional, the action of a rational map f : P2 	 on H1,1(P2) is simply
multiplication by a positive integer d = the algebraic degree of f . We answer for dimension two a
question raised in [BV].

Corollary 2.2. Given a birational map f : P2 	, let dn be the algebraic degree of fn. Then there
is k > 0 and a linear function L : Zk → Z with integer coefficients such that

dn+k = L(dn+k−1, . . . , dn)

for all n ≥ 0.

Proof. Let π : X̂ → P2 be a proper modification conjugating f to an AS map f̂ . Then I(π) =
E(π−1) = ∅, so we have from Proposition 1.13 and Theorem 1.14 that

(fn)∗ = π∗(f̂
∗)nπ∗

for all n. Thus if P (x) = xk + ck−1x
k−1 + . . . c0 is the characteristic polynomial for f̂∗, it follows

that dn+k = −(ck−1dn+k−1 + · · · + . . . c0dn) for all n.
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Proof of Theorem 0.1. Write f as a composition

X := X0
f1−→X1

f2−→ . . .
fn−1−→ Xn−1

fn−→Xn := X

where each map fi behaves in one of two ways.

• Either fi blows up a point pi := I(fi) ∈ Xi. In this case, we let fi(pi) := Vi+1 = E(f−1
i ) ⊂ Xi+1

be the exceptional divisor of f−1
i .

• Or fi blows down the exceptional divisor Ei ⊂ Xi. We then define fi(Ei) := qi+1 ∈ Xi+1.

For any j ∈ N, we let Xj := Xjmod n and fj := fjmodn.

If f is not AS, then there are integers 1 ≤ i < N such that fi blows down Ei and

fN−1 ◦ · · · ◦ fi(Ei) = pN ∈ I(fN ) .(4)

We can assume by choosing a pair (i,N) of minimal length that for all i < j ≤ N

xj := fj ◦ · · · ◦ fi(Ei) = fj ◦ · · · ◦ fi+1(qi+1) 6∈ I(fj) ∪ E(fj).

If in particular j1 = j2 mod n but j1 6= j2, then the points xj1 , xj2 ∈ Xj1 = Xj2 are distinct.

We now blow up the surfaces {Xj} at all preimages of pN . That is we replace Xj by its blow-up at
xj. Note that modifying Xj means modifying Xj+n,Xj−n, etc, so that this process might ultimately
result in blowing up the same factor at several distinct points. Nevertheless, the preceding remark
shows that blowing up a point xj does not interfere with the behavior of the map fj around
xj−n, xj−2n, · · · , and we can blow up these points independently. We claim that the lifted map
decreases the quantity

∑
Card fj(E(fj)) (see Equation (5) below).

In order to show this, let us explain our blow-up procedure more carefully. First we blow up XN

at xN = pN . The map fN then lifts to a biholomorphism f̂N whereas f̂N−1 either blows up two
distinct points {xN−1, pN−1} or blows up xN−1 and blows down EN−1 6∋ xN−1. In particular, the

quantity
∑

Card fj(E(fj)) =
∑

Card f̂j(E(f̂j)) remains constant.
We then proceed in like fashion blowing up xN−1, xN−2, · · · , xi+2 in turn. At each step the

integer
∑

Card fj(E(fj)) remains constant. We finish by blowing up xi+1 = fi(Ei), but the effect
of the last blowup differs significantly from that of the previous blowups in that fi becomes a

biholomorphism f̂i. We hence reduce the number of components of E(fi) from one to zero, which
gives us

∑
Card f̂j(E(f̂j)) =

(∑
Card fj(E(fj))

)
− 1(5)

Summarizing our construction, we have a commutative diagram:

X̂ = X̂0

bf1
//

π0

��

X̂1

bf2
//

π1

��

· · ·
bfn
// X̂n = X̂

πn=π0

��

X = X0
f1

// X1
f2

// · · · fn
// Xn = X

where {πi} are proper modifications. Let f̂ := f̂N ◦ · · · ◦ f̂1. After repeating the above argument

finitely many times, we will either produce a map f̂ that is AS, or thanks to Equation (5), we will

eliminate all exceptional components of the factors of f . In the latter case, f̂ will be AS automat-
ically.
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3. A push-pull formula.

The aim of this section is to give general formulas for computing f∗f
∗T (resp. f∗f

∗α) given a
current T ∈ C+

1 (X) (resp. a class α ∈ H2(X, C)). These formulas will be the keystone of our study
of the spectrum of f∗.

Proposition 3.1 (Holomorphic case). Let X,Y be two connected compact complex surfaces, and
f : X → Y be a surjective holomorphic map. Then for any current T ⊂ C1

+(Y ) (resp. for any class
α ∈ H2(Y, C)), the following

f∗f
∗T = λ2 · T(6)

f∗f
∗α = λ2 · α(7)

hold.

Proof. Assume T is a (not necessarily positive) smooth form. We have f∗f
∗T = λ2 · T outside

the proper analytic subset f(C(f)). Both sides define forms on X with L1
loc coefficients, hence the

equality f∗f
∗T = λ2 · T holds everywhere. Equation (6) follows for general T by approximation,

and Equation (7) follows immediately.

Proposition 3.2 (Blow-up case). Let X be a compact complex surface, p a point in X and π :

X̂ → X the blow-up of X at p. Let E := π−1(p) be the exceptional curve of π. For any current

T ⊂ C1
+(X̂) (resp. for any class α ∈ H2(X̂, C)), the following equalities

π∗π∗T = T + E (T,E)(8)

π∗π∗α = α + {E} (α,E)(9)

hold.

Proof. Let us first consider the case of a positive closed current T . Outside E, the map π is
an isomorphism. Hence π∗π∗T | bX\E

= T | bX\E
. By Siu’s theorem [Siu], we infer the existence of a

constant c ∈ R s.t. π∗π∗T = T +cE. We conclude with a computation of cohomology classes, using
the fact π∗E = 0:

0 = (π∗T, π∗E) = (π∗π∗T,E) = (T,E) + c(E,E) = (T,E) − c .

Hence c = (T,E).

Now take α ∈ H2(X̂, C). We have the following isomorphism (see [BPV] p.28)

H2(X̂, C) = π∗H2(X, C) ⊕ C{E} .

Hence we can find β ∈ H2(X, C) s.t. α = π∗β + c{E} with c = (α,E) as above. We have

π∗π∗α = π∗(π∗π
∗)β = π∗β = α − c{E}

where the second equality follows from Equation (7). This concludes the proof.

Let us introduce some notation for stating our main result. Let f : X 99K Y be a dominating
meromorphic map between two compact surfaces. Let Γ be a desingularization of the graph of f
and π, g be the projections onto the factors X and Y .

Γ

π

��

g

  
A

A

A

A

A

A

A

A

X
f

//___ Y
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The proper modification π factors into a finite sequence of point blow-ups π = π1 ◦ · · · ◦πn. We set
̟i := πi ◦ · · · ◦ πn.

Let E(πi) be the exceptional set of πi. Let V Γ
i ⊂ Γ (resp. EΓ

i ) be the proper (resp. total)
transform of E(πi) by ̟i−1, and set Vi := g∗V

Γ
i ⊂ Y (resp. Ei := g∗E

Γ
i ). Note that there exist

non-negative integers {kij} s.t.

Ei = Vi +
∑

j>i

kijVj .(10)

Theorem 3.3 (Push-pull formula). Let X and Y be compact surfaces, and f : X 99K Y a domi-
nating meromorphic map. For any T ⊂ C1

+(Y ) (resp. any α ∈ H2(Y, C)), we have

f∗f
∗T = λ2 · T +

∑
Ei (T,Ei)(11)

f∗f
∗α = λ2 · α +

∑
{Ei} (α,Ei).(12)

Proof. Proofs of Equation (11) and (12) are similar. Proposition 3.2 implies

f∗f
∗T = g∗ ̟∗

2 (π∗
1π1∗) ̟2∗ g∗T

= g∗̟
∗
2 [̟2∗g

∗T + E(π1) (E(π1),̟2∗g
∗T )]

= g∗̟
∗
2̟2∗g

∗T + E1 (E1, T )

= g∗ ̟∗
3 (π∗

2π2∗) ̟3∗ g∗T + E1 (E1, T ).

By induction and by applying Proposition 3.1, one finally gets

f∗f
∗T = g∗g

∗T +
∑

Ei (Ei, T ) = λ2 · T +
∑

Ei (Ei, T ).

and the proof is complete.

Corollary 3.4. There is a non-negative hermitian form Q on H2(X, C) such that

(f∗α, f∗β) = λ2 (α, β) + Q(α, β)(13)

for all α, β ∈ H2(X, C). Moreover, Q(α,α) = 0 if and only if (α, Vi) = 0 for all i.

Proof. Equation (13) follows from Theorem 3.3 if we define Q(α, β) :=
∑

i(α,Ei)(Ei, β).
Assume now that α satisfies Q(α,α) = 0. We first infer (α,Ei) = 0 for all i. As En = Vn, we

get (α, Vn) = 0. By (10), one has En−1 = Vn−1 + kn−1,nVn, hence (α, Vn−1) = (α,En−1) = 0. One
easily concludes the proof by induction.

We used the following result in the proof of Proposition 1.13 (see Proposition 9 in [Fav2]).

Corollary 3.5. Let f : X → Y be a meromorphic map between complex surfaces and ω a Kähler
form on Y . Then ν(p, f∗ω) > 0 for every p ∈ I(f).

Proof. Let π, g, and Γ be as above, and let p ∈ I(f) be given. Let V ⊂ Γ be any irreducible com-
ponent of π−1(p). Since V 6⊂ E(g), we have (V, g∗ω) = (g∗V, ω) > 0. Hence by positivity of g∗ω and
the push-pull formula (11), the current π∗π∗g

∗ω concentrates mass on V —i.e. ν(q, π∗π∗g
∗ω) > 0

at every q ∈ V . Theorem 2 of [Fav2] then allows us to conclude that ν(p, f∗ω) = ν(p, π∗g
∗ω) > 0,

as desired.
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4. Bimeromorphic maps with λ1 = 1.

In this section, we classify bimeromorphic maps with first dynamical degree equal to one, prov-
ing Theorem 0.2 in several parts. For the remainder of this section, we let f : X 	 denote a
bimeromorphic map of a Kähler surface X with λ1(f) = 1. We let || · || be an Hermitian norm on
H2(X, C) ⊃ H1,1(X).

Lemma 4.1. The sequence {||fn∗||}n≥0 is bounded if and only if f is conjugate to an automorphism
g so that gn is isotopic to the identity for some n > 0.

Proof. The ‘if’ direction is clear, so suppose that {||fn∗||} is a bounded sequence. By performing
appropriate blowups, we can assume that f is AS. Proposition 1.16 guarantees that the sequence
||fn∗|| = ||(f∗)n|| remains bounded.

Note that for any class α ∈ H0,2(X) (or H2,0(X)), one has Q(α,α) = 0 in Equation (13). Hence
f∗ induces an isometry on these two vector spaces. This shows that the sequence of operators
(f∗)n : H2(X) 	 is in fact bounded. As f∗ preserves the lattice H2(X, Z), we have (f∗)n+k = (f∗)k

for some n > 0 and k large enough. Let ω be a Kähler form on X and α = {fk∗ω}. Then α is a
non-zero nef class that satisfies fn∗α = α. By Corollary 3.4, we have α ·V = 0 for every irreducible
component V of E(f−n). We conclude that (ω, fk

∗ V ) = 0 and that since fk
∗ V is effective, fk

∗V = 0.
We infer (Corollary 3.4 again) that V · V ≤ 0 for any V ⊂ E(f−n). In fact, V · V < 0. Otherwise
{V } = α by the Hodge index theorem, and we get fk

∗ fk∗{ω} = 0, which is absurd.
Proposition 1.7 now gives a proper modification π : X̌ → X that blows down a curve in E(f−1).

The induced map f̌ : X̌ 	 is AS, and since I(π) = E(π−1) = ∅, we have by Proposition 1.13 and
Theorem 1.14

(f̌∗)j = π∗(f
∗)jπ∗

for every j ≥ 0. Hence, f̌ (n+k)∗ = f̌k∗ and we see as above that E(f̌−1) has no irreducible
components with non-negative self-intersection. We can therefore continue blowing down curves
unless E(f̌−1) is empty. Since h1,1 decreases by one each time, we will eventually have that f̌ is an
automorphism.

To conclude the proof, note that f̌∗ must be invertible, and therefore f̌n∗ is the identity. This
implies that some iterate of f̌n is isotopic to the identity (see [Can1]).

Lemma 4.2. If {||fn∗||}n≥0 is unbounded, then f is conjugate to

• an automorphism; or
• a birational map preserving a rational fibration.

In the latter case, ||fn∗|| = Cn(1 + o(1)) for some C > 0.

Proof. As before, we can assume after appropriate blowups that f is AS. After finitely many
applications of Proposition 1.7 to f , we will obtain a proper modification π : X → X̌ such that either
the induced AS map f̌ : X̌ 	 is an automorphism or E(f̌−1) contains an irreducible component V
with {V } nef.

In the latter case we use Lemma 1.12 to pick a nef class α ∈ H1,1
nef(X̌) s.t. f̌∗α = λ1α = α. We

infer from Corollary 3.4 that (α, V ) = 0 for any nef component V ⊂ E(f̌−1). By the Hodge index
theorem, α = {V }. In particular, all components of E(f̌−1) have non-positive self-intersection. We
apply Proposition 1.7 again to conclude that X is a rational fibration and that α is the class of a
generic fiber—i.e f preserves the fibration.
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Assume f : X 	 is a birational map of a ruled surface preserving the ruling. By [BPV] p.139,
we can assume X is a product C × P1 for some compact curve C. The map f can be then written

f(x, y) =

(
g(x),

A1(x)y + B1(x)

A2(x)y + B2(x)

)
,

for some g ∈ Aut(C) and some meromorphic maps A1, A2, B1, B2 : C → P1 such that A1B2 −
A2B1 6≡ 0. One then checks easily that ||fn∗|| grows at most linearly.

The following result is proved in [Can1] (see [Giz] for the case of rational surfaces). For the sake
of completeness we present a detailed proof in the appendix. The arguments, which rely heavily on
the Enriques-Kodaira classification of compact complex surfaces, were explained to us by Cantat.

Theorem 4.3 ([Giz], [Can1]). Assume f ∈ Aut(X) and ||fn∗|| is unbounded. Then f preserves an
elliptic fibration.

The following proposition is due to [Giz],[Bel]. Again, we provide a proof in the appendix due
to Cantat.

Proposition 4.4 ([Giz], [Bel]). Suppose that f ∈ Aut(X) preserves an elliptic fibration and ||fn∗||
is unbounded. Then ||fn∗|| = Cn2(1 + o(1)) for some C > 0.

The next lemma completes the proof of Theorem 0.2. It implies that classes [2] and [3] in Table
1 are mutually exclusive and that, in either class, the invariant fibration is uniquely determined.

Lemma 4.5. Let f : X 	 be a bimeromorphic map preserving two fibrations which are generically
transverse. Then the sequence {||fn∗||}n≥0 is bounded.

Proof. Let π1 : X → C1 and π2 : X → C2 be two invariant fibrations which are generically
transverse. The holomorphic map π := π1 × π2 : X → C1 × C2 is surjective and semi-conjugates f
to a product map f̌ : C1 ×C2 	. In particular, after fixing a norm on H1,1(C1 ×C2), we have that
{||f̌n∗||} is bounded. Pick a Kähler class α on X. It suffices to show that {||fn∗α||} is bounded
(see Remark 1.17). Set β = π∗π∗α ≥ α. Then we have that

||fn∗α|| ≤ ||fn∗β|| = ||(π ◦ fn)∗π∗α|| = ||(f̌n ◦ π)∗π∗α|| ≤ C||α||,
where C is a constant independent of n and of α.

5. Spectral properties of f∗ : H1,1(X) 	.

In this section, we describe the spectral properties of the linear operator f∗ acting on H1,1(X).
Theorem 0.3 is an immediate consequence of Corollary 1.19 and

Theorem 5.1. Let f : X 	 be a bimeromorphic map with ρ(f∗) > 1, and fix a Kähler form ω on
X.

1. The operator f∗ has exactly one eigenvalue λ ∈ R+ of modulus |λ| > 1, and in fact λ = ρ(f∗).
2. The eigenvalue λ is a simple root of the characteristic polynomial for f∗.
3. The one-dimensional eigenspace ker(f∗ − λId) is represented by a nef class θ+ (which we

normalize so that (θ+, ω) = 1).

4. If θ− ∈ H1,1
nef(X) is the corresponding eigenvector associated to (f−1)∗ = f∗ (again normalized

to satisfy (θ−, ω) = 1), then (θ−, θ+) > 0.
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5. For any class α ∈ H1,1(X), we have

lim
k→∞

λ−k(f∗)kα =
(α, θ−)

(θ+, θ−)
θ+.

In particular, the limit is non-zero if α has positive self-intersection.

Remark 5.2. This theorem remains true for non-invertible maps with λ2
1 > λ2. Assertion 1

becomes the following. The operator f∗ has exactly one eigenvalue λ ∈ R+ of modulus |λ| >
√

λ2,
and in fact λ = λ1.

Proof. 1. Let µ1, µ2 be two eigenvalues of modulus |µi| > 1, and α1, a2 ∈ H1,1(X) be eigenvectors
associated to them. We claim that (, ) is a positive hermitian form on Cα1+Cα2. This is equivalent
to proving

(α1, α1) · (α2, α2) ≥ (Re (α1, α2))
2 .(14)

We compute (αi, αj) using Equation (13) and we get

(α1, α1) · (α2, α2) − (Re (α1, α2))
2

=
1

|µ1|2 − 1
· 1

|µ2|2 − 1
Q(α1, α1) · Q(α2, α2) −

1

|µ1µ2 − 1|2 (Re Q(α1, α2))
2

≥ |µ1µ2 − 1|−2 ·
(
Q(α1, α1) · Q(α2, α2) − (Re Q(α1, α2))

2
)
≥ 0

since Q defines a positive hermitian form. The first inequality follows from the elementary fact
(|µ1|2 − 1)−1 · (|µ2|2 − 1)−1 ≥ |µ1µ2 − 1|−2. The claim is now established.

By the Hodge index theorem we infer α1 = α2. In particular, µ1 = µ2 = λ ∈ R+. We also deduce
that the eigenspace ker(f∗ − λId) is one dimensional.

Assertion 3. now follows from Lemma 1.12. Let θ+ ∈ H1,1
nef(X) be the eigenvector associated to

λ normalized by (θ+, ω) = 1.
2. Assume λ is not a simple root of det(f∗ − λId). One can then find a two-dimensional vector

space V containing θ+ s.t. f∗β = λβ + l(β) θ+ for any β ∈ V and for some linear form l. We apply
Equation (13) to compute (f∗θ+, f∗θ+), (f∗β, f∗β), (f∗θ+, f∗β), and we get

(β, β) = Q

(
β +

λl(β)θ+

λ2 − 1
, β +

λl(β)θ+

λ2 − 1

)
+

l(β)2 Q(θ+, θ+)

(λ2 − 1)2
≥ 0.

Hence the intersection form is positive on V which contradicts the Hodge index theorem.
4. As θ+, θ− are nef classes, we have (θ−, θ+) ≥ 0. If equality holds, then the intersection form

is positive on Rθ+ + Rθ−. The Hodge index theorem then implies that θ+ = θ− and that therefore
θ2
+ = 0. Hence Q(θ+, θ+) = 0 and (θ+, Ei) = 0 by Equation (13). We now apply Equation (12)

and conclude that

λ2θ+ = f∗f
∗θ+ = θ+

which contradicts λ > 1.
5. This follows from the first four assertions and elementary linear algebra.

Theorem 0.4 is an immediate consequence of the following two results.

Theorem 5.3. Assume that f : X 	 is bimeromorphic with λ := ρ(f∗) > 1 and θ2
+ = 0. Then

there exists a proper modification π : X → X̌ that conjugates f to an automorphism.
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Proof. From (θ+, θ+) = 0 we infer (f∗θ+, f∗θ+) = λ2(θ+, θ+) = 0. Hence Q(θ+, θ+) = 0 by
Corollary 3.4, and (θ+, V ) = 0 for every V ⊂ E(f−1). From Equation (12), we get for all k ≥ 0

(f∗)
kθ+ = λ−k(f∗)

k(f∗)kθ+ = λ−kθ+.

Since f∗ preserves H2(X,Z) and λ−k → 0, it follows that no multiple of θ+ is an integral class. In
particular, θ+ 6= c{V } for any V ⊂ E(f−1).

Thus by the Hodge Index Theorem, (V, V ) < 0 for every irreducible V ⊂ E(f−1). We apply
Proposition 1.7 to contract a curve V ⊂ E(f−1). Let π : X → X̌ denote the resulting modification
and f̌ : X̌ 	 the induced map.

By Corollary 3.4 we have (π∗θ+)2 = 0. Moreover, by (12) and the fact that I(π) = E(π−1) = ∅,
we have

f̌∗(π∗θ+) = π∗f
∗(π∗π∗)θ+ = π∗f

∗θ+ = λπ∗θ+,

so that π∗θ+(f) = θ+(f̌). Therefore, either E(f) = ∅ and f is an automorphism, or we can repeat
the above argument to contract another curve. Since each contraction reduces h1,1(X̌) by 1, the
map f̌ will become an automorphism after finitely many contractions.

Theorem 5.4. Let f : X 	 and g : Y 	 be AS bimeromorphic maps conjugate via a proper
modification π : X → Y . Assume λ1(f) > 1 (or equivalently, λ1(g) > 1). Then θ+(f)2 = 0 if and
only if θ+(g)2 = 0.

We point out that if f and g are conjugate by a map π : X → Y which is merely bimeromorphic,
then as asserted in Theorem 0.4, the conclusion of Theorem 5.4 continues to hold. Indeed, both
maps lift to the same map h : Γ 	 on a desingularization of the graph of h. After further blowing
up Γ, we can arrange for h to be AS and then apply Theorem 5.4 to both pairs h, f and h, g.
Proof. For the sake of simplicity we let θf := θ+(f) and θg := θ+(g). We claim θg = π∗θf (up to
normalization). To see this, apply Equation (12) to π−1. For any k ≥ 0, we get

λ−k
1 (gk)∗(π∗θf ) = λ−k

1 (π ◦ fk ◦ π−1)∗(π∗θf )

= λ−k
1 π∗f

k∗(π∗π∗θf ) = π∗θf + π∗λ
−k
1 fk∗D,

for some effective divisor D supported on E(π). Let k tend to infinity. The left side tends to a
multiple of θg by Theorem 5.1, and the second term on the right tends to a non-negative multiple
of π∗θf . This justifies our claim.

Corollary 3.4 now gives (θg, θg) = (π∗θf , π∗θf ) ≥ (θf , θf ) ≥ 0. Hence θ2
g = 0 implies θ2

f = 0.

Conversely assume θ2
f = 0. We claim (θf ,W ) = 0 for every irreducible component W of E(π).

Given this, Corollary 3.4 yields θ2
g = (π∗θf )2 = 0. To prove the claim, there are two cases to

consider.

Case 1: there exists an integer N ≥ 0 so that SuppfN
∗ [W ] 6⊂ E(π).

Let π(W ) = p. Then p ∈ I(gN ). As g is AS, this implies that for all k ≥ 1

Suppfk∗[W ] ⊂ E(π) ∪ I(f).

That is, fk∗[W ] is a non-negative integer combination of irreducible components of E(π). Suppose
first that (fk∗[W ], θf ) > 0 for every k. Let V ⊂ E(π) be the irreducible component for which (V, θf )
is non-zero but otherwise as small as possible. Since θf is nef,

0 < (V, θf ) ≤ (fk∗[W ], θf ) = (W,fk
∗ θf ) = λ−k

1 (W, θf ),
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where the last equality is proven as in Theorem 5.3. This is absurd for large k, so we must have
instead that for k large enough,

0 = (fk∗[W ], θf ) = λ−k
1 (W, θf ),

which justifies the claim in this case.

Case 2: for any k ≥ 0, Suppfk
∗ [W ] ⊂ E(π).

If (W, θf ) > 0, then we can apply the fifth conclusion of Theorem 5.1 to f−1 and obtain

λ−k
1 fk

∗ [W ] → c θ−(f)

for some c > 0. In particular, θ−(f) =
∑

cj{Vj} where Vj are the irreducible components of E(π).
But this means that π∗θ−(f) = 0, which cannot be because θ−(f) is nef and Proposition 1.13
implies that π∗π∗θ−(f) ≥ θ−(f). Hence (W, θf ) = 0 as desired.

6. The Green current.

To any AS rational map f : Pn 	 with algebraic degree d > 1, one can associate a positive closed
(1, 1) current T on Pn satisfying f∗T = dT (see [Sib]). This Green current is a fundamental tool
for obtaining a measure theoretic understanding of the dynamics of a rational map. Here we use
the results from the previous section to construct an invariant current for an AS bimeromorphic
map of any compact Kähler surface.

Proof of Theorem 0.5. We follow ideas of [Gue] and the presentation in [Fav3], relying on the
following volume estimate. Let SA(f) denote the (finitely many) attracting periodic points that
lie in E(f).

Lemma 6.1 (see [Dil], [Fav3]). Fix a small neighborhood Ω of SA(f). For any λ > 1, there exist
constants C1, C2 > 0 s.t.

Vol fk(E) ≥ (C1Vol (E))C2λk

(15)

for all k and any Borel set E ⊂ X \ f−kΩ.

Now take a real smooth closed (1, 1) form α+ such that {α+} = θ+. We do not require α+

to be positive. In order to demonstrate convergence of the sequence of currents λ−k
1 (fk)∗α+,

write f∗α+ = λ1α+ + ddch for some function h ∈ L1(X). The form f∗α+ is smooth outside the
indeterminacy set I(f), so h is also smooth outside I(f). In particular, h is locally bounded in a
neighborhood of SA(f).

We have

λ−k
1 (fk)∗α+ = α+ + ddc

(
k∑

i=1

λ−i
1 h ◦ f i−1

)
.(16)

To show that λ−k
1 (fk)∗α+ converges, it is enough to prove that the series

∑
i λ−i

1 h ◦ f i−1 converges
in L1(X). We estimate ‖h ◦ f i−1‖L1(X) using the the following lemma.

Lemma 6.2 (see [Fav3]). Assume f∗α = β + ddch, where α, β are real smooth closed (1, 1) forms
and h ∈ L1(X). Then there exist constants B,C > 0 such that

Vol {|h| > t} ≤ B exp(−Ct)(17)

for all t ≥ 0.
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We postpone the proof of this lemma to the end of the section.
Fix a small neighborhood Ω of SA(f) and let A := supf−1Ω |h| < +∞. We have

∫

X
λ−i

1 |h ◦ f i−1| dV =

∫

f−iΩ
λ−i

1 |h ◦ f i−1| dV +

∫

X\f−iΩ
λ−i

1 |h ◦ f i−1| dV

≤ λ−i
1 A + λ−i

1

∫

t≥0
Vol

(
{h ◦ f i−1 ≥ t} ∩ X \ f−iΩ

)
dt

(Lemma 6.1) ≤ λ−i
1 A + λ−i

1

∫

t≥0
C−1

1 Vol {|h| ≥ t}1/C2λi

dt

(Lemma 6.2) ≤ λ−i
1 A + λ−i

1

∫

t≥0
C4 exp(−C3t/λ

i) dt ≤ λ−i
1 (A + C5λ

i) ,

which defines a summable sequence if we choose λ < λ1. Hence
∑

λ−i
1 h ◦ f i−1 converges in L1(X)

to a function G and limk→∞ λ−k
1 (fk)∗α+ = α+ + ddcG.

The proof of convergence (1) when {α} 6= θ+ is an arbitrary class in H1,1
R

(X) is similar. In

particular, we have λ−k
1 (fk)∗ω → (ω, θ+)T+ for any Kähler form. As (ω, θ+) ≥ 0, we infer that

T+ is a positive current. Since f∗ acts continuously on positive currents, we also conclude that
f∗T+ = λ1T+.

Proof of Lemma 6.2. If ωX is the Kähler form on X, then CωX − (CωX − α) expresses α as a
difference between two positive closed (1, 1) currents when C is large enough. Hence we can assume
α is positive. But under this assumption, h is a quasi-plurisubharmonic function and (17) follows
then from standard capacity arguments (see e.g. [Kis] Theorem 3.1).

The Green current T+ has many other dynamically important properties. We conclude this
section by stating several of these without proof. The interested reader will find full details presented
in [Fav3].

Proposition 6.3. Under the hypothesis of Theorem 0.5, we have:

1. SuppT+ ⊂ J(f) := X \ {p ∈ X : {fn} is a normal family near p}.
2. The current T+ is an extremal current.
3. The Lelong number ν(x, T+) > 0 if and only if fn(x) ∈ I(f) for some n ≥ 0. In particular,

T+ does not charge any complex curves.

Remark 6.4. When f is not AS, one can still show that the sequence (f∗)kα/ρ(f∗)k converges to
a positive closed current. This current is supported on the countable union of curves that eventually
map onto the indeterminacy set.

When f is AS, one can show that the Green current represents the distribution of many positive
closed (1, 1) currents. The following theorem makes this precise and completely describes (see [FG]
or [Fav3]) the structure of the cone of positive closed (1, 1) currents satisfying f∗T = λ1T .

Theorem 6.5. There exists an exceptional set E of finitely many critical periodic orbits E =
{O(p1), · · · ,O(pk)} such that

1. for any (not necessarily smooth) T ∈ C+
1 (X), Equation (1) holds if and only if ν(x, T ) = 0

for all x ∈ E.
2. to any point pi ∈ E, there is a unique analytic cycle Vi with positive coefficients and support

|Vi| ⊂ f−1O(pi), such that (Vi, ω) = 1 and f∗[Vi] = λ1[Vi];
3. we have {T ∈ C+

1 (X) : f∗T = λ1T} = R+T+ +
∑

i R+[Vi] .
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7. Bimeromorphic maps and classification of surfaces.

In this section, we briefly indicate which surfaces can support the various types (i.e. classes [1]
through [5] in Table 1) of bimeromorphic self-maps discussed in this paper. The case of automor-
phisms has been treated thoroughly by Cantat. We first state one of his results.

Proposition 7.1 (see [Can1]). Let X be a compact Kähler surface. Assume f ∈ Aut(X) satisfies
λ1(f) > 1. Then X is a Torus, a K3 surface, an Enriques surface or a non minimal rational
surface.

We remark that there are known examples of automorphisms with λ1 > 1 on each of these types
of surface (see [Can1]).

Bimeromorphic maps of class [5] are handled by

Theorem 7.2. Let X be a compact Kähler surface. Assume f : X 	 is a bimeromorphic map with
λ1(f) > 1 and θ2

+ > 0. Then X is a rational surface.

We postpone proving this fact until the end of this section, proceeding now to classes [2] and [3].

Remark 7.3. Any ruled surface is birational to a product C × P1 for some compact curve C. Let
g : C → P1 be any non-constant meromorphic map. Then f(c, z) := (c, g(c)z) : C × P1 	 belongs
to Class [2]. Hence any ruled surface admits a birational map of Class [2].

Remark 7.4. There exists an elliptic surface not admitting any automorphism in Class [3]. Let
X := T × P1 and pick f ∈ Aut (X). The surface X admits a unique rational fibration which is
hence preserved. By Lemma 4.5, ‖fn∗‖ is bounded. This shows that f belongs to Class [1].

The proof of Theorem 7.2 is based on the following classical proposition (see [IS] p.180).

Proposition 7.5. Let X be a minimal compact complex surface with kod(X) ≥ 0. Any bimero-
morphic map f : X 	 is in fact a biholomorphism.

Proof. Let Γ be a minimal desingularization of the graph of f and π1, π2 : Γ → X the projections
onto first and second factors. Factor π1 = ̟1 ◦ · · · ◦ ̟n into a sequence of point blow-ups. Let Vi

be the exceptional component of ̟i and set Ei := (̟i+1 ◦ · · · ◦ ̟n)∗[Vi]. We first note that the
canonical class KΓ of Γ can be related to KX by the following formula (see [BPV] p.28):

KΓ = π∗
1KX +

∑

i

Ei .(18)

Now fix an exceptional curve C ⊂ Γ. By the genus formula we get (C,KΓ) = 2g(C)− 2− (C,C) =
−3 < 0. As kod(X) ≥ 0 and X is minimal, the canonical class KX is nef (see [BPV] p.73). Equation
(18) shows then

∑
i(Ei, C) = −(KX , π1∗C) + (KΓ, C) < 0. This implies that C lies in the support

of some Ei and is therefore blown down by π1. The same argument shows that C is also blown
down by π2.

Since Γ was chosen to be a minimal desingularization, we conclude that no exceptional curve
C ⊂ Γ exists. Hence, π1, π2 are biholomorphisms, and we are done.

Proof of Theorem 7.2. Let f : X 	 be a bimeromorphic map with λ1 > 1 and θ2
+ > 0.

Theorem 0.4 and the preceding proposition show that kod(X) = −∞. By the Enriques-Kodaira
classification, X is either rational or ruled on a non rational base. In the former case we are
done. In the latter, the surface admits a unique rational fibration. The map f preserves it and
induces an automorphism of the base curve. We infer λ1 = 1 which contradicts our assumption.
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8. Periodic points of birational maps.

In this section, we show that λ1 controls the growth of periodic orbits. The main idea comes
from [Fav1] where a proof was given in the case X = P2. By Theorem 7.2, we can limit ourselves
to the rational case.
Proof of Theorem 0.6. Pick an integer k ≥ 0. Let ∆ ⊂ X × X denote the diagonal and
Γk ⊂ X × X the graph of fk. Let f∗

i denote pull-back on H i(X, R). The Lefschetz fixed point
formula reads (see [Ful] p.314)

{∆} · {Γk} =
2∑

i=0

(−1)iTr((fk)∗i ) .

As X is a rational surface we have Hp,q
R

(X) = 0 except for p = q ∈ {0, 1, 2}. On H0
R
(X) = R we

have (fk)∗0 = 1, and on H4
R
(X) = R, we have (fk)∗4 = 1 since f is birational. Hence Theorem 5.1

implies

{∆} · {Γk} = 2 + Tr((fk)∗2) = 2 + Tr
(
(fk)∗|H1,1

R
(X)

)
= λk

1 + O(1)

with |O(1)| ≤ h1,1(X) + 1.
We now follow the arguments of [Fav1] to estimate {∆} · {Γk}. By assumption fk admits no

curves of periodic points, so the intersection Γk ∩ ∆ is finite and we have:

{∆} · {Γk} = Perk +
∑

p∈I(fk)

µ((p, p),Γk ∩ ∆)

where the last term denotes the multiplicity of intersection between Γk and ∆. The theorem follows
now from

Lemma 8.1 ( [Fav1]). There exists a constant D′ > 0 s.t.
∑

p∈I(fk)

µ((p, p),Γk ∩ ∆) ≤ D′

for any k ≥ 0.

This concludes the proof.

9. A class of examples.

In this section, we study a class of examples from [AABHM1]. By applying the main results of
the present article, we are able to explain some experimental results presented in that paper. We
will see that all cases described in Table 1, excepting Case [4], appear in this family (see the table
below). We freely use the notation from previous sections. For the sake of brevity, we omit most
proofs and computations, presenting sufficient detail for the reader interested in verifying them.

Given ε ∈ C and affine coordinates (x, y), the maps

fε(z,w) :=

(
w + 1 − ε, z

w − ε

w + 1

)
and f−1

ε (z,w) :=

(
w

z + ε

z − 1
, z − 1 + ε

)

extend to P1 × P1 as a birational self-map and its inverse. When ǫ = −1, the map fǫ is an
automorphism with f2

ǫ = Id. Otherwise the indeterminacy and exceptional sets of fǫ are given by

I(f) = {(0,−1); (∞, ε)} , E(f) = {V1, V2},
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respectively, with V1 = {w = ε} and V2 = {w = −1}.
To check whether f is AS, one has to compute the orbit of E(f). This is easily done using the fact

that the line {z−w = 1} is invariant under f , while the lines {z = ∞}, {w = ∞} are interchanged.

Lemma 9.1. For all k ≥ 0, fk+1
ε (V1) = (1 − kε,−kε). For all k ≥ 1, f2k−1

ε (V2) = (−1 + k(1 −
ε),∞); and f2k

ε (V2) = (∞,−1 + k(1 − ε)).

The map fε is AS if and only if fk
ε (Vi) 6∈ I(f) for all k ≥ 1 and i = 1, 2. Hence

Lemma 9.2. The map fε is AS in P1 × P1 if and only if ε 6∈ S1 ∪ S2 where

S1 := {1/k, k ∈ N∗} ,

S2 := {k/k + 2, k ∈ N} .

The action of f∗ is easily computed.

Proposition 9.3. Assume ε 6= −1. In the natural basis {z = 0}, {w = 0} of H1,1(P1 ×P1), f∗ has
matrix [

0 1
1 1

]
,

Thus if (in addition) ε 6∈ S1 ∪S2, we have λ1(fε) = (1 +
√

5)/2. One can take θ+ = (2, 1 +
√

5). In
particular, θ2

+ > 0, and fε belongs to Class [5].

Note that since λ1 is irrational, the map fǫ will almost never be AS as a self-map of P2. This is
our principal reason for treating fǫ as a map of P1 × P1 instead.

In the sequel, we consider non-generic parameters ε ∈ S1 ∪ S2. Table 9 summarizes our results
(ϕ := (1 +

√
5)/2 denotes the golden ratio).

ε = −1 Aut (P1 × P1) Class [1]

ε = 0, 1 Rational fibration preserved Class [2]

ε = 1/2, 1/3 Elliptic fibration preserved Class [3]

ε 6∈ {1/k, k/(k + 2), k ≥ 0} λ1 = ϕ, θ2
+ > 0 Class [5]

ε = 1/k, k ≥ 4 λk+1
1 = λk−1

1 + · · · + 1
1 < λ1 < ϕ, θ2

+ > 0 Class [5]

ε = k/(k + 2), k ≥ 3 λ2k
1 = λ2k−2

1 + · · · + 1
1 < λ1 < ϕ, θ2

+ > 0 Class [5]

The following remark will be useful in our analysis.
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Lemma 9.4. Let π : X → P1 × P1 denote the blowup of P1 × P1 at the points {(0,−1), (∞, ε)} =
I(fε). Then for ǫ 6= 0 the map fε := fε ◦ π : X → P1 × P1 is holomorphic.

Proof. One has to check that fε contains no points of indeterminacy on the two exceptional divi-
sors of π. We leave it to the reader.

If, consequently, Xǫ is the surface obtained by blowing up P1 × P1 along each orbit segment
f(Vi), f

2(Vi), . . . , f
j(Vi) ∈ I(f) that begins with the image of an exceptional curve Vi and ends

with a point of indeterminacy, then fǫ lifts to an AS map of Xǫ. For convenience, we introduce
some additional notation. For k ≥ 0 we let Ek ⊂ Xǫ denote those exceptional components above
points fk+1(V1), and for k ≥ 1, we let Fk denote the exceptional components above points fk(V2).
Finally, we let Lz, Lw ∈ H1,1(Xε) denote the classes induced by the pullbacks Lz := π∗{z = 0},
Lw := π∗{w = 0}.

Let us first consider parameters ε ∈ S1 ∩ S2 = {1/2, 1/3}.

Proposition 9.5. Assume ε ∈ S1 ∩S2. Then fε ∈ Aut (Xε), λ1(f) = 1, and ‖fn∗
ε ‖ is unbounded.

In particular, there exists an invariant elliptic fibration and fε belongs to Class [3].
• For ε = 1/2, one has h1,1(Xε) = 2 + 9 and the fibration is given by

d

[
(2zw + w + 1)(2zw − z + 1)(2zw + z − w − 1)

(z − w − 1)2

]
= 0 .

With respect to the basis, Lz, Lw, E0, E1, E2, F1, · · · , F6, the action f∗ has matrix




0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 −1 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 −1 −1 0 0 0 0 0 0 0 0




,

and ker(f∗
1/2−Id) = {(α,α, β, β, β, γ, γ, γ, γ, γ, γ) with α+β+γ = 0}. For a class v ∈ ker(f ∗

1/2−Id),

v2 ≤ 0 and v2 = 0 if and only if α = −3γ, β = 2γ.

• For ε = 1/3, one has h1,1(Xε) = 2 + 8 and the fibration is given by

d

[
(3zw + z + 1 + w)(3zw − z − w + 1)

z − w − 1

]
= 0 .
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With respect to the basis, Lz, Lw, E0, E1, E2, E3, F1, F2, F3, F4, the action f∗ has matrix



0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 −1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 −1 −1 0 0 0 0 0 0 0




,

and ker(f∗
1/3 − Id) = {(α,α, β, β, β, β, γ, γ, γ, γ) with α+β + γ = 0}. For a class v ∈ ker(f ∗

1/3 − Id),

v2 ≤ 0 and v2 = 0 if and only if α = −2β = −2γ.

There are other values for which fε is integrable.
Proposition 9.6.

• For ε = −1, f(z,w) = (w + 2, z) ∈ Aut (P1 × P1) belongs to Class [1].
• For ε = 0, f0 = (w+1, zw/(w+1)) has unbounded degrees and preserves the rational fibration

d(zw) = 0. It belongs to Class [2]. With respect to the basis Lz, Lw, F1, F2, the matrix of f∗

is 


0 1 0 0
1 1 1 0
0 0 0 1
0 −1 0 0


 ,

and det(f∗
0 − tId) = t(t + 1)(t − 1)2. Moreover ker(f∗

0 − Id) = (α,α,−α,−α).
• For ε = 1, f1 = (w, z(w−1)/(w+1)) has unbounded degrees and preserves the rational fibration

d(zw/(z − w − 1)) = 0. It belongs to Class [2]. With respect to the basis Lz, Lw, E0, E1, the
matrix of f∗ is 



0 1 0 0
1 1 1 0
0 0 0 1
0 −1 0 0


 ,

and det(f∗
1 − tId) = t(t + 1)(t − 1)2. Moreover ker(f∗

1 − Id) = (α,α,−α,−α).

We conclude by considering the cases ε ∈ S1 \ S2 and ε ∈ S2 \ S1.
Proposition 9.7. Assume ε = 1/k with k ≥ 4. With respect to the basis Lz, Lw, E0, · · · , Ek, the
matrix of f∗ is 



0 1 0
1 1 1 0
0 0 0 1

0
. . .

0
. . . 1

−1 0




,

and det(f∗
ε − tId) = (−1)k+1t(t − 1)(tk+1 −∑k−1

j=0 tj). The first dynamical degree is an algebraic

integer which is the unique real number of modulus greater than 1 such that λk+1 =
∑k−1

j=0 λj . One
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has 1 < λ1(fε) < (1 +
√

5)/2 and one can take

θ+(fε) = (λk
1 , λ

k+1
1 ,−1,−λ1, · · · ,−λk

1) .

In particular θ2
+ > 0 and fε belongs to Class [5].

Proposition 9.8. Assume ε = k/(k+2) with k ≥ 3. With respect to the basis Lz, Lw, F1, · · · , F2k,
the matrix of f∗ is 



0 1 0
1 1 1 0
0 0 0 1

0
. . .

0
. . . 1

−1 0




,

and det(f∗
ε − tId) = t(t − 1)(t2k −∑2k−2

j=0 tj). The first dynamical degree is an algebraic integer

which is the unique real number of modulus greater than 1 such that λ2k =
∑2k−2

j=0 λj . One has

1 < λ1(fε) < (1 +
√

5)/2 and one can take

θ+(fε) = (λ2k
1 , λ2k+1

1 ,−1,−λ1, · · · ,−λ2k
1 ) .

Moreover θ2
+ > 0 and fε belongs to Class [5].

Remark 9.9. If one takes k = 5, then λ1 is a root of P (t) = t5− t3− t2− t−1. One can check that
P is irreducible in Z[t]. Thus f5/7 is an example of a birational map of P2 whose first dynamical
degree is not a quadratic integer and is therefore not AS on any minimal rational surface.

Appendix: Automorphisms with unbounded degrees and λ1 = 1.

In this section, we give detailed proofs of Theorem 4.3 and Proposition 4.4. Let X be a compact
Kähler surface, let hi(F) := dimC H i(X,F) for any sheaf F of complex vector spaces on X and
i ≥ 0, and let χ(F) denote the Euler characteristic of F . Given f ∈ Aut(X) such that ‖(fn)∗‖ is
unbounded and λ1(f) = 1, we first want to show that f preserves an elliptic fibration. Note that
the intersection form is preserved by f∗.

Step 1: Up to positive multiple, there is a unique nef class θ ∈ H1,1(X) such that f∗θ = θ.
Moreover θ2 = 0, (θ,KX) = 0, and we can assume that θ ∈ H2(X, Z).

Proof. Fix a Kähler class ω and let θ be a limit point for the sequence ‖(fn)∗ω‖−1(fn)∗ω −→ θ.
By construction, the class θ is nef. Since the nef cone is strict and ‖fn∗ω‖ → ∞ sub-exponentially,
we see that f∗θ = θ.

Let α ∈ H1,1(X) be another class (e.g. α = KX , the canonical class) satisfying f∗α = α. Then

0 = lim
n→∞

1

‖(fn)∗ω‖(ω,α) = lim
n→∞

(
(fn)∗ω

‖(fn)∗ω‖ , α

)
= (θ, α).

By Hodge index theorem, we infer that either α = kθ or α2 < 0. This shows that H1,1
nef (X) ∩

ker(f∗ − Id) (in fact, {f∗α = α : α2 ≥ 0}) is generated by θ.
To see that θ ∈ H2(X, Z), we choose a basis {ei} ∈ H2(X, Q) for which f∗ : H2(X, Z) 	 is in

Jordan form. As ‖(fn)∗ω‖−1(fn)∗ω −→ θ for any Kähler class, and ‖(fn)∗α‖ is bounded for any
class α ∈ H2,0(X) ⊕ H0,2(X) (see the proof of Lemma 4.1), the set of classes attracted to θ under
pullback is open. Hence θ is a multiple of the basis vector ei corresponding to the ‘top’ of the
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(unique) largest Jordan block for the eigenvalue one.

In particular, by Lefschetz’ theorem θ = c1(L) for some line bundle L ∈ H1(X,O∗). We apply
the Enriques-Kodaira classification of compact complex surfaces (see [BPV] p.188) to limit the
possible candidates for X. If kod(X) = 2, then Aut(X) is finite, which contradicts unboundedness
of ‖fn∗‖. If kod(X) = 1, the Iitaka fibration defines an elliptic fibration which is Aut(X)-invariant,
and we are done. If kod(X) = 0, then up to a finite cover one can assume X is a K3 surface or X is
hyperelliptic. In the latter case, X admits a canonical elliptic fibration which is Aut(X)-invariant.
In the former case, χ(OX) = 2. If kod(X) = −∞, X is ruled. If the base C is not rational, then any
automorphism of X preserves the ruling and induces an automorphism of C, so f∗ acts trivially
on H1,1(X), contradicting our assumption. Hence X is rational and χ(OX) = 1. To summarize we
are left with two cases:

• either X is a K3 surface: KX is trivial and χ(OX) = 2;
• or X is rational: {KX} is not psef and χ(OX) = 1.

Step 2: For any integer n large enough, h0(nL) ≥ 2.
Proof. The Riemann-Roch theorem and Serre duality yield

h0(L) + h0(KX − L) = χ(OX) + h1(L).(19)

Assume first X is a K3 surface. If h0(KX − L) ≥ 1, one infers −θ = {−L} = {KX − L} ≥ 0
which is absurd. As χ(OX) = 2, one concludes h0(L) ≥ 2.

Assume now that X is rational. For any integer n ≥ 0, one has

h0(KX − nL) = 0(20)

as {KX} is not psef. Hence Equation (19) gives h0(nL) ≥ 1 for all n ≥ 0.
If h0(L) ≥ 2 we are done. Assume h0(L) = 1. The zeroes of the unique section of L define

a curve C which satisfies f∗C = C. Note that C is not necessarily reduced or connected. The
Riemann-Roch theorem and Serre duality for singular curves (see [BPV] p.51, 55 and 67) gives the
genus formula

1 +
1

2
(C,C + KX) = h1(OC)(21)

hence h1(OC) = 1. For any n ≥ 0 from the short exact sequence

0 −→ OX(nC) −→ OX((n + 1)C) −→ OC −→ 0 ,

we get the exact sequence

H1((n + 1)L) −→ H1(OC) −→ H2(nL) .

But H2(nL) ∼= H0(KX − nL) = 0 by (20) and H1(OC) ∼= C. Hence h1(nL) ≥ 1 for all n ≥ 1 and
h0(2L) ≥ 1 + 1 = 2. We are done.

Step 3: Construction of the invariant elliptic fibration.
We can assume h0(L) ≥ 2. The space H0(L) induces a surjective meromorphic map π : X 99K P1.

Write D for the fixed part of the linear system |L| and decompose a fiber π−1(c) = Fc + D. As
L2 = 0 and L is nef, (Fc, L) = 0. But F 2

c ≥ 0 hence Fc is proportional to L and F 2
c = 0. By

removing D, we obtain a linear system without fixed part that we again denote by |L|. This system
has no base points because L2 = 0 and is f -invariant. We therefore obtain a surjective holomorphic
map π : X → P1 which defines a fibration. Using Stein factorization, we further produce a fibration
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π̃ : X → C over some curve C with generically irreducible fibers. The genus formula implies that
the fibration is elliptic, and since f∗L = L the fibration is necessarily invariant.

Proof of Proposition 4.4.

Consider the restriction f∗|θ⊥ . Recall from Step 1 above that θ ∈ θ⊥. Since f∗θ = θ, we obtain
an induced map g : θ⊥/θ :	. The intersection form (, ) projects down to θ⊥/θ as a negative definite
quadratic form (, )|θ⊥/θ. The action g preserves this form and the lattice H2(X, Z) ∩ θ⊥/θ. Hence

gN = Id for some N . Replacing f by fN , we can assume N = 1. In the sequel we denote by
̟ : θ⊥ → θ⊥/θ the natural projection.

Observe that x 7→ ̟(f∗x − x) defines a linear map π : H1,1(X) → θ⊥/θ. We claim that π 6≡ 0.
If π ≡ 0, then f∗x = x + l(x)θ for some linear form l ∈ (H1,1(X))∗. By Step 1 above, ker l ⊂ θ⊥.
Hence the previous paragraph gives that ker l = θ⊥. One can therefore write f∗x = x + c · (x, θ)θ
for some c ∈ C. In fact, (x, y) = (f∗x, f∗y) = (x, y) + 2c · (x, θ) · (y, θ) shows that c = 0. But
f∗ 6= Id so this is absurd. We conclude that π 6≡ 0.

Pick a Kähler class ω for which π(ω) 6= 0 and write f∗ω = ω + h with h ∈ θ⊥. We have

f∗ω = ω + hn, where hn :=
∑n−1

k=0(fk)∗h. Since f |θ⊥/θ = Id, there is c ∈ C such that f∗h = h + cθ,

so the sequence ‖(fk)∗h‖ grows at most linearly. Hence ‖hn‖ and (therefore as well) ‖fn∗ω‖ grow
at most quadratically.

On the other hand, ̟(hn) = n ̟(h). So from

(fn)∗ω

‖(fn)∗ω‖ =
ω

‖(fn)∗ω‖ +
hn

‖(fn)∗ω‖ −→ θ

we deduce that n̟(h)/‖(fn)∗ω‖ → 0. Since ̟(h) 6= 0 we infer ‖(fn)∗ω‖−1 = o(1/n). That is,
‖(fn)∗ω‖ grows at least quadratically, too.
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France, 2000.
[Siu] Yum Tong Siu. Analyticity of sets associated to Lelong numbers and the extension of meromorphic maps.

Bull. Amer. Math. Soc. 79(1973), 1200–1205.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46656

E-mail address: diller.1@nd.edu
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