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Abstract. Inspired by work done for polynomial automorphisms, we apply pluripo-

tential theory to study iteration of birational maps of P2. A major theme is that

success of pluripotential theoretic constructions depends on separation between orbits

of the forward and backward indeterminacy sets. In particular, we show that a very

mild separation hypothesis guarantees the existence of a plurisubharmonic escape

function G̃+ and the induced current µ+. We show that under normalized pullback

by the birational map, a large class of currents are attracted to µ+. Under stronger

separation hypotheses, we establish relationships between the set of normality, stable

manifolds of saddle periodic points, and the support of µ+. We illustrate this work

in the more concrete setting of quadratic polynomial maps of C2 with merely rational

inverses.

1. Introduction

In the wake of recent spectacular advances in understanding the dynamics of
rational maps of P1, researchers have also begun to consider dynamics of holomor-
phic maps of more than one variable. In particular, polynomial automorphisms
of C2 and holomorphic endomorphisms of Pn have received considerable attention
(see [BS1–3],[FS3],[HP],[HO]). In this paper, we consider the dynamics of birational
maps of P2.

Loosely speaking, a degree d rational self-map f of P2 is one induced by a degree
d homogeneous self-map of C3 under the canonical projection π : C3 \ {0} → P2.
A rational map f+ is birational if there exists an algebraic curve V and another
rational map f− such that f+ ◦ f− = f− ◦ f+ = id on P2 \ V . One rather quickly
discovers a difficulty in studying dynamics of birational maps. When deg f+ ≥ 2,
there always exists a finite indeterminacy set I+ of points where f+ is ill-defined as
a continuous map. Under iteration the problem generally becomes worse; the set
of all points where some iterate of f+ is ill-defined is I+

∞ = ∪∞n=0f
−n
+ (I+). Hence,
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iterates of f+ act smoothly only on D+ = P2 \ I+, where I+ = I+
∞. We denote

corresponding sets for f− by I−, I−∞, I−,D−.
So from the beginning, we are left with the question of whether and to what

extent a birational map of P2 constitutes a “smooth dynamical system” in the
generally understood sense of the phrase. We do not attempt to answer the question
directly in this paper. Rather, we proceed with the heuristic that birational maps of
P2 are natural generalizations of polynomial automorphisms of C2 (the latter extend
to P2 as birational maps). Since pluripotential theory has proved a successful means
of understanding dynamics of automorphisms, our primary concern in this paper
is to generalize pluripotential theory tools to the setting of birational maps. The
results that we present show a fascinating relationship between the “separation”
that a birational map maintains between its forward and backward indeterminacy
sets I+ and I−, and the degree of control that we are able to attain over the
attendant pluripotential theory.

Section 2 contains a detailed summary of notation and basic properties connected
with rational self-maps of P2. In particular, given a degree d rational map f of P2

induced by a homogeneous map f̃ : C3 → C3, we define an escape function G̃ for
f . Namely, for any point p̃ ∈ C3, we set

G̃(p̃) = lim
n→∞

1
dn

log ||f̃n(p̃)||.

It is not hard to show that the limit exists, and that G̃ is either plurisubharmonic
or identically −∞. The escape function was first introduced by Hubbard and
Papadopol [HuPa] in connection with holomorphic endomorphisms of Pn. They
showed that if N is the largest open set on which iterates of f form a normal
family, then G̃ is pluriharmonic on π−1(N ). Their result, along with its proof, is
equally valid for any rational self-map of Pn. In fact, Ueda [Ue] went on to show
that when the indeterminacy set is empty π−1(N ) is exactly the set on which G̃ is
pluriharmonic. Ueda’s result, however, does not obviously generalize to all rational
self-maps.

Section 3 provides a more detailed introduction to birational maps of P2. In the
rest of this introduction, f+ : P2 → P2 will denote a degree d ≥ 2 birational map.
We say that f+ is minimally separating if I+

∞ ∩ I−∞ = ∅. After collecting several
useful preliminary results about birational maps, we prove Theorem 3.11, which
states roughly that a minimally separating birational map cannot shrink volume
too quickly. We then use this theorem to prove an existence result:

Theorem 1.1. If f+ is minimally separating, then its escape function G̃+ is
plurisubharmonic.

Previously, the best result in this direction was by Fornaess and Sibony [FS1]
who required the existence of a periodic point to deduce plurisubharmonicity of the
escape function for a rational map.
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Section 4 begins with a discussion of positive closed currents on P2 and what
it means to pull back or push forward such a current by a birational map. This
discussion is relevant because the escape function G̃+ induces a positive closed
current µ+ on P2 such that π∗µ+ = ddcG̃+. The set suppµ+ plays a role roughly
analogous to that of the Julia set of a rational map of P1. Also, µ+ enjoys the
simple transformation property

f∗+µ+ = d · µ+,

which it inherits from a similar property of G̃+. The currents f+∗µ
+, f∗−µ+, and

f−∗µ
+ are more interesting and more complicated. Summarizing results from sec-

tions 2, 3, and 4, we obtain

Theorem 1.2. The following statements about f+ are equivalent.
(1) f+ is minimally separating.
(2) f− is minimally separating.
(3) deg fn

+ = (deg f+)n for all n.
(4) limn→∞(deg fn

+)1/n = deg f+.
(5) µ+ has no support concentrated on any algebraic curve.
(6) f−∗µ

+ = d · µ+ (i.e. f−∗µ
+ = f∗+µ+).

Any one of these statements implies that f+∗µ
+ = µ+/d.

In particular, minimally separating birational maps (which include the the family
of polynomial automorphisms of C2) are those for which degrees of iterates grow
maximally. Thus polynomial shears (x, y) 7→ (x + b, ay + P (x)) of C2 are not
minimally separating, since iteration of a shear leaves its degree unchanged. Also
in section 4, we prove a theorem about normalized pullbacks of generic positive
closed currents. A slightly weaker statement than the one we give there is

Theorem 1.3. Suppose that f+ is minimally separating and that T is a non-zero,
positive, closed (1,1) current on P2 such that suppT ∩ I−∞ = ∅. Then

lim
n→∞

1
dn

fn∗
+ T = cµ+

for some real constant c > 0.

This theorem directly generalizes Theorem 4.7 of [BS1] and Corollary 7.3.4 of [FS3].
Among other things, it strengthens the analogy between suppµ+ and the Julia set
of a rational map of P1. That is, one can think of Theorem 1.3 as a “weighted”,
two variable version of a well-known fact from dynamics on P1: the closure of the
backward orbit of any non-exceptional point contains the Julia set.

The mere fact that G̃+ is plurisubharmonic does not indicate that G̃+ enjoys
much regularity. So in section 5, we define a slightly stronger separation property
which allows us to obtain better regularity. Namely, G̃+ is mildly separating if
G̃+(p̃) > −∞ for all p̃ ∈ π−1(I−). The usefulness of this property (and the justifi-
cation for its name) is indicated by the following summary of results from section
5.
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Theorem 1.4. The following statements about f+ are equivalent.

(1) f+ is mildly separating.
(2) f− is mildly separating.

(3)
∞∑

n=0

1
dn

log dist(fn
+(I−), I+) > −∞.

(4) π({G̃+ = −∞}) contains no algebraic curves.

Any one of these statements implies that G̃+ is continuous on π−1(D+) and that
µ+ is extremal in the cone of positive, closed (1,1) currents on P2.

The similarities between this result and Theorems 1.1 and 1.2 above are striking.
At present we know of no example of a minimally separating birational map that
is not mildly separating.

Section 6 introduces two further separation hypotheses for a birational map and
explores the implications of each. We say that f+ is separating if I+ ∩ I− = ∅.
We say that f+ is completely separating if I+ ⊂ N−—i.e. if iterates of f− form a
normal family on a neighborhood of I+. We are able to show that either of these
separation hypotheses implies partial results along the lines of the result of Ueda
mentioned above.

Theorem 1.5. If f+ is separating, then D+ is (open and) dense in P2 and in-
tersects any algebraic curve. The support of µ+ contains any repelling or saddle
periodic point of f+. Furthermore, if p is a periodic saddle point belonging to D+,
then suppµ+ contains (the closure of) the stable manifold of p.

Theorem 1.6. If f+ is completely separating, then suppµ+ is the exact comple-
ment of N+. Any positive, closed (1,1) current T such that T 6= cµ+ has support
which intersects N+.

These theorems, too, should be considered in light of the analogy between
suppµ+ and the Julia set of a one variable rational map. Theorem 1.5 amounts to
the statement that repelling periodic points belong to the Julia set, and Theorem
1.6 recalls the definition of the Julia set as the complement of the set of normality.

Finally, in section 7 we consider the class of polynomial birational maps in order
to provide examples of maps with the properties defined and described in earlier
sections. We say that f+ is polynomial if the restriction of f+ to C2 has polynomial
coordinate functions. We show that a polynomial map is minimally separating if
and only if it is mildly separating. In either case, this leads to the conclusion
that f+ and f− have well-behaved escape functions. We show that the escape
function G̃+, in particular, shares many of the features of the escape function for a
polynomial automorphism (see Section 3 of [BS1] for comparison). We then restrict
further to the class of degree 2 polynomial maps. We give various examples of these
which show among other things that a birational map can be mildly separating but
not separating, and separating but not completely separating. Whereas all the
other separation hypotheses turn out to be symmetric in f+ and f−, we give an
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example which shows that a completely separating birational map need not have a
completely separating inverse.

We would like to thank Eric Bedford, especially, for many helpful conversations
about the work presented in this paper. His knowledge of pluripotential theory and
multivariable complex dynamics has been an invaluable resource, generously and
patiently offered. We are also indebted to the referee for an exceptionally careful
reading of our paper. Many corrections and several changes in presentation resulted
directly from his diligence.

2. Rational Maps of P2 and Escape Functions

In this section we discuss basic ideas and notation associated with rational self-
maps of P2. Most of the results that we give here appear in earlier papers, though
Propositions 2.6 and 2.7 do not seem to have previously been stated or explicitly
used. The latter play a crucial role in this paper. Much of the discussion in this
section applies with little or no modification to higher dimensions, but since we are
only concerned with maps of P2, we will restrict ourselves to the two-dimensional
context.

Constants in what follows will be denoted by generic letters (e.g. C) whose
numeric value might change from one line to the next. We will add a subscript
(e.g. C1) when we want to indicate that a constant remains unchanged from its
previous occurence. Where we wish to emphasize that a constant C depends on
parameters a1, . . . , an, we will write C(a1, . . . , an).

Projective Space. Complex projective 2 space is a canonical compactification of
C2. One defines P2 formally as the quotient of C3 \ {0} by the relation identifying
p̃ with λp̃ for any p̃ ∈ C3 \ {0} and any λ ∈ C \ {0}. That is, complex lines through
the origin in C3 become points in P2. We denote the resulting quotient map by
π : C3 \ {0} → P2. To distinguish a point p ∈ P2 from one of its representatives
in C3, we will use p̃ to denote the representative. To make the same distinction in
coordinate notation, we will write (x, y, z) ∈ C3 and use homogeneous coordinates
[x : y : z] to denote π(x, y, z) ∈ P2. Note that homogeneous coordinates are unique
only up to multiplication by non-zero complex scalars.

The natural (albeit not unique) inclusion i : C2 → P2 maps (x, y) to [x : y : 1].
One can check that i is injective and that P2 \ i(C2) = {[x : y : 0]} is an embedded
copy of the Riemann sphere P1. We refer to this sphere as the line `∞ at infinity.

When computing volume or distance, we adopt the Euclidean metric on C2 and
C3, and we use the Fubini-Study metric on P2. Regardless, we denote volume
measure by dV , induced volume measure on a submanifold by dA, and distance
between points by dist(·, ·). We will write BE(ε) to indicate the set of points whose
distance from the set E is less than ε. When the underlying metric is not clear
from context, we will indicate it explicitly.

The precise form of the Fubini-Study metric is somewhat awkward to apply.
To simplify computations, we will use a comparable “chordal” distance where it is
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convenient. That is, given any two points p1, p2 ∈ P2, dist(p1, p2) is comparable to

min
π(p̃j)=pj

||p̃j ||=1

dist(p̃1, p̃2).

To simplify volume estimates, we will also take advantage of the fact that on com-
pact subsets K ⊂ C2 ∼= i(C2) ⊂ P2, Fubini-Study and Euclidean volume measures
are comparable with a comparability constant depending only on K.

An algebraic curve V ⊂ P2 is a set of the form {π(p̃) : P̃ (p̃) = 0} where P̃ is
a non-constant homogeneous polynomial. We call P̃ a defining polynomial for V .
If P̃ has the smallest possible degree among defining polynomials for V , then we
say that P̃ is minimal and that the algebraic degree deg V of V is deg P̃ . Minimal
defining polynomials are unique up to constant multiples.

Points in V can be divided into those which are regular—i.e. points p such that
V ∩ Bp(ε) is an embedded complex manifold for ε > 0 small enough—and those
(finitely many) which are singular—i.e. not regular. Any algebraic curve V ⊂ P2

admits a regularization. That is, there is a compact (though possibly not connected)
Riemann surface X without boundary and a holomorphic map h : X → P2 such
that h(X) = V , and if p ∈ V is regular then h−1(p) is a singleton {z} such that dh
is non–singular at z.

If P̃ is a minimal defining polynomial for V , and P̃ cannot be written P̃1 · P̃2

for any pair of non-constant homogeneous polynomials, then we say that V is
irreducible. This is equivalent to the statement that if N is any finite subset of V ,
then V \N is connected. It is also equivalent to the statement that V is regularized
by a connected Riemann surface.

Rational maps of P2. Any map of C2 with rational coordinate functions extends
to a rational map of P2. However, treating rational maps as “extended maps of
C2” tends to obscure a global understanding of the maps by forcing a continual
distinction between points in C2 and points not in C2. It will be more useful for us
to understand a rational map as a map induced by a homogeneous map of C3.

Namely, suppose that f̃ : C3 → C3 is holomorphic and satisfies f̃(λp̃) = λdf̃(p̃).
It follows quickly from Liouville’s theorem that the component functions of f̃ are
homogeneous polynomials of degree d, and hence, that d is an integer. Since f̃
maps lines through the origin to lines through the origin, we see that there is a
holomorphic map f : P2 → P2 such that f ◦ π = π ◦ f̃ . This is not entirely correct,
however, because there will in general be a set I of points p ∈ P2 such that f̃(p̃) = 0
for some (thus all) p̃ ∈ π−1(p). At these points f will be ill-defined. I is necessarily
an algebraic variety, proper if f̃ is not identically 0. If I has a codimension 1
component V , then it is not hard to see that a minimal defining polynomial P̃ for
V will divide all three coordinate functions of f̃ . Hence f̃/P̃ induces the same map
f on P2 \ V . After we reduce f̃ by all possible polynomial factors, we obtain a
minimal homogeneous map inducing f . The indeterminacy set I will then be at
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most a finite set of points in P2, and f will not extend continuously past any point
in I.

If f̃ is a minimal, degree d, homogeneous map of C3, we say that the induced
map f of P2\I is a degree d rational map of P2. Despite the fact that f is ill-defined
on I, we write f : P2 → P2 for simplicity. We refer to f̃ as a minimal representative
of f . Minimal representatives are unique up to multiplication by complex scalars;
hence the degree d and indeterminacy set I of f are well-defined. We let C denote
the critical set of f , and for convenience we include in C any limit point lying in
I. By considering Df̃ , one can show that C is an algebraic curve of degree at most
3d− 3.

Given E ⊂ P2, we would like to define f(E) and f−1(E) to take account of points
of indeterminacy. So we adopt the convention that f(E) consists of f(E \ I) along
with all points p ∈ P2 such that p = lim f(qj) where qj ∈ E \ I and lim qj ∈ E ∩ I.
Next, given a single point p ∈ P2, we declare f−1(p) to be the closure in P2 of
{q ∈ P2 \ I : f(q) = p}. We then set

f−1(E) =
⋃
p∈E

f−1(p).

These definitions have the virtue that the image and preimage of a closed set is
closed. Furthermore, if E ∩ I = ∅, then f−1(E), f(E) are given by the usual
definitions of image and preimage. Nonetheless, one must be careful—for instance,
it is not true in general that f(E1 ∪ E2) = f(E1) ∪ f(E2) or that f(f−1(E)) = E.

Since we are interested in dynamics—that is, iterates of f—we note that the
indeterminacy set for fk is

Ik =
k−1⋃
j=0

f−j(I).

Allowing k = ∞ in this definition gives us the set I∞ of all points p such that f j(p)
is ill-defined for j large enough.

Definition 2.1. The extended indeterminacy set of f is I = I∞. Its comple-
ment D = P2 \ I is the dynamic domain of f .

Note that the dynamic domain is the largest open subset of P2 on which all iterates
of f are well-defined. Though a rational map cannot be continuously extended
across a point of indeterminacy, it is a useful and well-known fact that one can
obtain holomorphic extensions “along analytic disks.” In the next proposition,
∆ ⊂ C is the unit disk.

Proposition 2.2. Let f : P2 → P2 be a rational map, and let h : ∆ → P2 be a non-
constant holomorphic map. Then there is a unique holomorphic map g : ∆ → P2

such that g(z) = f ◦ h(z) for all z such that h(z) /∈ I.

Proof. Since h is non-constant and I is finite, h−1(I) is discrete. We set g(z) =
f ◦ h(z) for all z /∈ h−1(I). Extending g analytically past h−1(I) is a purely local
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problem, so we can assume without loss of generality that h(∆) ⊂ C2 = {[x : y :
1] ∈ P2} and h−1(I) = {0}. Then we can write h = (h1, h2) and lift h to a map
h̃ : ∆ → C3 by setting h̃ = (h1, h2, 1).

Let f̃ : C3 → C3 be a minimal representative of f , and set (f1, f2, f3) =
f̃ ◦ h̃. Since h(0) is the only point of indeterminacy in the range of h, we have
π(f1(z), f2(z), f3(z)) = g(z) for z 6= 0 and f̃j(0) = 0 for j = 1, 2, 3. Let k be the
minimal order of vanishing of f1, f2, f3 at 0, and let g̃(z) = (f1/zk, f2/zk, f3/zk).
Then we have again that π ◦ g̃ = g for all z 6= 0. However, since g̃(0) ∈ C3 \ {0},
π ◦ g̃(0) is well-defined and extends g analytically past 0. The extension is clearly
unique. �

Given a rational map f of P2 and a non-constant holomorphic map h : X → P2

of a Riemann surface X, this proposition allows us to write f ◦ h without worrying
about possible points of indeterminacy in h(X). It is clear that (f ◦ h)(X) =
f(h(X)). Since any algebraic curve V ⊂ P2 admits a regularization h : X → V
it is clear that f(V ) = f ◦ h(X) is the union of an algebraic curve with a finite
number of points corresponding to components of X on which f ◦ h is constant. If
in addition, V is irreducible, then we conclude that f(V ) is either a single point or
an irreducible algebraic curve.

While regularizations provide a way to realize the image of an algebraic curve,
defining polynomials give an alternate method for realizing a curve’s preimage.
Namely, suppose that P̃ is a defining polynomial for V , and f̃ is a minimal rep-
resentative for f . Then it is not hard to verify that f−1(V ) is an algebraic curve
defined by P̃ ◦ f̃ .

Given rational maps f, g : P2 → P2, with minimal representatives f̃ , g̃, it is not
necessarily true that f̃ ◦ g̃ is a minimal representative of f ◦ g. The key observation
in the next proposition appears in [FS1].

Proposition 2.3. Let f and g be rational maps of P2 with minimal representatives
f̃ and g̃ and indeterminacy sets If and Ig. Then f̃ ◦ g̃ is a minimal representative
of f ◦ g if and only if there exists no algebraic curve V such that g(V ) ⊂ If . In
particular, deg(f ◦ g) ≤ (deg f)(deg g) with equality holding if and only if no such
V exists.

Proof. Suppose that f̃ ◦ g̃ is not minimal. Then there is a homogeneous polynomial
P̃ : C3 → C, such that P̃ divides all three coordinate functions of f̃ ◦ g̃. Let V ⊂ P2

be the curve defined by P̃ . Then f̃ ◦ g̃ vanishes on π−1(V ) and f̃ vanishes on
π−1(g(V )). We conclude that g(V ) ⊂ If . Now suppose that V is a curve such
that g(V ) ⊂ If , and hence, that f̃ ◦ g̃ vanishes on π−1(V ). It follows that any
minimal defining polynomial for V divides all three coordinate functions of f̃ ◦ g̃.
We conclude that f̃ ◦ g̃ is not minimal.

The final statement of the proposition follows because f̃ ◦ g̃ is a representative
of f ◦ g, but deg f ◦ g is defined to be the degree of a minimal representative. �

Given a rational map f and an algebraic curve V , Fornaess and Sibony say
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that V is a degree lowering curve for f if fk(V ) ⊂ I for some positive integer k.
According to the previous proposition, the degree of fn will be (deg f)n for all n
if and only if f has no degree lowering curves. John Smillie observed to us that a
stronger statement holds:

Corollary 2.4. Given a rational map f ,

L = lim
n→∞

1
n

log deg fn

always exists. Furthermore, L ≤ log deg f with equality if and only if f has no
degree lowering curves.

Proof. It is well-known that if {an} is a sequence with the property an+m ≤ an+am

for all n and m, then lim an/n exists. Clearly an = log deg fn satisfies this subad-
ditivity condition. From Proposition 2.3 it is also clear that lim(log deg fn)/n = d
if f has no degree lowering curves.

Now suppose that f has a degree lowering curve whose minimal defining polyno-
mial P̃ has degree j. Then for some k, fk is divisible by P̃ , and deg fk ≤ (deg f)k−j.
Thus we have

lim
n→∞

1
n

log deg fn = lim
n→∞

1
nk

log deg fnk ≤ 1
k

log((deg f)k − j) < deg f.

�

In light of Corollary 2.4, the next definition becomes meaningful.

Definition 2.5. The dynamic degree of a rational map f : P2 → P2 is

lim
n→∞

(deg fn)1/n.

We say that f has maximal dynamic degree if the degree of f and the dynamic
degree of f are the same.

Thus, f has maximal dynamic degree if and only if f has no degree-lowering curves.

Expansion Functions and Escape Functions.
Fix a degree d ≥ 2 rational map f : P2 → P2 with indeterminacy set I.

Choose a minimal representative f̃ : C3 → C3 of f , scaled for convenience so
that max||p̃||=1 ||f̃(p̃)|| = 1. We define the expansion function Γ : P2 → [−∞, 0] for
for f by

Γ(p) = log
||f̃(p̃)||
||p̃||d

.

Homegeneity of f̃ guarantees that this definition does not depend on which repre-
sentative p̃ ∈ π−1(p) we choose on the righthand side. The dynamical relevance of
Γ appears in the next two propositions. The first relates Γ to the rate at which
f can separate points. The second relates Γ to the distance of a point from the
indeterminacy set.
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Proposition 2.6. There is a constant C such that for any p1, p2 ∈ P2 \ I.

dist(f(p1), f(p2)) ≤ Ce−Γ dist(p1, p2),

where
Γ = min{Γ(p1),Γ(p2)}.

In particular,
||Dfp|| ≤ Ce−Γ(p).

Proof. We will use the comparability of Fubini-Study and chordal distance to prove
the first estimate. The second estimate is just an infinitesimal version of the first.

Pick p̃j ∈ π−1(pj), j = 1, 2, such that ||p̃j || = 1 and dist(p̃1, p̃2) ≤ C1 dist(p1, p2).
We have

dist(f(p1), f(p2)) ≤ C dist

(
f̃(p̃1)
||f̃(p̃1)||

,
f̃(p̃2)
||f̃(p̃2)||

)

≤ C
dist(f̃(p̃1), f̃(p̃2))
min{f̃(p̃1), f̃(p̃2)}

≤ C2e
−Γ dist(f̃(p̃1), f̃(p̃2)).

But the map f̃ is uniformly Lipschitz on compact subsets of C3. Therefore,

dist(f̃(p̃1), f̃(p̃2)) ≤ C3 dist(p̃1, p̃2),

and
dist(f(p1), f(p2)) ≤ C1C2C3e

−Γ dist(p1, p2),

as desired. �

Proposition 2.7. There are constants C1, C2, C3, C4 depending only on f such
that

C1 + C2 log(dist(p, I)) ≤ Γ(p) ≤ C3 + C4 log(dist(p, I)).

In particular, Γ is bounded below on any compact subset of P2 \ I.

Proof. By our initial assumption about f̃ and homogeneity we have ||f̃(p̃)||/||p̃||d ≤
1 on C3. If I is non-empty, then no corresponding uniform lower bound is possible.
However, we can take advantage of the fact that the coordinate functions of f̃ are
polynomials whose simultaneous zeroes coincide with π−1(I) to conclude that

A1dist(p, I)k1 ≤ ||f̃(p̃)||
||p̃||d

≤ A2dist(p, I)k2
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for points p near I. Furthermore, we will have a uniform lower bound for the
middle term on compact subsets of P2 \ I. The proposition follows from these
observations. �

When the degree of f is at least two, one can define plurisubharmonic functions
closely related to Γ,

G̃n(p̃) =
1
dn

log ||f̃n(p̃)|| = log ||p̃||+
n−1∑
j=0

1
dj

Γ ◦ f j(p),

which track the rate at which points p̃ ∈ C3 tend to zero or infinity under iteration
of f̃ . Clearly, G̃n(p̃) ≤ log ||p̃||.

Corollary 2.8. Given p̃ ∈ C3 \ {0} and p = π(p̃), the following are equivalent:

(1) lim
n→∞

G̃n(p̃) exists and is finite;

(2)
∞∑

n=0

Γ ◦ fn(p)
dn

converges;

(3)
∞∑

n=0

1
dn

log dist(fn(p), I) converges.

Pointwise convergence at p̃ and p can be replaced by uniform convergence or L1
loc

convergence on U and π(U) for any measurable U ⊂ C3.

It turns out that if one allows for the possibility that G̃n → −∞, then it is not
hard to show that G̃n converges. The following result appears in varying degrees
of generality in [FS1], [HP], [Ue].

Theorem 2.9. Either G̃n tends uniformly to −∞ on compact subsets of C3, or
there exists a plurisubharmonic function G̃ : C3 → R∪{−∞} such that G̃n converges
to G̃ pointwise and in L1

loc(C3). If the second possibility occurs, then G̃ satisfies

(1) G̃(λp̃) = G̃(p̃) + log |λ|;
(2) G̃ ◦ f̃(p̃) = d · G̃(p̃);
(3) G̃(p̃) = −∞ if π(p̃) ∈ I∞ (in particular, poles of G̃ are dense in I).

Proof. By the definition of Γ, all terms in the sum defining G̃n are non-positive.
Thus {G̃n}∞n=0 is a decreasing sequence of plurisubharmonic functions. By well-
known results (see [Ho] Theorem 4.1.9) about such sequences, it follows that G̃n

tends uniformly on compacts to −∞, or G̃n tends pointwise and in L1
loc to a

plurisubharmonic limit function. The properties (1)–(3) of G̃ all derive from analo-
gous properties of the functions G̃n, and these analogous properties follow directly
from the definition of G̃n. �
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Definition 2.10. The escape function G̃ : C3 → R ∪ {−∞} for a rational map
f̃ is given by

G̃(p̃) = lim
n→∞

G̃n(p̃)

for all p̃ ∈ C3. If G̃ is identically −∞, then we say that G̃ is degenerate.

According to the theorem above, G̃ is either plurisubharmonic or degenerate. It
should be emphasized, however, that a priori G̃ might be plurisubharmonic but still
quite badly behaved. For instance, it is possible for a plurisubharmonic function to
have a dense set of poles.

3. Birational Maps of P2

The only biholomorphisms of P2 are rational maps of degree one—the two-
dimensional analogue of linear fractional transformations of the Riemann sphere.
However, there is a weaker notion of invertibility that includes many dynamically
interesting rational maps.

Definition 3.1. A rational map f+ : P2 → P2 is birational if there exists another
rational map f− and an algebraic curve V such that f+ ◦ f− = f− ◦ f+ = id on
P2 \ V .

For example, any polynomial automorphism of C2 extends to a birational map of
P2 with V = `∞.

Throughout the rest of this paper, unless otherwise noted, f+ : P2 → P2 will
denote a birational map with degree at least two and minimal representative f̃+ :
C3 → C3. f− will denote the birational inverse of f+ and f̃− : C3 → C3 will be its
minimal representative. We will preserve from the last section the notation used
to denote indeterminacy sets, critical sets, escape functions, etc., using + and −
superscripts to distinguish objects corresponding to f+ from objects corresponding
to f−. For instance, I+ is the indeterminacy set of f+, and G̃− is the escape funtion
for f−.

An example of a degree two birational map is given in homogeneous coordinates
by

q+[x : y : z] = [yz : zx : xy].

The critical set C+ of q consists of the three lines {[x : y : 0]}, {[x : 0 : z]}, {[0 : y :
z]}, which are mapped to the points [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], respectively; these
image points, in turn, comprise the indeterminacy set I− for q−. Since q− = q+,
these observations apply with + and − signs reversed. We will refer to q+ as the
standard quadratic transformation. The following structure theorem for birational
maps of P2 is well-known [GH].

Theorem 3.2. Any birational map f+ : P2 → P2 can be decomposed into biholo-
morphisms and standard quadratic transformations. That is, f+ can be written

A0 ◦ q+ ◦A1 ◦ q+ ◦ · · · ◦ q+ ◦An
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where q+ is as above and A0, . . . , An are biholomorphisms.

It follows immediately from this theorem that a birational map and its inverse
have the same degree. Note that even if n is chosen as small as possible in the
above decomposition it does not necessarily follow that deg f+ = 2n. This is easily
seen by pointing out that there are degree three birational maps of P2 (even in fact
polynomial automorphisms of C2).

Theorem 3.2 and the properties of q+ suggest strong and useful relationships
between critical sets and indeterminacy sets of birational maps. We summarize
these in the following proposition. It would appear, however, that Theorem 3.2
does not provide an easy means of proving the proposition.

Proposition 3.3. The following statements are true for any birational map f+.
(1) Given any irreducible curve V ⊂ C+, f+(V ) is a single point in I−; likewise,

given any p− ∈ I−, f−1
+ (p−) is a component of C+.

(2) I+ ⊂ C+, and every irreducible component of C+ contains a point of I+.
(3) f+ : P2 \ C+ → P2 \ C− is a biholomorphism.

Proof. (1): Let V ⊂ C+ be an irreducible curve. Suppose that f+(V ) 6⊂ I−. Then
there is a point p ∈ V \ I+ such that f+(p) /∈ I−. By continuity there is a small
neighborhood N ⊂ P2 \ I+ of p such that f+(N) ∩ I− = ∅. Hence f− ◦ f+ is
well–defined on N , and since this composition is the identity on a dense open set
in P2, it is the identity on N . Differentiating the identity f− ◦ f+ = id shows that
Df cannot be singular at p. This contradiction shows that f+(V ) ⊂ I+. From the
discussion following Proposition 2.2, we know that f+(V ) is in fact a single point.

Now pick p− ∈ I−, and choose ε so that the ball Bp−(ε) of radius ε about p−

contains no other point of I−. Set

K =
⋂
r<ε

f−1
+ ( Bp−(r) ).

Then K is a non-empty, connected, compact set, and by continuity f+(K) = {p−}.
If K consists of a single point, then f− extends continuously to p−, contradicting
our assumption that p− ∈ I−. Thus K is an infinite, connected set. It is not hard
to see now that K ⊂ C+. I+ is finite, so K ∩ (C+ \ I+) is non-empty.

(2): By (1) f+ maps any irreducible component of C+ to a single point. Fornaess
and Sibony ([FS1] Proposition 1.2) show that any such component must contain a
point of indeterminacy. This gives us the second half of the statement. Now pick
p+ ∈ I+. Then there exists a curve V − ⊂ C− such that f+(V −) = p+. We choose
p− ∈ V − ∩ I− and define K as above. Clearly, p+ ∈ K. Since K ⊂ C+, we are
done.

(3): From (1) and (2) applied to f+ and f−, we see that f+ maps P2 \ C+ into
P2\C− and vice versa. Since f+◦f− and f−◦f+ are both the identity map wherever
they are defined, the statement follows. �
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Corollary 3.4. The following statements are equivalent:

(1) f+ has maximal dynamic degree;
(2) f− has maximal dynamic degree;
(3) I+

∞ ∩ I−∞ = ∅;
(4) I+ ∩ I−∞ = ∅.

Proof. The only varieties V that are mapped to points are subsets of C+. Since
f+(C+) = I−, a degree lowering curve for f+ exists if and only if fk

+(I−) intersects
I+ for some k ≥ 0. Hence (1) is equivalent to (4).

Since I+ ⊂ I+
∞, (3) implies (4). On the other hand, suppose that p ∈ I+

∞ ∩ I−∞
does not belong to I+. Then f+(p) is also a point belonging to I+

∞ ∩ I−∞, and we
have that either f+(p) ∈ I+ or f2

+(p) is a point lying in I+
∞ ∩ I−∞. Repeating this

procedure and using the the fact that p ∈ I+
∞, we see that there is a finite number

k such that fk
+(p) ∈ I+ ∩ I−∞. Hence, (4) implies (3).

By symmetry (3) is also equivalent to I− ∩ I+
∞ = ∅. We conclude that (3) is

equivalent to (2). �

Definition 3.5. We say that a birational map f+ is minimally separating if
I+
∞ ∩ I−∞ = ∅.

Eric Bedford pointed out to us that one can rephrase this definition by saying that
at each point p ∈ P2, either fk

+(p) is well-defined for all k, or fk
−(p) is well-defined

for all k.
The composition of f̃+ with f̃− always fails to be minimal, as the next corollary

shows.

Corollary 3.6. We have
f̃− ◦ f̃+ = P̃+ · id,

where P̃+ is a defining polynomial of degree d2 − 1 for C+.

We remark that in general, P̃+ is not a minimal defining polynomial for C+, because
C+ has degree at most 3d− 3.

Proof. We only need to show that P̃+ defines C+. Zeroes of P̃+ are either points
p̃ such that π(p̃) ∈ I+ or points p̃ such that f+(π(p̃)) ∈ I−. By (1) and (2) of
Proposition 3.3, the set of such points is exactly C+. �

The next corollary of Proposition 3.3 amounts to a refined special case of Propo-
sition 4.4 below.

Corollary 3.7. Let V ⊂ P2 be an irreducible algebraic curve. Then either V ⊂ C+

and f+(V ) is a single point, or f+(V ) is an irreducible algebraic curve such that
f−(f+(V )) = V . Furthermore,

(1) f+(V ) ⊂ f−1
− (V );

(2) deg f+(V ) ≤ (deg f+)(deg V ).
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Equality holds in either of these statements if and only if V ∩ I+ = ∅. If f+ is
minimally separating, then a generic complex line L in P2 satisfies

lim
n→∞

1
n

log deg fn
+(L) = d.

Proof. If V ⊂ C+, then V contains a point p+ ∈ I+. Thus f+(V ) is a single point
on the curve f−1

− (p+) ⊂ f−1
− (V ), and the corollary follows. So for the rest of the

proof, assume V 6⊂ C+. (3) of Proposition 3.3 implies that f+(V ) is a non-trivial
algebraic curve, and f+(V )∩C− is finite. Thus, f−(f+(V )) = f−(f+(V ) \ C−) ⊂ V
is also an algebraic curve. Since V is irreducible, it must be that f−(f+(V )) = V .

Let P̃ be a minimal defining polynomial for V . If p ∈ V \ I+ and π(p̃) = p, then

P̃ ◦ f̃− ◦ f̃+(p̃) = P̃ (P̃+(p̃) · p̃) = 0.

Hence f+(p) ∈ V ′ = f−1
− (V ), because V ′ is defined by P̃ ◦ f̃−. Because f+(V \ C+)

is dense in f+(V ), (1) follows. (2) follows from the chain of inequalities

deg f+(V ) ≤ deg V ′ ≤ (deg P̃ )(deg f̃−) = (deg V )(deg f+).

Furthermore, if V ∩ I+ is non–empty, then (1) of Proposition 3.3 implies that V ′

contains some component of C−. Since f+(V ) ∩ C− is finite, we conclude that
equality fails in both (1) and (2).

Now assume that V ∩ I+ is empty. Then it is not hard to see that V ′ ∩ C− is
finite. Thus

V ′ = V ′ \ C− = f+(V ) \ C− = f+(V ).

And if deg V ′ < (deg f̃−)(deg P̃ ), then by irreducibily of V ′ = f+(V ), we can write
P̃ ◦ f̃− = (P̃ ′)k for some homogeneous polynomial P̃ ′ and k ≥ 2. As a result,

(P̃ ′ ◦ f̃+)k = P̃ ◦ f̃− ◦ f̃+ = (P̃+)deg P̃ P̃ .

But P̃ is irreducible and does not divide P̃+ (since V 6⊂ C+), so this equation is
impossible. We conclude that equality holds in (1) and (2).

To get the last statement of the Corollary, note that I+
∞ is countable. Fix any

p /∈ I+
∞. As the number of complex directions at p is uncountable, we see that

almost every line through p misses I+
∞. �

Periodic Critical Points. Extrapolating from the behavior of maps of a single
complex variable, one might suppose that a periodic point p ∈ P2 is superattracting
for a rational map only if the map is generically n > 1 to 1 in a neighborhood of
p. However, even though a birational map is generically injective, it is possible for
such maps to have superattracting periodic points. For example, it is not hard to
see that [0 : 1 : 0] is superattracting for the Hénon map

f+ : [x : y : z] 7→ [yz : axz + y2 + cz2 : z2],
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in the sense that for points p close enough to [0 : 1 : 0],

dist(fn
+(p), [0 : 1 : 0]) ≤ (C dist(p, [0 : 1 : 0]))2

n

.

It is clear, however, that a superattracting periodic point must lie in the critical
set. In order to understand the way in which a birational map can shrink volume,
we will need some understanding of such points

Definition 3.8. A periodic critical point for a birational map f+ is a point
p ∈ C+ such that fk

+(p) = p for some k. We say that p is superattracting if both
eigenvalues of Dfk

+ vanish at p. Otherwise, we say that p is an ordinary periodic
critical point.

Though it will not be of much importance here, it makes sense to subdivide
ordinary periodic critical points into those which are attracting, semi-repelling, and
semi-indifferent according to whether the non-zero eigenvalue of Dfk

+ at p is less
than one, greater than one, or equal to one in magnitude.

Proposition 3.9. A birational map f+ of degree d has at most 3d − 3 periodic
critical points. Given any periodic critical point p, we have f+(p) ∈ I−. Finally,
the orbit of a point p intersects the orbit of a periodic critical point if and only if
the forward orbit of p intersects C+ \ I+ at least 3d − 2 times. In fact, the jth
intersection of the orbit of p with C+ is a periodic critical point for all j ≥ 3d− 2.

Proof. If V is an irreducible component of C+, then f+(V ) is a single point. Hence
V contains at most one periodic critical point. The algebraic degree of C+ is 3d−3,
so there are at most 3d−3 irreducible components of C+ and, hence, at most 3d−3
periodic critical points. Also, f+(C+) = I− implies that the image of any periodic
critical point lies in I−.

It is clear that if the orbit of a point p intersects the orbit of a periodic critical
point, then the two orbits coincide thereafter. It follows that the orbit of p passes
through C+ \ I+ (whenever it returns to the periodic critical point) infinitely many
times. On the other hand, if the orbit of p passes through C+ \ I+ 3d− 2 times, it
must be the case that fk

+(p) ∈ V \ I+ for some irreducible component V ⊂ C+, and
at least two distinct values k1 < k2 of k. Hence, fk1+1

+ (p) = fk2+1
+ (p). This implies

that fk2
+ (p) is a periodic critical point. �

Proposition 3.10. If p is an ordinary periodic critical point of period k, then p is
a regular point of C+, and there exists a constant C > 0 and a neighborhood N of
p such that for any p′ ∈ N

dist(fk
+(p′), C+) ≥ C dist(p′, C+).

Proof. After change of coordinates, we may suppose that p is the origin in C2

and that (0, 1) is an eigenvector of Dfk
+(p) with non-zero eigenvalue. If we write
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fk
+ = (f1, f2), we can apply the Weierstrass preparation theorem in a neighborhood

N of (0, 0) to obtain f2(x, y) = A(x, y)(y + B(x)), where A and B are holomorphic
functions, A does not vanish near (0, 0), and B(0) = 0. It follows that near (0, 0),
C+ is simply the graph of y = −B(x). In particular, (0, 0) is a regular point of C+.

After another local change of coordinates, we may suppose that C+ ∩ N is the
x–axis; that is, B(x) = 0. If we restrict N slightly, we will have a constant C > 0
such that |A| > C on N . Then for all (x, y) ∈ N , we will have

d(fk
+(x, y), C+) = |f2(x, y)| ≥ C|y| ≥ C dist((x, y), C+)

as desired. �

If p is attracting or superattracting, it follows that fk
+ is a contraction mapping

on a neighborhood of p. We define the immediate basin of p by

B0
p = {p′ ∈ P2 \ I+

∞ : lim
n→∞

fkn
+ (p′) = p},

and the (full) basin of p by

Bp = {p′ ∈ P2 \ I+
∞ : f j

+(p) ∈ B0
p for some j}.

It is clear that orbits of points in Bp converge uniformly on compact subsets to the
cyclic orbit of p.

Birational Maps and Volume. We wish to prove

Theorem 3.11. Let f+ be a minimally separating birational map of P2, and fix
λ > 1. Then there are constants C1, C2 depending only on f+ and λ such that

Volume fn
+(E) ≥ (C1 Volume E)C2λn

for all n ≥ 0, and every measurable E ⊂ P2 which does not intersect the basin of
any superattracting point.

This theorem will be applied below to show that the escape function for a min-
imally separating birational map is plurisubharmonic and to prove a convergence
theorem for pullbacks of positive closed currents on P2.

The idea behind the proof of the theorem goes as follows: if E avoids the critical
set by a non-zero distance under iteration of f+, then its volume shrinks by at most
a constant factor during each iterate. On the other hand, if there is a part E0 ⊂ E
such that f j

+(E0) lies too near the critical set for too many j, then by Proposition
3.9, the orbit of E0 shadows that of a critical periodic point. In this case, one
can use estimates in local coordinates to bound the volume of f j

+(E0) from below.
Making this idea precise requires a number of preliminary results. The first two are
independent of whether or not E intersects a superattracting basin.
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Lemma 3.12. Let q+ be the standard quadratic transformation. There exists a
constant C such that for any measurable E ⊂ P2,

Volume q+(E) ≥ C(Volume E)2.

Proof. The sets of points [x : y : z] ∈ P2 where |x| = |y|, |y| = |z|, and |z| = |x|, re-
spectively, divide P2 into six connected regions. The map q+ permutes these regions
among each other. We may without loss of generality suppose that our measurable
set E lies entirely inside one of the six regions. After permuting coordinates in the
domain and range (this amounts to changing domain and range by isometries of
P2), we may suppose that E, q+(E) ⊂ K = {(x, y) ∈ C2 : |y| < |x| < 1} and that
in the new coordinates q+ becomes

q′+[x : y : z] = [yz : xy : xz].

As a map on C2, q′+(x, y) = (y/x, y). Since K is relatively compact in C2, it is
enough to prove the lemma for Euclidean volume. One can check that at points in
K, the magnitude of the complex Jacobian determinant J of q′+ is bounded below
by |y|. If Et = {(x, y) ∈ E : |y|2 > t}, then we have Volume Et ≥ max{−Ct +
Volume E, 0}. Thus,

Volume q′+(E) =
∫

E

|J |2 dV ≥
∫

E

|y|2 dV =
∫ 1

0

Volume Et dt

≥
∫ C−1 Volume E

0

(−Ct + Volume E) dt = C(Volume E)2.

�

Corollary 3.13. Let f+ be any birational map of P2. Then there exist constants
C, k such that for any measurable E ⊂ P2

Volume f+(E) ≥ C(Volume E)k.

Proof. Recall that f+ factors as A0 ◦ q+ ◦ A1 ◦ · · · ◦ q+ ◦ An, where q+ is as above
and Aj is a biholomorphism. Since P2 is compact, we will have constants Cj > 0
such that Volume Aj(E) ≥ Cj Volume E for all measurable sets E. Combining this
with the previous lemma gives

Volume f+(E) ≥ C(Volume E)2
n

.

Taking k = 2n completes the proof. �

The next lemma estimates the rate at which f+ can shrink the volume of a set
which lies close to a periodic critical point.
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Lemma 3.14. Let p be an ordinary n–periodic critical point of f+. There is a
neighborhood N of p with the following property. Suppose that E ⊂ N is measurable
and f jn

+ (E) ⊂ N for all 1 ≤ j ≤ k. Then

Volume fkn
+ (E) ≥ C1(Volume E)C2k.

C1 depends on k but not on E, and C2 is independent of both k and E.

Proof. By passing to an iterate of f+, we may suppose that p is a fixed periodic
point. Since p is a regular point of C+, we can choose local coordinates so that
p = (0, 0), and C+ ∩ Bp(ε) = {(x, 0) ∈ Bp(ε)}. On N = Bp(ε), Euclidean volume
will be comparable to Fubini-Study volume, so we obtain the estimate for Euclidean
volume. We choose ε small enough so that Proposition 3.10 applies; i.e. there exists
a constant C > 0 such that if (x1, y1) = f+(x0, y0), then |y1| ≥ C|y0|. We can also
assume that the complex Jacobian J of f+ satisfies

|J(x, y)| ≥ C|y|m.

Given (x0, y0) ∈ E, we have by assumption that (xj , yj) = f j
+(x0, y0) ∈ Bp(ε) for

all 1 ≤ j ≤ k. Thus, |yj | ≥ C(k)|y0| for all j ≤ k. Furthermore, if Jk denotes the
complex Jacobian of fk

+, we have

|Jk(x0, y0)| = |J(x0, y0)| · . . . · |J(xk−1, xk−1)|
≥ C(k)|y0|m · . . . · |yk−1|m ≥ C(k)|y0|mk.

Now let Et = {(x, y) ∈ E : |Jk(x, y)|2 ≤ t}. Then our estimate on |Jk| tells us that
Volume Et ≤ C0(k)t1/mk. We use this to obtain

Volume fk
+(E) =

∫
E

|Jk|2 dV

=
∫ ∞

0

(Volume E −Volume Et) dt

≥
∫ (Volume E

C0
)mk

0

(Volume E − C0t
1/mk) dt

= C(k)(Volume E)1+mk ≥ C1(k)(Volume E)C2k.

�

Let Ω : P2 \ I+ → R+ ∪ {0} be defined by f∗+ dV = Ω dV , where dV is the
Fubini-Study volume element. Set

ω(δ) = {p ∈ P2 \ I+ : Ω(p) < δ}

The following lemma gives us control over the size and location of ω(δ) when δ is
small.
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Lemma 3.15. Given ε > 0, there exists δ > 0 such that
(1) ω(δ) ⊂ BC+(ε);
(2) f+(ω(δ)) ⊂ BI−(ε).

Proof. The first item follows from the facts that Ω is continuous, Ω vanishes only
on C+, and P2\BC+(ε) is compact in P2\I+. That is, we set δ = minP2\BC+ (ε) Ω(p).

To obtain the second item we observe that if p′ = f+(p) /∈ BI−(ε),

Ω(p) = lim
r→0

Volume Bp′(r)
Volume f−(Bp′(r))

≥ lim
r→0

 r

max
p′′∈Bp′ (r)

dist(f−(p′′), p)


4

≥ 1
||Df−(p′)||4

≥ e4Γ−(p′)

≥ Cεk = δ > 0.

The last two inequalities come from Propositions 2.6 and 2.7. �

Now we are ready for the main part of the proof of Theorem 3.11. Let k be
a large integer—how large will be determined below, but for now we regard k as
fixed. Recall that I−k = ∪k−1

j=0f−j
− (I−). The fact that f+ is minimally separating

guarantees that I−k is a finite set of points.
We choose ε > 0 and then δ > 0 so that
(1) BI−k

(ε) is a disjoint union of balls—one for each point in I−k .
(2) p ∈ I−k implies that either p ∈ C+ or Bp(ε) ∩BC+(ε) = ∅.
(3) If p ∈ I−k is a periodic critical point, then Lemma 3.14 applies with N =

Bp(ε).
(4) ω(δ) ⊂ BC+(ε)
(5) f j

+(ω(δ)) ⊂ BI−k
(ε) for all 1 ≤ j ≤ k.

Let E be the set given in the statement of Theorem 3.11. We can assume without
loss of generality that Volume E < 1 (at any rate P2 is compact, so Volume E is
bounded above). We can define an equivalence relation ∼ on points in E as follows:
p1 ∼ p2 means that for each 0 ≤ j ≤ k, and each p ∈ I−k :

(6) f j
+(p1) ∈ ω(δ) if and only if f j

+(p2) ∈ ω(δ);
(7) f j

+(p1) ∈ Bp(ε) if and only if f j
+(p2) ∈ Bp(ε);

That is, p1 ∼ p2 if and only if for the first k iterates, their orbits stay together with
respect to the partition determined by ε, δ and conditions (1) through (5). This
equivalence relation divides E into a finite union of disjoint measurable subsets.
Let N = N(k) be the maximum possible number of pieces in the division. Then
for some piece E0, we must have Volume E0 ≥ (Volume E)/N(k).
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Lemma 3.16. Suppose that f j
+(E0) is disjoint from Bp(ε)∩ω(δ) for all 1 ≤ j ≤ k

and all periodic critical points p. Then

Volume fk
+(E0) ≥ A(Volume E0)B

where A and B are constants independent of E0, and B does not depend on k.

Proof. For each j, either f j
+(E0) ∩ ω(δ) = ∅ or f j

+(E0) ⊂ ω(δ). If the former
possibility occurs, then by definition of ω(δ), we have

Volume f j+1
+ (E0) ≥ δ Volume f j

+(E0)

By hypothesis and Proposition 3.9, the latter possibility can only occur for 3d− 3
distinct values of j. For each of these occurrences, Corollary 3.13 tells us that

Volume f j+1
+ (E0) ≥ C(Volume f j

+(E0))D

for constants C and D depending only on f+. Putting these facts together gives us
that

Volume fk
+(E0) ≥ A(δ, k)(Volume E0)D3d−3

,

and we are done. �

Lemma 3.17. Suppose there is a periodic critical point p and an integer j between
1 and k such that f j

+(E0) intersects Bp(ε) ∩ ω(δ). Then

Volume fk
+(E0) ≥ (A Volume E0)Bk

for constants A and B independent of E0. B is also independent of k.

Proof. Let j be the smallest integer such that f j
+(E0) ∩Bp(ε) ∩ ω(δ) 6= ∅ for some

periodic critical point p. Then in fact, f j
+(E0) ⊂ Bp(ε) ∩ ω(δ). Also, the proof of

the previous Lemma shows that

Volume f j
+(E0) ≥ A(Volume E0)B ,

where A and B are as in the statement of that lemma.
Now let m be the period of p and n be the largest integer such that j +mn ≤ k.

We can assume without loss of generality that m < k − j, since we are other-
wise essentially in the situation covered by the previous lemma. Lemma 3.14 and
condition (5) (above) tell us that

Volume f j+mn
+ (E0) ≥ C(Volume f j

+(E0))Dn ≥ (C Volume E0))Dn,

where C and D are constants independent of E0 and D is independent of k.
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To handle iterates of f+ between j + mn and k, we again invoke the proof of
Lemma 3.16 to obtain

Volume fk
+(E0) ≥ A(Volume f j+mn

+ (E0))B .

The proof is now concluded by putting this estimate together with the previous
one. �

End of the proof of Theorem 3.11. Let λ > 1 be given and E, E0 be as above. Then
Lemmas 3.16 and 3.17 together imply the existence of constants A = A(k) and B
independent of E and E0 such that

Volume fk
+(E0) ≥ (A Volume E0)Bk.

We pick k large enough that Bk ≤ λk. Since Volume E0 ≥ (Volume E)/N(k), we
have that

Volume fkn
+ (E) ≥ (C Volume E)λkn

for all n. Now any positive integer j can be written j = kn + m for some m,n > 0,
m < k. Invoking Corollary 3.13, we obtain

Volume f j
+(E) ≥ (A Volume fkn

+ (E))C2

≥ (C1 Volume E)C2λkn

≥ (C1 Volume E)C2λj

for constants C1, C2 which depend on k but not on j. �

Escape Functions for Birational Maps. We are now in a position to prove

Theorem 3.18. The escape function for a degree d ≥ 2 minimally separating
birational map of P2 is plurisubharmonic.

The first step in the proof was observed by Fornaess and Sibony.

Lemma 3.19. If f+ has periodic points, than G̃+ is plurisubharmonic.

Proof. If p is periodic, then the orbit of p does not intersect I+. Since both I+

and the orbit of p are finite sets, we see that there is a constant C > 0 such that
dist(fn

+(p), I+) ≥ C for all n. Corollary 2.8 now gives us that G̃+(p̃) > −∞ for all
p̃ ∈ π−1(p). Theorem 2.9 implies that G̃+ is plurisubharmonic. �

Now set
En(t) = {p ∈ P2 \ I+

∞ : log dist(fn
+(p), I+) < −t}.

Then we have
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Lemma 3.20. If f+ is birational and G̃ is degenerate, then

(3–1)
∞∑

n=0

1
dn

∫ ∞

0

Volume En(t) dt = ∞.

Proof. If G̃ is degenerate, then by Theorem 2.9 G̃n converges in L1
loc (uniformly on

compacts, in fact) to −∞. By Corollary 2.8, we must have that

∞∑
n=0

1
dn

∫
P2
− log dist(fn

+(p), I+) dV = ∞.

Since I+
∞ is countable, we can replace the domain of integration by P2 \ I+

∞. It
follows from standard real variables theory and compactness of P2 that the integral
in (3–1) is equal up to an additive constant to the one in the statement of the
lemma. �

Proof of Theorem 3.18. Since the set of points within distance e−t of I+ is a finite
union of balls of radius e−t, we have

Volume fn
+(En(t)) ≤ Ce−4t.

Pick λ strictly between 1 and d. By Lemma 3.19, we are free to assume that f+

has no superattracting periodic points. Hence, Theorem 3.11 assures us constants
C1, C2 such that

Volume fn
+(En(t)) ≥ (C1 Volume En(t))C2λn

for all n. Putting these two inequalities together yields

Volume En(t) ≤ Ae−Bt/λn

.

Now we estimate
∞∑

n=0

1
dn

∫ ∞

0

Volume En(t) dt ≤
∞∑

n=0

1
dn

∫ ∞

0

Ae−Bt/λn

dt

≤
∞∑

n=0

A

B

(
λ

d

)n

< ∞.

By Lemma 3.20, we are done. �

We remark that we did not really need the full strength of Theorem 3.11 in this
proof. We only needed a version of that theorem for maps without periodic critical
points. Such a version admits a proof which is considerably simpler than the one
we gave for Theorem 3.11. Only in the proof of Theorem 4.9 will we use the full
strength of Theorem 3.11.
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4. Positive Closed Currents on P2

In this section, we consider the currents µ± on P2 induced by the escape functions
G̃± for a birational map f and its inverse. We begin by recalling facts about
positive, closed (1,1) currents on P2.

Given a current T on P2, the mass norm M [T ] of T is given by

M [T ] = sup{|T (φ)| : φ is a test form with |φ(p)| ≤ 1 for all p ∈ P2}.

We denote the set of all positive closed (1,1) currents on P2 by Q. For T ∈ Q, mass
norm is comparable to total variation ||T || = T (θ) =

∫
P2 T ∧ θ of T , where θ is the

Kähler form for the Fubini-Study metric on P2.
If T is a current on an open subset W of P2, then the trivial extension of T to P2

is obtained by setting the coefficients of T equal to 0 on P2 \W . Given a current
T on P2 and K ⊂ P2 closed, we say that T has no support concentrated on K if T
agrees with the trivial extension to P2 of T |P2\K . Note that suppT ∩K 6= ∅ does
not necessarily imply that T has support concentrated on K.

Algebraic curves constitute an important subset of Q. One defines the current
of integration [V ] over a curve V by setting

[V ](η) =
∫

V

η,

for any test (1,1) form η (technically, one integrates only over the regular points of
V ). It is not hard to show that M [V ] = ||[V ]|| is the algebraic degree of V . We
will rely heavily on the following well-known pair of theorems concerning the rela-
tionship between curves and currents. [Sk] includes these theorems and attendant
references in his survey article.

Theorem 4.1 (H. Skoda). If V ⊂ P2 is an algebraic curve and T is a positive
closed (1,1) current on P2 \V with bounded mass near V , then the trivial extension
of T to P2 is positive and closed. In particular, if T ∈ Q then the trivial extension
to P2 of T |P2\V is positive and closed.

Theorem 4.2 (Y. Siu). Suppose T ∈ Q satisfies suppT ⊂ V for some irreducible
curve V . Then T is a multiple of [V ].

Because of Skoda’s theorem, we will make no distinction between T |P2\V and its
trivial extension to P2. Siu’s Theorem implies that any support that T concentrates
on a curve V consists of a positive linear combination of currents of integration over
the irreducible components of V .

The maximum principle implies that constants are the only functions U on P2

satisfying ddcU ≥ 0. However, there is still a sense in which all currents in Q
arise from global plurisubharmonic functions. Let U denote the set of homogeneous
potentials on C3. That is, a function Ũ : C3 → R ∪ {−∞} belongs to U if Ũ is
plurisubharmonic and Ũ(λp̃) = Ũ(p̃) + c log |λ| for all λ ∈ C and some c > 0. Then
the following theorem appears in [FS1].
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Theorem 4.3 (Fornaess and Sibony). There exists a surjective linear map
L : U → Q such that

(1) π∗(L(Ũ)) = ddcŨ ;
(2) ||L(Ũ)|| = c where c is the homogeneity constant for Ũ .
(3) ker L = R.

Rather than write L(Ũ), we will use the more suggestive notation π∗ddcŨ , since
(1) states that L is in some sense ddc followed by the inverse of π∗. (3) and
surjectivity guarantee that any T ∈ Q is induced by a homogeneous potential that
is unique up to addition of real constants. We note that π∗ddcŨ is defined locally
on a ball B ⊂ P2 by choosing any holomorphic right inverse π−1 : B → C3 of π
and setting π∗ddcŨ = ddc(Ũ ◦ π−1) on B. Homogeneity of Ũ guarantees that this
definition is independent of the choice of π−1. Finally, we remark that if V is an
algebraic curve and P̃ is a minimal defining polynomial for V , then log |P̃ | ∈ U ,
and [V ] = π∗ddc log |P̃ |.
Theorem 4.4. If T1, T2 ∈ Q are non–zero currents, then suppT1 ∩ suppT2 6= ∅.
In particular, every T ∈ Q has connected support.

Proof. This is just a version of the proof of Theorem 4.7 in [FS2], much simplified by
the fact that we are working in a narrower context. Let Ũ1, Ũ2 ∈ U be homogeneous
potentials for T1, T2. If suppT1 ∩ suppT2 = ∅, then Ũ1 is pluriharmonic in a
neighborhood of π−1(supp T2) and vice versa. Thus T1 and T2 “admit a wedge
product” T1 ∧ T2 in the sense described in [FS2]. In fact, T1 ∧ T2 must obviously
be 0. But by Theorem 4.4 in [FS2], we must have

||T1 ∧ T2|| = ||T1|| ||T2||.

This implies that either T1 or T2 is zero.
Now suppose that T ∈ Q is a current such that suppT ⊂ W1∪W2, where W1 and

W2 are disjoint open sets. Then Tj = T |Wj ∈ Q for j = 1, 2, and suppT1∩suppT2 =
∅. By the first part of the theorem, one of the Tj must be zero, and we conclude
that suppT lies entirely inside one of the Wj . �

Given a birational map f+ : P2 → P2, we would like to be able to push forward
and pull back currents in Q by f+. However if deg f+ ≥ 2, f+ is neither a (locally)
proper map nor a submersion; so the typical notions of pullback and pushforward
of currents do not apply. Nonetheless, Proposition 3.3 describes very precisely the
way in which f+ fails to be a biholomorphism, so it seems reasonable to use this
information to extend the definitions of pullback and pushforward. The following
definition is inspired by the discussion of images and preimages of algebraic curves
given after Proposition 2.2.

Definition 4.5. Let f+ be a birational map of P2 and T ∈ Q be a current with
homogeneous potential Ũ ∈ U . Then

f∗+T = π∗ddcŨ ◦ f̃+.
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Furthermore, let f0 be the restriction of f+ to P2 \ C+ and T0 be restriction of T to
P2 \ C+; then f+∗T is the trivial extension of f0∗T0 to P2.

We remark that the definition of f∗+T is independent of which representative f̃+

we choose for f+ and which potential Ũ we choose for T . There are several ways
in which we could reasonably extend the definitions of f∗+T and f+∗T even further.
For instance, f∗T makes sense for rational maps f which are not birational. With
a bit more effort, one can even make sense of f∗T . One can also relax somewhat
the requirements that T be positive and closed. But the definition we have given
here will be sufficient for the time being.

Proposition 4.6. Given a birational map f+ : P2 → P2 and T ∈ Q, we have that
(1) f∗+T, f+∗T ∈ Q;
(2) f∗+ and f+∗ are linear on Q;
(3) supp f∗+T ⊆ f−1

+ (supp T );
(4) supp f+∗T ⊆ f+(supp T ), and equality holds if T has no support concen-

trated on C+.

Proof. (1) is clear for f∗+T ; (1) follows from Theorem 4.1 for f+∗T . (2) follows more
or less directly from definitions. To prove (3), suppose there exists p ∈ supp f∗+T \
f−1
+ (supp T ). Since supp f∗+T is connected and closed, we can assume that p /∈ I+.

Thus we have that f+ maps a small neighborhood W of p holomorphically into
an open set W ′ such that W ′ ∩ suppT = ∅. If Ũ is a potential for T , then Ũ is
pluriharmonic on W ′, and ddcŨ ◦ f̃+ = 0 on π−1(W )—a contradiction.

To prove (4), we let T0 = T |P2\C+ and T1 = T − T0 = T |C+ . By Theorem 4.2,
T |C+ consists of multiples of currents of integration [V ] over curves V ⊂ C+. Both
T0 and T1 belong to Q. By definition f+∗T = f+∗T0. Since the support of a current
is closed, we invoke (3) of Proposition 3.3 to obtain

supp f+∗T0 = (supp f+∗T0) \ C−

f+(supp T0) = f+(supp T0) \ C−.

By (3) of Proposition 3.3 again, (supp f+∗T0) \ C− = f+(supp T0) \ C−. Item (4) of
this proposition now follows. �

Proposition 4.7. Let f+ and T be as in the last proposition. Write T+ = T |P2\C+

and T− = T |P2\C− , and let Ũ , Ũ+, Ũ− ∈ Q be potentials for T, T+, T−, respectively.
Then the following statements hold.

(1) ||f∗+T || = d ||T ||.
(2) f∗+(T−) − (f∗+T )|P2\C+ is a positive, closed current supported on C+. If

Ũ−(p̃) > −∞ for all π(p̃) ∈ I−, then the difference vanishes.
(3) f−∗T = (f∗+T )|P2\C+ .
(4) f∗+f∗−T = T +π∗ddc log |P̃+|, where P̃+ is the polynomial given by Corollary

3.6.
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(5) f−∗f+∗T = T+.
(6) f+∗f

∗
+T = T−.

(7) If Ũ+(p̃) > −∞ for all π(p̃) ∈ I+, then f∗+f+∗T = T+ + π∗ddc log |P̃+|

Proof. Note that T − T+ is a sum of positive multiples of currents of integration
over components of C+, and similarly with T − T−.

(1): This follows from (2) of Theorem 4.3, degree d homogeneity of f̃+, and the
fact that Ũ ◦ f̃+ is a potential for f∗+T .

(2): f∗+(T − T−) is supported on C+; hence f∗+T− − (f∗+T )|P2\C+ = f∗+T− −
(f∗+T−)|P2\C+ is a positive, closed current supported on C+. Given the extra condi-
tion, we have that Ũ− ◦ f̃+(p̃) > −∞ for all π(p̃) ∈ C+ \ I+. Hence, f∗+T− has no
support concentrated on C+.

(3): This follows from f−∗T = f−∗T− = (f∗+T−)|P2\C+ = (f∗+T )|P2\C+ . The
second equality holds because f+ : P2 \ C+ → P2 \ C− is a biholomorphism.

(4): By Corollary 3.6, we have Ũ ◦ f̃− ◦ f̃+(p̃) = Ũ(P̃+(p̃) · p̃) = Ũ(p̃) + log |P̃+|.
Applying π∗ddc to this equation proves the item.

(5): We have f−∗f+∗T = f−∗f+∗T+ + f−∗f+∗(T − T+) = f−∗f+∗T+ = T+.
The last equality follows from the definition of pushforward and the fact that f+ :
P2 \ C+ → P2 \ C− is a biholomorphism.

(6): We use (3) and (4) to obtain f+∗f
∗
+T = (f∗−f∗+T )|P2\C− = T |C− . (Recall

that P̃− is a defining polynomial for C−.)
(7): We apply (2), (3), and (4) to get f∗+f+∗T = f∗+((f∗−T )|P2\C−) = f∗+f∗−T+ =

T+ + π∗ddc log |P̃+|. �

If G̃+ is plurisubharmonic, then Theorem 4.3 and (1) of Theorem 2.9 imply that
G̃+ induces a current µ+ ∈ Q on P2. This current enjoys special transformation
properties under pushforward and pullback by f+ and f−.

Theorem 4.8. Suppose that f+ : P2 → P2 is birational and G̃+ is plurisubhar-
monic. Then

(1) f∗+µ+ = d · µ+;

(2) f∗−µ+ =
1
d
(µ+ + π∗ddc log |P̃−|).

Furthermore, the following statements are equivalent:
(3) f+ is minimally separating;
(4) µ+ has no support concentrated on C+;
(5) µ+ has no support concentrated on any algebraic curve;
(6) f−∗µ

+ = d · µ+.
Any one of these statements implies that

(7) f+∗µ
+ = µ+/d.

Proof. Since G̃+ ◦ f̃+ = d · G̃+, it follows that f∗+µ+ = d · µ+. (2) follows from (4)
of Proposition 4.7 and f∗−µ+ = 1

df∗−f∗+µ+.
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Turning to the equivalence of (3) through (6), we note that (3) of Proposition
4.7 gives us that (4) and (6) are equivalent. Clearly, (5) implies (4). To see that
(4) implies (3), suppose that f+ is not minimally separating. Choose p− ∈ I−, a
curve V + ⊂ C+ such that f+(C+) = p− and a non-negative integer k such that
fk
+(p−) = p+ ∈ I+. Then as in the proof of Proposition 2.3, f̃k+1

+ is divisible by P̃

for some defining polynomial P̃ of V . Recall that the sequence G̃+
n converging to

G̃+ is decreasing. So we have

G̃+(p̃) ≤ G̃k+1(p̃) =
1

dk+1
log ||f̃k+1

+ || ≤ C1 + C2 log |P̃ (p̃)|.

Consequently, µ+ = π∗ddcG̃+ has support concentrated on C+ = π{P̃ = 0}. The
implication (3) ⇒ (5) is a special case of Theorem 4.10 of [FS1], where Fornaess
and Sibony show that the escape function (if it is plurisubharmonic) for a rational
map with maximal dynamic degree has no support on any algebraic curve.

Finally, if we assume (5) is true and apply (2), we obtain that

f+∗µ
+ = (f∗−µ+)|P2\C− =

1
d
µ+|P2\C− =

1
d
µ+.

The first equality follows from (4) of Proposition 4.7. �

Part of the significance of the currents µ+ and µ− is the relationship between
their supports and sets on which the iterates of f+ and f− form normal families.

Definition 4.9. The set of (forward) normality for a birational map f+ is the
largest open subset N+ of D+ such that iterates of f+ form a normal family on
N+. N− is the corresponding set for f−.

The following result appears in [FS1], [HP], and [Ue].

Theorem 4.10. suppµ+ ∩N+ = ∅.

We refer the reader to one of the above sources for the proof. It is worth noting
that one can define a current µ+ (though in general, there is no corresponding µ−)
for any rational map f of P2 with a plurisubharmonic escape function. When the
indeterminacy set of the map is empty it turns out that suppµ+ is exactly equal
to P2 \N+ (see [Ue]). We do not know if this complementarity holds for birational
maps (which always have points of indeterminacy when the degree is larger than
2), but see section 6 below.

A Convergence Theorem. For the remainder of this section we assume that
f+ is a minimally separating birational map with degree d ≥ 2. Let N be any
neighborhood of the set of points lying in the forward orbits of superattracting
periodic points of f+. We define QN ⊂ Q to be closed positive (1,1) currents T
such that ||T || = 1 and suppT ∩N = ∅.
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Theorem 4.11. Given T ∈ QN ,

lim
n→∞

1
dn

fn∗
+ T = µ+.

The convergence takes place in the weak topology on currents and is uniform on
QN .

The statement and proof that we give for this theorem are based on those of a
similar result appearing in [FS3] for Hénon maps. The major differences between
our context and the one in [FS3] is our use of Theorem 3.11 to control the rate at
which f+ shrinks volume, and the fact that C2 ⊂ P2 is not invariant for an arbitrary
birational map.

Theorem 4.11 allows one to see the difference between pullback by f+ and push-
forward by f− quite vividly. Namely, suppose that f+ has no superattracting
cycles. Then we can take N = ∅ and µ− ∈ QN = Q. The theorem implies
that lim d−nfn∗

+ µ− = µ+. On the other hand, lim d−nfn
−∗µ

− = lim d−2nµ− = 0.
Nonetheless, (2) and (3) of Proposition 4.7 show that a slight additional hypothesis
on a current T ∈ Q is enough to prevent the discrepancy between f∗+ and f−∗.
Namely, we have

Corollary 4.12. Suppose that T ∈ Q satisfies ||T || = 1 and suppT ∩ I−∞ = ∅.
Then

lim
n→∞

1
dn

fn∗
+ T = lim

n→∞

1
dn

fn
−∗T = µ+.

Proof. Since suppT avoids I−∞, it avoids an entire neighborhood of the finite set of
points lying in superattracting cycles. Also, by (2) and (3) of Proposition 4.7,

fn∗
+ T = fn∗

+ (T |P2\C−) = (fn∗
+ T )|P2\C+ = fn

−∗T

for all n ≥ 0. �

Lemma 4.13. Let Ũ ∈ U satisfy max||p̃||=1 Ũ(p̃) = 0, and Ũ(λp̃) = Ũ(p̃) + log |λ|.
Then there is a constant C independent of Ũ such that

Volume {π(p̃) ∈ P2 : Ũ(p̃)− log ||p̃|| < −k} ≤ Ce−k.

Suppose further that there exists an open set N ⊂ P2 such that Ũ is pluriharmonic
on π−1(N). Then on any K ⊂⊂ N there exists a constant C such that

Ũ(p̃)− log ||p̃|| ≥ C

on π−1(K). C depends on N and K, but not on Ũ .

Proof. To prove the first statement, we may suppose without loss of generality that
Ũ(0, 0, 1) = 0. Then for any fixed (x, y),

(4–1) lim sup
z→∞

Ũ(x, y, z)− log |z| = lim sup
z→0

Ũ(xz, yz, 1) = 0
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by upper semicontinuity and the maximum principle applied to Ũ restricted to
{(xz, yz, 1) : |z| ≤ r}.

Now let E = {π(p̃) ∈ P2 : Ũ(p̃)− log ||p̃|| < −k}. Then the Fubini-Study volume
of E is comparable to the Euclidean volume of Ẽ = π−1(E) ∩ {||p̃|| < 1}. Let
Ẽ(x, y) = {z ∈ C : (x, y, z) ∈ Ẽ}. Then Ũ(x, y, z) is less than −k on Ẽ(x, y), so by
(4–1), the Robin constant of Ẽ(x, y) is no smaller than k. Standard one variable
potential theory (see [Ra] Theorems 5.2.1 and 5.3.5) gives us that Area Ẽ(x, y) ≤
e−k. Thus,

Volume E ≤ C Volume Ẽ = C

∫
||(x,y)||<1

Area Ẽ(x, y) dV (x, y) ≤ Ce−k.

This finishes the proof of the first statement in the lemma.
To get the second statement, we may suppose without loss of generality that

N = B0(R) is an open ball of Euclidean radius R < 1 about π(0, 0, 1) = (0, 0) ∈ C2,
and K = B0(r) is a concentric closed ball of smaller radius. We no longer assume
that Ũ − log || · || achieves its maximum at (0, 0, 1); however, homogeneity of Ũ and
the hypothesis that Ũ is negative on the unit ball implies that log

√
2−Ũ(x, y, 1) > 0

for (x, y) ∈ K. By Harnack’s inequality and pluriharmonicity of log 2 − Ũ on
π−1(N), there is a constant C such that

log 2− Ũ(x, y, 1) ≤ C(log
√

2− Ũ(0, 0, 1))

for all (x, y) ∈ K. Hence,

Ũ(x, y, 1)− log ||(x, y, 1)|| ≥ C(Ũ(0, 0, 1)− log
√

2).

In combination with the first statement of the lemma, this implies that Volume K ≤
C ′eC(Ũ(0,0,1)−log

√
2). Hence

Ũ(x, y, 1)− log ||(x, y, 1)|| ≥ C log(Volume K)− C ′ = C(N,K),

and we are done. �

To continue with the proof of Theorem 4.11, pick any sequence of currents Tn ∈
Q0. Choose potentials Ũn ∈ U for each Tn. By adding a constant to each Ũn, we
can arrange that sup||p̃||=1 Ũn(p̃) = 0. Set

Ṽn = d−nŨn ◦ f̃n
+.

We will be done if we can show that Ṽn → G̃+ in L1
loc(C3).

Since log ||f̃n
+(p̃)|| ≤ dn log ||p̃||, the functions Ṽn are uniformly bounded above

on compact subsets. In particular, since Ũn(p̃) ≤ log ||p̃||, we have that Ṽn ≤ G̃+
n ,

so that any limit of a subsequence is no larger than G̃+. Let B be the set of all
points in P2 whose orbits tend to superattracting cycles of f+. The following two
lemmas will complete the proof of the theorem.
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Lemma 4.14. Ṽn − G̃+
n → 0 uniformly on compact subsets of π−1(B).

Proof. We may suppose without loss of generality that the neighborhood N in the
definition of QN is a subset of B. By hypothesis Ũn is pluriharmonic on π−1(N)
for all n. Choose a set K ⊂⊂ B and a neighborhood N ′ of the set of points in
superattracting cycles such that N ′ ⊂⊂ N . Then we can also choose constants m
and C, such that fn

+(K) ⊂ N ′ for all n > m, and

Ũn(p̃)− log ||p̃|| ≥ −C

for all n and all π(p̃) ∈ N ′. Thus

0 ≥ Ṽn(p̃)− G̃+
n (p̃) ≥ C

dn

for all n > m and π(p̃) ∈ K. That is, Ṽn− G̃+
n tends to 0 uniformly on π−1(K). �

Lemma 4.15. Ṽn − G̃+
n → 0 in L1

loc on π−1(P2 \ B).

Proof. If the lemma is false, then after refining the sequence, we can choose numbers
ε, δ > 0 measurable sets En ⊂ P2 \ B such that Volume (En) ≥ δ and

−ε > Ṽn(p̃)− G̃+
n (p̃) =

1
dn

(Ũn(f̃n
+(p̃))− log ||f̃n

+(p̃)||)

for all π(p̃) ∈ En. Thus Ũn(p̃)− log ||p̃|| ≤ −dnε on π−1(fn
+(En)). But then Lemma

4.13 gives us that

lim sup
n→∞

log Volume (fn
+(En))

dn
≤ −ε

in contradiction to Theorem 3.11. �

Remark 4.16. Using essentially the same proof as the one we have given here,
one can also prove: let T ∈ Q be such that ||T || = 1 and a potential Ũ ∈ U for T is
locally bounded on π−1(W ) for some neighborhood W of all points in superattracting
cycles; then the normalized big pullbacks d−nfn∗

+ T converge weakly to µ+. The only
difference in the proof comes in the proof of Lemma 4.14, where instead of relying
on the second statement of Lemma 4.13, we simply use the boundedness hypothesis
for Ũ .

5. Mildly Separating Birational Maps

In Section 3, we showed that a minimally separating birational map always has
a plurisubharmonic escape function. However, it is a priori possible that the escape
function will still be very badly behaved. For instance, we have not ruled out the
possibility that G̃+ has a dense set of poles. In this section we show that a slight
extra hypothesis on a birational map leads to the conclusion that G̃+ is actually
continuous on π−1(D+). The extra hypothesis has the added appeal that, though
it is stated as a condition on f+, it turns out to be symmetric in f+ and f−.
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Definition 5.1. A birational map f+ with degree at least two is mildly separat-
ing if G̃+(p̃) > −∞ whenever π(p̃) ∈ I−.

Statement (2) of the next theorem justifies our use of the term “mildly sepa-
rating.” Note that a mildly separating birational map is automatically minimally
separating. If f+ is not minimally separating, then there is an integer k and a
point p− ∈ I− such that fk

+(p−) ∈ I+—i.e. in particular G̃+(p̃) = −∞ whenever
π(p̃) = p−.

Theorem 5.2. The following statements about a degree d ≥ 2 birational map
f+ : P2 → P2 are equivalent.

(1) f+ is mildly separating.

(2)
∞∑

n=0

1
dn

log dist(fn
+(I−), I+) > −∞.

(3) f− is mildly separating.

(4)
∞∑

n=0

1
dn

log dist(fn
−(I+), I−) > −∞

Any one of these statements implies that G̃+
n → G̃+ uniformly on compact subsets

of π−1(D+) and that in particular, G̃+ is continuous on π−1(D+). Moreover, we
have the estimate

(5–1) G̃+(p̃)− log ||p̃|| ≥ A log dist(π(p̃), I+) + B

for all p̃ ∈ C3 \ {0}. Similar conclusions hold for G̃− on D−.

We remark that statement (2) in Theorem 5.2 seems only very slightly stronger
than statement (4) in Corollary 3.4. That is, requiring f+ to be mildly separating
does not seem much more restrictive than requiring f+ to be minimally separat-
ing. It would be very interesting to know whether there are minimally separating
birational maps which are not mildly separating.

Beginning of the proof of Theorem 5.2. We show (1) ⇔ (2). Given any point
p̃ ∈ π−1(I−), Corollary 2.8 shows that G̃+(p̃) > −∞ if and only if

∞∑
n=0

1
dn

log dist(fn
+(π(p̃)), I+) > −∞.

Since I− is finite, we see that G̃+(p̃) > −∞ for all p̃ ∈ π−1(I−) if and only if (2)
holds. The proof of (3) ⇔ (4) is the same. �

Before proceeding further with the proof of the Theorem, we define some notation
and establish a lemma. Given a point p ∈ P2, we set

εn = dist(fn
−(I+), fn

−(p)),

δn = min{1,dist(fn
−(I+), I−)}.
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Lemma 5.3. There are constants A and k such that for any D < 1 and positive
integer N ,

ε0 ≤
(δ0δ1 . . . δN )k

2AN
D

implies that εn ≤ δnD/2 for all n ≤ N .

Proof. Suppose that εn ≤ δn/2. Then dist(fn
−(p), I−) ≥ δn/2. By Propositions 2.6

and 2.7,
εn+1 ≤ εne−k log(δn/2)−C = Aεnδ−k

n

where A and k are constants independent of n. For convenience, we take both A
and k to be greater than 1. If we suppose that

ε0 ≤
(δ0δ1 . . . δN )k

2AN
D ≤ δ0

2
,

it follows by induction that εn ≤ δnD/2 for all n ≤ N . �

Remainder of the proof of Theorem 5.2. First we show that (2) is equivalent to
(4). Since the statements are symmetric with respect to f+ and f−, it is enough to
prove only that (4) implies (2). That is, assume

(5–2)
∞∑

n=0

log δn

dn
> −∞.

Then apply Lemma 5.3 with D = 1. If ε0 is as in the lemma, and dist(p, I+) < ε0,
then it follows that fN

− (p) /∈ I−. Thus

dist(fN
+ (I−), I+) ≥ ε0 =

(δ0δ1 . . . δN )k

2AN
,

From this we obtain

∞∑
n=0

1
dn

log dist(fn
+(I−), I+) ≥

∞∑
n=0

−n log A

dn
+

k

dn

n∑
j=0

log δj


≥ C + k

∞∑
j=0

(log δj)
∞∑

n=j

1
dn

= C +
k

1− 1/d

∞∑
j=0

log δj

dj

> −∞.

Hence, (2) holds, and we are finished showing (2) ⇔ (4)



34 JEFFREY DILLER

Now we will show that (4) implies the rest of the conclusion of the Theorem. Fix
a compact subset K of D+, and set D = min{1,dist(K, I+)}. Given N , we choose

ε0,N =
(δ0δ1 . . . δN )k

2AN
D

as in Lemma 5.3. If p satisfies dist(p, I+) < ε0,N , the conclusion of Lemma 5.3
shows us that fn

−(p) /∈ K for any n ≤ N . Hence, dist(fN
+ (K), I+) ≥ ε0,N . Invoking

Proposition 2.7 and computing as we did in the first part of the proof, we see for
any p = π(p̃) ∈ K that

G̃+(p̃)− log ||p̃|| ≥ C1 + C2

∞∑
n=0

log dist(fn
+(p), I+)

dn

≥ C1 + C2

∞∑
n=0

1
dn

log
(

(δ0δ1 . . . δn)k

2An
D

)
= E + F log D

for constants E and F independent of p̃ and K. This gives us that G̃+(p̃) satifies
the estimate (5–1).

To see that G̃+
n converges uniformly to G̃+ on π−1(K), we note that by Propo-

sition 2.7 and the estimate dist(fN
+ (p), I+) ≥ ε0,N , we have

|G̃+
n (p̃)− G̃+(p̃)| ≤ C1

dn
− C2

∞∑
j=n

1
dj

log
(δ0δ1 . . . δj)kD

Aj
.

The right side is independent of p̃ ∈ π−1(K), and since the rightmost term is the
tail of a convergent series, the right side tends to 0 as n →∞. �

As further evidence that “mildly separating” is only slightly different from “min-
imally separating,” we offer an analogue for Theorem 4.8. Given a degree d ≥ 2
birational map f+ of P2, let S+ = π({G̃+ = −∞}).

Theorem 5.4. The following statements are equivalent.
(1) f+ is mildly separating.
(2) C+ ∩ S+ = I+.
(3) S+ contains no algebraic curve.

Proof. f+ is mildly separating if and only if S+∩I− = ∅. Recall also that S+ always
contains I+. Since G̃+ ◦ f̃+ = d · G̃+, and f+(C+) = I−, it is clear that (1) and (2)
are equivalent. Furthermore, if f+ is not mildly separating pick p ∈ I− ∩ S+. By
Proposition 3.3, there is a component V ⊂ C+ such that f+(V ) = p. It follows that
V ⊂ S+ and that (3) implies (1).
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We still need to show that (1) implies (3). To this end, suppose f+ is mildly
separating, but that V0 is an irreducible algebraic curve such that V0 ⊂ S+. Then
we know that V0 ∩ I− = ∅, and by (2) V0 6⊂ C+. Hence, V1 = f+(V0) is an
irreducible algebraic curve whose intersection with C− is finite. We apply the
identity G̃+ ◦ f̃+ = dG̃+ to conclude that V1 ∈ S+ and that V1 has the same
properties as V0. Because V1 does not intersect I−, f−1

+ (V1) = V0. Continuing
inductively, we obtain irreducible algebraic curves V0, V1, V2, . . . such that Vk∩I− =
∅ and f−1

+ (Vk) = Vk−1. But now we invoke Corollary 3.7 to obtain that

deg V0 = (deg f+)k(deg Vk).

Since deg Vk ≥ 1, deg f+ ≥ 2, we have a contradiction for large k. Thus V0 does
not exist. �

The next theorem generalizes 7.3.3 of [FS3]. Modulo technical details involving
pushforwards and pullbacks, the proof remains essentially the same.

Theorem 5.5. If f+ is mildly separating, µ+ is extremal in the cone of positive,
closed (1,1) currents on P2. That is, if µ+ = T1+T2 for T1, T2 ∈ Q, then Tj = cjµ

+

for some constant cj ≥ 0.

Proof. Suppose that µ = c1T1 + c2T2 where Tj ∈ Qj satisfies ||Tj || = 1 and cj ≥ 0.
Since pushforward and pullback act linearly and preserve positivity, we have by the
previous theorem that f+∗Tj and f∗+Tj are dominated by multiples of µ+. Since
µ+ has no support concentrated on any algebraic curve,

Tj = fn
−∗f

n
+∗Tj = (fn∗

+ fn
+∗Tj)|P2\C(fn

+) = fn∗
+ fn

+∗Tj .

In particular, 1 = ||Tj || = ||fn∗
+ fn

+∗Tj || = dn · ||fn
+∗Tj ||.

Furthermore, supp fn
+∗Tj ⊂ suppµ+, and G̃+ is pluriharmonic over the basin of

any superattracting fixed point. Therefore, supp dnfn
+∗Tj avoids an n–independent

neighborhood of any superattracting cycle. This allows us to apply Theorem 4.11
and conclude that

µ+ = lim
n→∞

1
dn

fn∗
+ (dnfn

+∗Tj) = Tj .

�

6. Separating Birational Maps

In this section, we consider two other, fairly natural dynamical restrictions to
place on a birational map. These restrictions imply first of all that the dynamic
domain D+ = P2\I+ for f+ is large. The restrictions also allow us to draw stronger
conclusions about the relationship between supp µ+ and the set of normality N+

for f+.
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Definition 6.1. A birational map f+ of P2 is separating if I+ ∩ I− = ∅ (equiv-
alently, D+ ∪ D− = P2). f+ is completely separating if I+ ⊂ N−.

Since I+ and I− are closed sets, f+ is separating if and only if dist(I+, I−) > 0.
Hence a separating map is automatically mildly separating (not to mention mini-
mally separating). Likewise, it is clear from the definition of N+ that a completely
separating birational map is separating. We will give examples in Section 7 that
show that mildly separating, separating, and completely separating are all actually
distinct hypotheses that one can place on a birational map of P2.

As is the case with minimally and mildly separating birational maps, a map f+

is separating if and only if f− is separating. However, we will give an example in
Section 7 to show that f− need not be completely separating if f+ is.

Theorem 6.2. If f+ is separating, then
(1) I+ ∩ C+ = I+.
(2) I+ contains no algebraic curve.
(3) D+, D−, and D+ ∩ D− are all (open and) dense in P2.

Proof. The proof of the first two statements is similar to the proof of Theorem
5.4. We note that if p ∈ I+ and J is the least non-negative integer (possibly
non–existent) such that fJ

+(p) ∈ I+, then f j
+(p) ∈ I+ for j ≤ J . Thus, if p ∈

I+ ∩ (C+ \ I+), f+(p) ∈ I− ∩I+ ⊂ I− ∩I+, which contradicts the hypothesis that
f+ is separating. This proves (1).

Now suppose that V0 ⊂ I+ is a non-trivial algebraic curve. Then V1 = f+(V0) ⊂
f+(I+) ⊂ I+. From (1) we see that V0 ∩ C+ ⊂ I+, so by Corollary 3.7 V1 is a
non-trivial algebraic curve, and f−(V1) = V0. We continue inductively and obtain
curves V2, V3, · · · ⊂ I+ such that f−(Vj+1) = Vj . Since Vj ∩ I− = ∅, Corollary 3.7
gives us that

deg(V0) = (deg f−)j(deg Vj)

for all j. But deg Vj ≥ 1 and deg f− ≥ 2, so we obtain a contradiction for large j.
Hence V0 does not exist, and (2) is proved.

Now suppose that I+ contains an open subset W of P2. Since I+ ⊂ C+, and I+
∞

is dense in I+, there exists a non-negative integer J such that fJ
+(W )∩C+ 6= ∅. Let

J be the smallest such integer. Then fJ
+(W ) ⊂ I+ is an open subset of P2. Since

I+ is finite, fJ
+(W ) contains a point p ∈ C+ \ I+. This contradicts (1) and proves

(3) for D+. The same proof applied to f− shows that D− is open and dense. Thus
D+ ∩ D− is also open and dense. �

It would be interesting to know which among the conclusions (1)–(3) in Theorem
6.2 are actually equivalent to the hypothesis that f+ is separating. It would also be
interesting to know whether (2) and (3) might be improved and combined to yield
the statement that “D+ ∩ V is dense in V for every algebraic curve V ⊂ P2.”

Theorem 6.3. If f+ is completely separating and T ∈ Q is a current such that
suppT ⊂ suppµ+, then T = cµ+ for some constant c ≥ 0.
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Proof. We can assume that ||T || = 1. From here the proof is almost the same as
the proof of Theorem 5.5, except that we rely on Propositions 4.6 and 4.7 and the
fact that suppT ∩I− ⊂ suppµ+ ∩I− = ∅ to conclude that supp f∗+T, supp f+∗T ⊂
suppµ+. We leave the rest of the details to the reader. �

Now we return to the relationship between suppµ+ and N+, beginning with a
preliminary result about the rate at which a point can tend to I+.

Lemma 6.4. If f+ is separating, there is a constant C such that p /∈ I+ implies
that

dist(fn
+(p), I+) ≥ Cn dist(p, I+).

If f+ is completely separating, then for any open set W ⊂⊂ D+ there exists a
constant C = C(W ) such that

dist(fn
+(W ), I+) ≥ C

for all n.

Proof. Suppose that f+ is separating. Suppose that q ∈ P2 satisfies dist(q, I+) ≤
D/2, where D = dist(I+, I−) > 0. Then by Propositions 3.6 and 3.7, there is a con-
stant C = C(f+) such that dist(f−(q), I+) ≤ dist(f−(q), f−(I+)) ≤ C dist(q, I+).
Choosing a different point p /∈ I+, suppose that dist(f+(p), I+) ≤ D/2. Since
f+(I−) ⊂ I−, we see that p /∈ I−. Therefore,

dist(p, I+) = dist(f−(f+(p)), I+) ≤ C dist(f+(p), I+)

Thus either dist(f+(p), I+) ≥ D/2 or dist(f+(p), I+) ≥ C ′ dist(p, I+). This obser-
vation plus compactness of P2 yields the first claim.

Now suppose that f+ is completely separating and choose an open set W as in
the second claim. If C as in the claim does not exist, then there are points pj ∈ W
and positive integers nj such that limj→∞ dist(fnj

+ (pj), I+) = 0. Set p′j = f
nj

+ (pj).
By passing to a subsequence and invoking compactness of I+, we can arrange that
limj→∞ p′j = p ∈ I+. Applying the hypothesis that f+ is completely separating
and passing to a further subsequence, we can also find a neighborhood Wp of p and
a holomorphic map g : Wp → P2 such that f

nj

− → g uniformly on Wp. Thus, we
have for large j that

0 < dist(W, I+) ≤ lim
j→∞

dist(fnj

− (p′j), f
nj

− (p)) = lim
j→∞

dist(g(p′j), g(p)) = 0.

This contradiction proves the second claim. �

Lemma 6.5. Let W be a simply connected complex manifold and ϕ : W → P2 be
a holomorphic map. Suppose that ϕ(W ) ∩ suppµ+ = ∅. Then for any t ∈ R, there
is a holomorphic map ϕ̃ = ϕ̃t : W → {G̃+ = t} ⊂ C3 \ {0} such that π ◦ ϕ̃ = ϕ.
The map ϕ̃ is unique up to multiplication by a unitary constant.
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We will refer to the map ϕ̃ as a lift of ϕ into {G̃+ = t}. The hypothesis that
ϕ(W ) avoids suppµ+ is a bit stronger than necessary; it is enough to assume that
G̃+ ◦ π−1 ◦ ϕ is pluriharmonic (where it is defined) for any local holomorphic right
inverse π−1 of π.

Proof. We first observe that if W ′ ⊂ W is open and ϕ̃, ϕ̃′ : W ′ → {G̃+ = t} are
two holomorphic maps satisfying π ◦ ϕ̃ = π ◦ ϕ̃′ = ϕ, then homogeneity of G̃+ gives
us that ϕ̃ = eiθϕ̃′, where θ is a real function. Since θ must also be holomorphic, we
conclude that θ is constant. The uniqueness part of the lemma follows.

Uniqueness up to constant multiples and simple connectivity of W also tell us
that it is enough to construct ϕ̃ locally and piece together the results. So cover
W with simply connected open sets Wj small enough that for each j, there exists
a holomorphic right inverse π−1

j of π defined on a neighborhood of ϕ(Wj). By
the hypothesis that ϕ(W ) avoids suppµ+, we have that G = G̃+ ◦ π−1

j ◦ ϕ is
pluriharmonic. Let G∗ be a pluriharmonic conjugate of G, and set H = te−G−iG∗

.
We then define

ϕ̃ = H · (π−1 ◦ ϕ).

One can check directly that ϕ̃ satisfies the conclusion of the lemma on Wj . �

Theorem 6.6. Let f+ be a completely separating birational map. Then suppµ+ =
P2 \ N+.

Proof. From Theorem 4.10, we know that suppµ+ and N+ are disjoint. We need to
show that these sets are complementary in P2. Suppose that W ⊂⊂ P2 \ suppµ+ is
open. Normality is a local property, so we can assume that W is simply connected.
By assumption, G̃+ is pluriharmonic on π−1(W ). So we can choose a holomorphic
lift ĩ : W → {G̃+ = 0} of the inclusion map i : W ↪→ P2.

Let {nj} be an increasing sequence of positive integers. We need to show that
{fnj

+ } has a convergent subsequence. For all p ∈ W and all j, we have

| log ||f̃nj

+ ◦ ĩ(p)|| | = | log ||f̃nj

+ ◦ ĩ(p)|| − G̃+ ◦ f̃
nj

+ ◦ ĩ(p)| ≤ C

The equality follows from the fact that {G̃+ = 0} is invariant under f̃+; the in-
equality follows from Lemma 6.4 and the estimate (5–1) from Theorem 5.2. Thus

f̃
nj

+ ◦ ĩ(W ) ⊂ {e−C ≤ ||p̃|| ≤ eC}.

After passing to a subsequence, we have f̃
nj

+ ◦ ĩ → g̃ : W → P2 uniformly on
compact subsets, and the image g̃(W ) lies in the same spherical shell. It follows
that f

nj

+ → π ◦ g̃ uniformly on compact subsets of W . �

We remark that in the terminology of Fornaess and Sibony [FS1], Lemma 6.4
states that a completely separating birational map is “normal.” Our proof of The-
orem 6.6 mimicks proofs of similar theorems in [FS1] and [Ue] for maps of P2 with
empty indeterminacy sets.
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Corollary 6.7. If f+ is completely separating and T ∈ Q is not a multiple of µ+,
then suppT intersects N+.

Proof. Apply Theorems 6.3 and 6.6. �

We do not as yet know whether Theorem 6.6 holds for separating birational maps,
but we can show that suppµ+ contains certain dynamically interesting points in
P2 \ N+.

Definition 6.8. Suppose that p ∈ P2 satisfies fk
+(p) = p; let λ1, λ2 denote the

eigenvalues of Dfk
+ at p. Then p is repelling if |λ1|, |λ2| > 1, and p is saddle if

0 < |λ1| < 1 < |λ2|.

Note that if p is a repelling or saddle periodic point according to our definition,
then p /∈ I+

∞ ∪ I−∞. It seems likely that the results that follow can be restated
to admit a definition which includes periodic critical points, but for simplicity we
choose to exclude the possibility.

In what remains of this section, we will show that if f+ is separating, then
suppµ+ contains both repelling and saddle periodic points. We handle the case of
repelling periodic points first.

Theorem 6.9. Let f+ be a separating birational map. Any repelling periodic point
of f+ belongs to suppµ+.

A key ingredient in the proof of this theorem is the existence of a normal form
(see [DE] Theorem 6.1) for an analytic automorphism about a repelling fixed point.

Normal Form Theorem. Suppose that f : W1 → W2 is a biholomorphism be-
tween open subsets of C2 and that p ∈ W1 ∩ W2 is a repelling fixed point. Then
there exists a choice of coordinates ϕ : B0(r) → W ′

1 ⊂ W1 and a polynomial auto-
morphism P : C2 → C2 such that

(1) ϕ(0, 0) = p;
(2) ϕ ◦ P = f ◦ ϕ;

P can be chosen to be a shear—that is, P (x, y) = (αx, βy+γ(x)), where |α|, |β| > 1,
and γ is a polynomial in x such that γ(0) = 0.

We refer to the map ϕ as the normalizing map for f about p, and we refer to P
as the normal form.

Corollary 6.10. If f+ is a birational map, and p ∈ D+ is a repelling fixed point,
then the normalizing map ϕ for f+ about p extends to a holomorphic map of C2

into D+ such that

(1) ϕ ◦ P = f+ ◦ ϕ;
(2) The critical set of ϕ is a one dimensional analytic set V given by V =

ϕ−1(I−∞);
(3) ϕ is injective on C2 \ V .
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Proof. Let ϕ : B0(r) → W ′
1 be the normalizing map. Given (x, y) ∈ C2, choose n so

that P−n(x, y) ∈ B0(r) (one can show that (0, 0) attracts all of C2 under iteration
of the shear P given in the Normal Form Theorem, so n exists; the next Lemma
addresses a similar issue). We define

ϕ(x, y) = fn
+ ◦ ϕ ◦ P−n(x, y).

Provided we choose r small enough W ′
1 ⊂ D+. Thus fn

+(W ′
1) ⊂ fn

+(D+) ⊂ D+

implies that the right side of the equation defining ϕ(x, y) makes sense. Property
(2) in the Normal Form Theorem implies that the definition is independent of the
choice of n and that it agrees with the definition of ϕ on B0(r).

Differentiating (1) gives

(Dϕ ◦ P ) ·DP = (Df+ ◦ ϕ) ·Dϕ.

This equation combined with the facts that ϕ is injective on B0(r), that DP is
everywhere non-singular, and that f+(C+) = I− give us (2). Finally, since ϕ is
injective near (0, 0), and f+ is injective away from C+, we have that ϕ is injective
off V . �

Except in certain special cases, one can choose the normal form to be linear. Were
the normal form always linear, the next technical lemma would be unnecessary.

Lemma 6.11. The automorphism P guaranteed by the Normal Form Theorem can
be chosen so that there exist constants A,B > 0 such that

||P−n(x, y)|| ≤ 1

when ||(x, y)|| ≥ A and n ≥ B log ||(x, y)||.

Proof. We can at least choose P to be a shear. In this case P−1 is a shear of the
same form, and DP−1

0 is conjugate to Df−1
p . That is,

P−1(x, y) = (αx, βy − γ(x))

where |α|, |β| < 1 and γ(0) = 0. Let 1/2 > ε > 0 be small enough that |γ(x)| <
(1− |β|)/2 when |x| < ε.

Given ||(x, y)||, let (xn, yn) = P−n(x, y). One can check that if

n1 ≥ D log |x|

for D large enough, then |xn| = |αnx| ≤ ε for all n ≥ n1. Note that if ||(x, y)|| > A
for A large enough, then

|yn1 | ≤ |y|+ n1|γ(x)| ≤ E||(x, y)||k+1,
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where k = deg γ. If n > n1 and ||(xn, yn)|| > 1, then |yn| > 1/2 and

|yn+1| ≤ |βyn|+ (1− |β|)/2 ≤ δ|yn|

for some δ < 1. So if n2 is chosen so that δn2 |yn1 | < 1/2, we will have ||(xn, yn)|| < 1
for all n ≥ n1 + n2. But our observations imply that we can arrange

n1 + n2 ≤ D log |x|+ E log |yn1 |
≤ D log |x|+ F log(E||(x, y)||k+1) ≤ B log ||(x, y)||

for ||(x, y)|| > A. �

Proof of Theorem 6.9. We have automatically that I+ ⊂ suppµ+, so we can assume
that p ∈ D+. By passing to an iterate of f+, we can assume that p is a fixed point.
Let ϕ be the normalizing map for f+ about p and P be the normal form. Assuming
p /∈ suppµ+, let ϕ̃ : C2 → {G̃+ = 0} be a lift of ϕ. From Theorem 5.2 and Lemma
6.4, we obtain

log ||ϕ̃ ◦ Pn(x, y)|| = log ||f̃n
+ ◦ ϕ̃||

= log ||f̃n
+ ◦ ϕ̃|| − G̃+ ◦ f̃n

+ ◦ ϕ̃

≤ C −D log dist(fn
+ ◦ ϕ(x, y), I+)

≤ C −D log[Cn dist(ϕ(x, y), I+)].

We assume that P is as in Lemma 6.11 and set m = min||(x,y)||<1 dist(ϕ(x, y), I+).
For ||(x, y)|| large enough, we let n be the smallest integer such that ||P−n(x, y)|| ≤
1. Then using the estimate displayed above, we have

||ϕ̃(x, y)|| = ||ϕ̃ ◦ Pn(P−n(x, y))||
≤ Dn (where D = D(m))

≤ ||(x, y)||k (by Lemma 6.11)

for some constant k = k(m) independent of n. Liouville’s Theorem then implies
that all coordinate functions of ϕ̃ are polynomials. Hence ϕ extends to a rational
map ϕ : P2 → P2. ϕ is generically injective on C2, so the extended map is in fact
birational. Thus

f+ = ϕ ◦ P ◦ ϕ−1.

From this it is clear that the dynamic degrees of f+ and P agree. Since P is a shear,
deg Pn = deg P for all n, and we have by definition that f+ is not even minimally
separating. This contradicts our assumption that f+ is separating, and leads us to
conclude that p ∈ suppµ+. �

Now we turn to saddle periodic points of f+. The following result from the theory
of smooth dynamical systems (see for example Theorem 6.2.3 in [HK]) plays the
role for saddle periodic points that the Normal Form Theorem plays for repelling
periodic points
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Stable Manifold Theorem. Let p be a fixed saddle point of a holomorphic dif-
feomorphism f : W1 → W2 between neighborhoods W1,W2 ⊂ C2 of p. Let λs be the
stable (i.e. |λs| < 1) eigenvalue and vs the corresponding eigenvector of Df at p.
Then there exists a neighborhood W of p and a proper holomorphic embedding ϕ+

of the unit disk ∆ = {|z| < 1} into W such that

(1) vs is tangent to f(∆) at p;
(2) f ◦ ϕ+(z) = ϕ+(λsz);
(3) ϕ+(∆) = {q ∈ W : fn(q) ∈ W for all n};

The set ϕ+(∆) is called the local stable manifold of p. Note that by (2), the local
stable manifold is forward invariant under f .

Corollary 6.12. Let f+ be a birational map of P2. Suppose that p is a fixed
saddle point, and ϕ+ : ∆ → C2 is the parametrization of the local stable manifold
of p. Then ϕ+ extends to a holomorphic map of C into P2 satisfying the following
conditions.

(1) f+ ◦ ϕ+(z) = ϕ+(λsz) for all z ∈ C.
(2) ϕ+(C) \ I+

∞ = {q ∈ P2 \ I+
∞ : limn→∞ fn

+(q) = p}.
(3) Let N = ∪∞n=1(ϕ

+)−1(fn
−(C+)). Then N is discrete, and ϕ+|C\N is an

immersion.

Note that we do not require the saddle point in this proposition to lie in D+ or
D−. We refer to W s(p) = ϕ+(C) as the (global) stable manifold of f+ at p. Clearly,
we can apply the Stable Manifold Theorem and Corollary 6.12 to f− to obtain a
(global) unstable manifold Wu(p) with parametrization ϕ− : C → Wu(p) for a fixed
saddle point p.

Proof. We extend ϕ+ in the same way we extended the normalizing map for a
repelling fixed point. Given z ∈ λ−n

S ·∆, we set

ϕ+(z) = fn
− ◦ ϕ+(λn

Sz).

By Proposition 2.2, there is no ambiguity on the right side even if ϕ+(λn
Sz) ∈ I−∞.

Nor does the right side depend on the choice of n. (1) follows immediately.
Any point q attracted to p will satisfy fn

+(q) ∈ W for n large enough and W
as in the Stable Manifold Theorem. Hence, (2) follows from statement (1) in this
theorem and statement (3) in the Stable Manifold Theorem.

Now let N be as in statement (3). If N is not discrete, then ϕ+(C) is a subset
of an irreducible component of fn

−(C+) for some n. But then fn+1
+ (ϕ+(C)) ⊂ I−,

contradicting the fact that by definition a saddle periodic point cannot lie in I−.
We apply the facts that ϕ+|∆ is an embedding, that ∪fn

−(ϕ+(∆)) = ϕ+(C), and
that f− : P2 \ C− → P2 \ C+ is a biholomorphism to obtain the rest of item (3). �
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Theorem 6.13. Let f+ be a separating birational map. Any periodic saddle point
p of f+ belongs to suppµ+. Moreover, if p+ ∈ D+, then the (closure of the) stable
manifold of p belongs to suppµ+.

The next lemma and its proof are very similar in spirit to Theorem 6.9.

Lemma 6.14. Suppose that f+ is separating and p ∈ D+ is a fixed saddle point.
Let π−1 : W → C3 be any holomorphic right inverse of π on a neighborhood W of
p, and set ∆ε = {|z| < ε} for any ε > 0. Then G̃+ ◦ π−1 ◦ ϕ− restricted to ∆ε is
not harmonic.

Proof. Suppose the lemma is untrue for some choice of π−1 and ε. First note
that since p ∈ D+, we also have that ϕ−(∆ε) ∈ D+ for small enough ε. Since
Wu(p) = ∪fn

+ ◦ ϕ−(∆ε), we see that Wu(p) = ϕ−(C) ⊂ D+. Furthermore, the
transformation property G̃+ ◦ f̃+ = d · G̃+ implies that G̃+ is pluriharmonic on all
of π−1(Wu(p))—that is, if π−1 is any holomorphic right inverse of π defined on any
open set W ′ ⊂ P2, then G̃+ ◦ π−1 ◦ ϕ− is harmonic wherever it is defined. So by
Lemma 6.5 and the remark following, we can choose a lift ϕ̃− : C → {G̃+ = 0} of
ϕ−.

Working exactly as we did in the proof of Theorem 6.9, we conclude that the co-
ordinate functions of ϕ̃− are polynomials. Hence, ϕ− extends to a holomorphic map
ϕ− : P1 → P2. Since ϕ− is generically injective, we conclude that ϕ− regularizes
the algebraic curve V = Wu(p) = ϕ−(P1).

Since Wu(p) is invariant under f+ and f−, so is V . By Corollary 3.7, V contains
points of both I+ and I−. As we showed above, Wu(p)∩I+ is empty, so V ∩I+ must
consist of the single point ϕ−(∞). Thus any intersection between I− and V must
be a point p− = ϕ−(z) where z 6= 0,∞. But then fn

+(p−) = ϕ−(λn
uz) → ϕ−(∞) ∈

I+. That is, ϕ−(∞) ∈ I+ ∩ I−, which violates the separation assumption. This
contradiction proves the lemma. �

Proof of Theorem 6.13. If p ∈ I+, then p ∈ suppµ+ simply because poles of G̃+

are dense in π−1(I+). So we can assume that p ∈ D+.
Suppose that there exists q = ϕ+(z0) /∈ suppµ+. By invariance of suppµ+,

we have fn
+(q) /∈ suppµ+ for all n. Since fn

+(q) → p, we can assume that q lies
in an arbitrarily small neighborhood of p. After a choice coordinates in a small
neighborhood we can assume that p = (0, 0) and that q lies in W = W1 ×W2 for
neighborhoods W1,W2 ⊂ C. Given (xn, yn) ∈ W , let (xn+1, yn+1) = f+(xn, yn)
provided the latter lies in W . Fix small numbers ε > 0, δ > 0. We can use the
facts that p is a saddle point and that derivatives of f are continuous to arrange
our coordinates so that

(1) ϕ− : W2 → Wu(p) is given by ϕ−(z) = (0, z);
(2) W s(p) ∩W = {(z, 0) : z ∈ W1};
(3) |xn+1| < (1+ε)λs|xn| < |xn| for all (xn, yn) ∈ W such that f+(xn, yn) ∈ W ;
(4) likewise, |yn+1| > (1− ε)λu|yn| > |yn|;
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(5) If Dn = {(gn(z), z) : z ∈ W1} is the graph of of a holomorphic function
gn : W1 → W2 such that |g′n| < δ, then Dn+1 = f+(Dn) ∩W is the graph
of a function gn+1 with the same properties.

Note in (2) that z → (z, 0) is not necessarily the parametrization of W s given by
the Stable Manifold Theorem. The first two conditions are arranged by choice of
coordinates, and the last three by shrinking W1 and W2.

Now suppose that q = (x0, 0), and let D0 be the vertical slice obtained, as in
(5), as the graph of g0(z) = x0. Then Dn = fn

+(Dn)∩W is realized as the graph of
another holomorphic function gn : W1 → W2. From (2), we have that fn(q) ∈ Dn.
From (3), we have that

lim
n→∞

gn(z) = 0

uniformly in z. Now let π−1 be a holomorphic right inverse of π on W , and set

G = G̃+ ◦ π−1(0, z)

Gn = G̃+ ◦ π−1(gn(z), z).

Then Gn → G uniformly in z. By Lemma 6.14, G is not harmonic, so for large
enough n, neither is Gn. For these n, we obtain points qn ∈ suppµ+ ∩Dn.

On the other hand, condition (4) shows that fn
−(Dn) decreases to the singleton

D0 ∩W s = {q}. In particular, we invoke invariance of suppµ+ again to conclude
that q = limn→∞ fn

−(qn) ∈ suppµ+. This contradicts our starting assumption and
proves that W s(p) ⊂ suppµ+. �

7. Polynomial Maps: An Example

Any birational map of P2 restricts to a map of C2 whose coordinate functions
are quotients of polynomials. An interesting subset of birational maps is singled
out in the following definition.

Definition 7.1. A birational map f+ of P2 is polynomial if the restriction of
f+ to C2 can be written f+(x, y) = (f1(x, y), f2(x, y)) where f1, f2 are polynomial
functions of x and y.

Since we are only interested in birational maps here, we will generally shorten
“polynomial birational” to “polynomial” in what follows. Any polynomial auto-
morphism (e.g. generalized Hénon maps; see [FM]) of C2 is a polynomial map.
Automorphisms are rather special in that their inverses are also polynomial maps.
An example of a polynomial map which does not have a polynomial inverse is

f+(x, y) = (y, 2x− 4xy + 3y2).

This map and its dynamics were considered by Fatou [Fa]. By linearizing f+ about
one of its two repelling fixed points, he gave the first example of a self-map of C2

whose image contained an open set but was not dense in C2.
In the next several results, f+ will be a polynomial map of degree at least two.

Recall that we use `∞ to denote the line at infinity P2 \ C2 in P2.
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Proposition 7.2. f+(`∞) is a single point p−∞ ∈ `∞ ∩ I−.

Proof. Write f+ = (f1, f2), where f1, f2 are polynomials in x and y. Let f̃j be the
homogeneous polynomial obtained from fj by including extra factors of z in each
term of degree less than d = deg f+ = max{deg f1,deg f2}. Then f̃+ has the form

f̃+ = (f̃1, f̃2, z
d).

By assumption on d, we can assume that either f̃1(x, y, 0) or f̃2(x, y, 0) is not
identically zero—say for instance that f̃2 is non-zero. From this it is clear that f+

maps `∞ to itself (i.e. f̃+ preserves the hyperplane {z = 0}). Note that we obtain
a formula for f+ in local coordinates by normalizing so that the second coordinate
is 1 in both the domain and range:

f+[x : 1 : z] =

[
f̃1(x, 1, z)
f̃2(x, 1, z)

: 1 :
zd

f̃2(x, 1, z)

]

By computing Df+ relative to x and z, and setting z = 0 in the result, it is
easy to see that `∞ ⊂ C+. We apply (1) of Proposition 3.3 to conclude that
f+(`∞) = p−∞ ∈ `∞ ∩ I−. �

Proposition 7.3. The following statements are true for f+:
(1) I− ∩ `∞ = {p−∞};
(2) I+, I+

∞, I+ ⊂ `∞;
(3) I+

∞ ∩ I− = I+ ∩ I− ⊂ {p−};
Furthermore, if p−∞ /∈ I+, then

(4) I+ = I+
∞ = I+;

(5) I+ ∩ I− ⊂ I+.

Proof. If p− 6= p−∞ is another point in I−, then there is a component V ⊂ C+ such
that V 6= `∞ and f+(V ) = p−. Since f+(C2) ⊂ C2, it must be that p− ∈ C2.
Hence (1). (2) follows from the facts that f+ is well-defined at all points in C2 and
f+(C2) ⊂ C2. (3) follows from (1) and (2).

If p−∞ /∈ I+, then by the previous proposition and (2) f−(I+) = f−(`∞) is a
single point in I+. (4) and (5) follow immediately. �

Theorem 7.4. The following statements are equivalent for a polynomial map f+

with deg f+ ≥ 2:
(1) p−∞ /∈ I+;
(2) f+ is minimally separating;
(3) f+ is mildly separating.

Proof. It is clear from Corollary 3.4 that (2) implies (1). Certainly (3) implies (2).
So assuming that (1) is true, we need to show that (3) holds. Recall that f+ is mildly
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separating if and only if G̃+(p̃) > −∞ whenever π(p̃) ∈ I−. If p−∞ /∈ I+, then p−∞
is a fixed point of f̃+. After change of coordinates, we can assume p−∞ = [0 : 1 : 0].
Hence, f̃+(0, y, 0) = (0, Cyd, 0) for some constant C. From this it is easy to show
that G̃+(p̃) > −∞ when π(p̃) = p−∞.

All other points in I− lie in C2, so we will finish the proof by showing that
G̃+(p̃) > −∞ when π(p̃) ∈ C2. To this end, note that

G̃+(x, y, z) = log |z|+ G̃+(x/z, y/z, 1)

= log |z|+ lim
n→∞

1
dn

log ||f̃n
+(x/z, y/z, 1)||

= log |z|+ lim
n→∞

1
2dn

log(||fn
+(x/z, y/z)||2 + 1)

> −∞

as long as z 6= 0. �

The really useful consequence of this theorem is that when a polynomial map is
minimally separating, the inverse of the map has a relatively well-behaved escape
function G̃−. As we showed in the proof of the theorem, it is not difficult to show
directly that G̃+ is good. In the next theorem, we show that G̃+ behaves quite
similarly to the escape function of a polynomial automorphism (see for comparison
Section 3 of [BS1]).

Theorem 7.5. Assume that p−∞ /∈ I+. Then p−∞ is superattracting for f+. Fur-
thermore, if K+ is the set of points that do not tend to p−∞ under iteration, then

(1) K+ ∩ `∞ = I+;
(2) If f̃+ is scaled so that the third component of f̃+ is zd, then G̃+(x, y, 1) ≥ 0,

with equality holding if and only if (x, y) ∈ K+;
(3) supp µ+ = bK+;

If coordinates are chosen so that p−∞ = [0 : 1 : 0], then limy→∞ G̃+(x, y, 1)− log |y|
is finite and constant with respect to x.

Proof. We can assume without loss of generality that p−∞ = [0 : 1 : 0], and that

f̃+(x, y, z) = (zf̃1(x, y, z), f̃2(x, y, z), zd)

for homogeneous polynomials f̃1 and f̃2 such that deg f̃1 = d − 1, deg f̃2 = d and
f̃2(0, y, 0) = Cyd for some C 6= 0. After passing to local coordinates by setting
y = 1 (as in the proof of Proposition 7.2), it is not hard to show that Df2

+ = 0 at
[0 : 1 : 0]. Hence all eigenvalues of Df+ vanish and [0 : 1 : 0] is superattracting.

(1) follows from Proposition 7.2 and (2) of Proposition 7.3. To see that (2) holds,
note first of all that (x, y) ∈ K+ implies that there exists ε > 0 such that for all
n > 0,

(xn, yn) = fn
+(x, y) /∈ {[x : 1 : z] ∈ P2 : |x|, |z| < ε} ∩ C2

= {(x, y) ∈ C2 : |y| > ε−1, |x| < ε|y|}.
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That is,

||(xn+1, yn+1)|| < (ε−1 + 1)|xn+1| = (ε−1 + 1)|f2(x, y)| ≤ C(ε)||(xn, yn)||d−1

for all n. Hence, by induction

G̃+(x, y, 1) = lim
n→∞

1
2dn

log(1 + ||(xn, yn)||2)

≤ lim
n→∞

1
2dn

log(1 + (C||(x, y)||)(d−1)n

) = 0.

On the other hand, suppose that (x, y) /∈ K+. Then [xn : yn : 1] = [xn/yn : 1 :
1/yn] → [0 : 1 : 0]. Since iterates of f+ form a normal family on the basin of
[0 : 1 : 0], G̃+ is pluriharmonic, and hence continuous on π−1(P2 \K+). Thus,

lim
n→∞

G̃+ ◦ f̃n
+(x, y, 1) = lim

n→∞
G̃+(xn, yn, 1)

= lim
n→∞

G̃+(xn/yn, 1, 1/yn) + log |yn|

= G̃+(0, 1, 0) + lim
n→∞

log |yn| = ∞.

So if we pick n large enough that G̃+(xn, yn, 1) > 0, we see that G̃+(x, y, 1) =
d−nG̃+(xn, yn, 1) > 0. We have finished proving (2).

Since G̃+(x, y, 1) is 0 on K+ and pluriharmonic on C2 \K+, we have suppµ+ ⊂
bK+. On the other hand, if (x0, y0) ∈ K+, and G̃+(x, y, 1) is pluriharmonic in a
neighborhood W of (x0, y0), then G̃+(x, y, 1) ≡ 0 on W because G̃+(x0, y0, 1) = 0
is an interior minimum. This can only happen if (x0, y0, 1) belongs to the interior
of K+. We conclude that bK+ ⊂ suppµ+, and (3) is proved.

Finally, for any fixed value of x, we have

lim
y→∞

G̃+(x, y, 1)− log |y| = lim
y→∞

G̃+(x/y, 1, 1/y) = G̃+(0, 1, 0)

which proves the last statement of the theorem. �

For the sake of providing more concrete examples we turn to polynomial maps
of degree two. These have been characterized by Nishimura [Ni] who proved

Theorem 7.6. Any minimally separating polynomial map of degree two is conju-
gate to a map whose restriction to C2 has the form

(7–1) f+(x, y) = (y, ax + bxy + y2 + cy + d),

where either a or b (or possibly both) are non-zero.
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The normal form given by this theorem is consistent with Theorem 7.5 in that
p−∞ = [0 : 1 : 0]. We remark that a representative of the form (7–1) is not unique. In
particular, either c or d can usually be eliminated from (7–1) by further conjugation.
We also note that

f+(x, y) = (y, ax + xy + cy + d)

gives an interesting family of degree two polynomial maps that are not minimally
separating.

Assume f+ is given by (7–1). If b = 0, then f+ is simply a polynomial automor-
phism of C2. If b 6= 0, then one can compute that

f−(x, y) =
(

y − x2 − cx− d

a + bx
, x

)
C+ = `∞ ∪ {(x, y) ∈ C2 : y = −a/b}
C− = `∞ ∪ {(x, y) ∈ C2 : x = −a/b}
I+ = I+

∞ = I+ = {[1 : 0 : 0], p+}
I− = {[0 : 1 : 0], p−}

where p+ ∈ `∞ is given by [1 : −b : 0] and p− ∈ C2 has coordinates (−a
b , a2

b2 −
ca
b +d).

Since [0 : 1 : 0] is a superattracting critical point for f+, it follows that I− consists
of [0 : 1 : 0] and the closure of the forward orbit of p−.

Example 7.7. For fixed a, c, d in (7–1) and small enough |b|, both f+ and f− are
completely separating.

Proof. By direct computation one can show that p+ is a fixed critical point for f−.
p+ is attracting for f− if |b| < 1. Since f−[1 : 0 : 0] = p+, we see that iterates of f−
form a normal family in a neighborhood of I+ when |b| < 1. So f+ is completely
separating.

Now suppose that |b| < ε for ε > 0 small enough. If we write p+ = (x, y), then
|x| > Cε−1 and |y| > Cε−1|x|. Furthermore, if (xn, yn) satisfies these conditions
and (xn+1, yn+1) = f+(x, y), one can estimate that |xn+1| = |yn| = Cε−1|xn| and

|yn+1|
|xn+1|

≥ Cε−1|yn|.

Consequently, if ε is small enough, and we induct on n, we see that

lim
n→∞

fn
+(p−) = [0 : 1 : 0].

Since [0 : 1 : 0] is superattracting, we conclude that iterates of f+ form a normal
family on a neighborhood of I−; hence, f− is completely separating. �



DYNAMICS OF BIRATIONAL MAPS OF P2 49

Example 7.8. Let f+(x, y) = (y, 2xy + y2). Then f+ is separating. f− is com-
pletely separating, but f+ is not.

Proof. For this map one can compute that p− is a superattracting fixed point. Thus
I− = I−. We conclude that I− ∩ I+ is empty—i.e. that f+ is separating. It is
also immediate that f− is completely separating. However, since |b| = 2 > 1, one
can show that p+ is a semi-repelling fixed point for f−. Therefore, p+ /∈ N−—i.e.
f+ is not completely separating. �

It is even possible for a degree two polynomial map to fail to be separating. A
particularly interesting example is provided by the next result.

Example 7.9. Let f+(x, y) = (y, x + 2xy + y2− 1.5y). Then f+ is not separating.

Proof. The line ` = {y = −2x} is invariant under f+ and f−. In fact, (0, 0) is a
fixed saddle point, and ` is the unstable manifold of (0, 0). Furthermore, p− ∈ `.
Since ` ∩ `∞ = p+, we see that limn→∞ fn

+(p−) = p+. Thus I+ ∩ I− = {p+}, and
f+ is not separating. �

Elaborating a little further on the last example, we point out that the invariance
of ` implies that ` ∈ K+. Thus G̃+(x, y, 1) = 0 for points (x, y) ∈ `. In con-
trast to Lemma 6.14, this implies that G̃+ restricted to π−1(`) = π−1(Wu(0, 0)) is
pluriharmonic.
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