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Abstract. We study a theorem due essentially to Carleson about solving the ∂–

equation on the unit disk. We show that this theorem generalizes to bordered Rie-

mann surfaces with finitely generated fundamental groups. However, our main result

is that the constant appearing in the generalized theorem cannot be taken to be

independent of the bordered Riemann surface in question. We exhibit a sequence of

(topologically equivalent) Riemann surfaces on which the constant tends to∞. Since

Carleson’s ∂–theorem depends on the notion of a Carleson measure, we also discuss

Carleson measures at some length in order to define them appropriately on arbitrary

Riemann surfaces.

0. Introduction

The work presented in this paper stems largely from our interested in the well–

known

Corona Problem (CP). Given a bordered Riemann surface Ω and a collection

of holomorphic functions f1, . . . , fn : Ω → C that satisfy

(i) ||fj ||∞ ≤ 1

(ii) |f1|+ . . . + |fn| ≥ δ > 0,

find another collection of holomorphic functions g1, . . . , gn : Ω → C such that

(iii) ||gj ||∞ ≤ C = C(n, δ, Ω)

(iv) f1g1 + . . . + fngn ≡ 1.
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Among the research surrounding this problem, two lines of development concern

us here. The first is the connection, noticed by Hörmander, between CP and

theorems about solving the ∂–equation with L∞ control on the size of the solution.

In the case Ω = ∆ = “the unit disk,” there are now at least three known methods

(see [Gar] chapter 8, and [BeRa]) of solving CP that capitalize on Hörmander’s

insight. In all three cases, the constant that arises in a ∂–theorem directly influences

the size of the C(n, δ, Ω) obtained.

The second line of development that we wish to highlight has arisen in the

study of CP on domains with complicated topology. Given the solvability of CP

when Ω = ∆, several authors ([Sto], [For], [Gam1], etc.) have demonstrated the

solvability of CP when Ω has finite topology—that is, when Ω has finite genus and

finitely many boundary components. Gamelin has gone on to prove

Theorem (Gamelin). Given Ω ⊂ C with k < ∞ boundary components, CP is

solvable on Ω with a constant C = C(n, δ, k). That is, the dependence of C on Ω

is purely topological for finitely–connected, planar domains. Furthermore, CP is

solvable for all planar domains if and only if C for k–connected domains can be

chosen to be independent of k.

Putting these two lines of development together, one might reason heuristically

that to prove solvability of CP on Ω with infinitely many boundary componenets,

one should search for an appropriate ∂–theorem whose constants depend only on

the genus of Ω. It is this possibility that we explore below. In particular, we

study a ∂–theorem which is essentially due to Carleson in the case Ω = ∆. We

show (Theorem 2.3) that this theorem generalizes naturally to more complicated

Ω. But negatively, and more importantly, we show (Theorem 3.3) that the constant

appearing in the theorem necessarily depends on more than the genus (in fact, on

more than the topology) of Ω. We construct a family of topologically equivalent
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Ω for which the constant arising in Carleson’s ∂–theorem cannot possibly have an

upper bound.

Remarks. The Corona Problem as we have stated it here might more accurately

be called “the Corona Problem with bounds.” As it is usually stated, the condition

(iii) is relaxed to require only that the gj be bounded. C is allowed to depend on

more than just Ω, δ, and n.

Brian Cole [Gam2] constructed a Riemann surface of infinite genus for which

CP cannot be solved. Other authors have have demonstrated the solvability of CP

for certain classes of Ω with infinite topology—for example, the so-called Denjoy

domains [JoGa] and finite-sheeted covers of the unit disk [HaNa]. What is lacking

is a good description of all Ω for which CP is solvable.

My deep thanks go to David Barrett for many helpful comments and discussions

about this work.

1. The Carleson Norm of a 1–Form

The notion of a Carleson measure has proven very useful in studying bounded

analytic functions. In particular, one can use Carleson measures to define a large

class of (0, 1)–forms λ for which ∂b = λ has a bounded solution. Originally, Carleson

defined his measures on the unit disk as follows (see page 238 of [Gar]):

Definition 1.1. A positive measure λ on ∆ is a Carleson measure if there is a

constant N(λ), called the Carleson norm of λ, such that

λ(S) ≤ N(λ)h

for every sector S = {reiθ : 1− h ≤ r < 1, |θ − θ0| ≤ h}.

Analogous definitions of a Carleson measure can be formulated for any smoothly

bounded planar domain. However, for the purposes that we intend to use Carleson
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measures, Definition 1.1 has two drawbacks. First of all, Carleson measures as

defined above are not obviously conformally invariant objects. Secondly, since we

will be dealing with one forms rather than measures, it will be more helpful to us

to define the Carleson norm of a one form directly.

To circumvent these two difficulties, we turn to another, equivalent definition of

Carleson norm. Note that if λ1 and λ2 are two one forms on a Riemann surface,

then we can “multiply” them together to get an area measure in the following

fashion: write the forms in local coordinates as λj = aj dz + bj dz̄ and set

|λ1||λ2| =
√

(a2
1 + b2

1)(a
2
2 + b2

2)
dz ∧ dz̄

i
.

One can check that this definition does not depend on the choice of local coordinates

and that |dz||dz̄| = dz ∧ dz̄/i—which is what we should expect. Now we can state

Definition 1.2. Let λ be a one form on a hyperbolic Riemann surface Ω. Let

ϕ : ∆ → Ω be a holomorphic universal covering map. Then the Carleson norm

N(λ) of λ is

(1–1) N(λ) = sup
z0∈∆

∫
∆

1− |z0|2

|1− z̄0z|2
|ϕ∗λ||dz|.

Since any automorphism of ∆ is given by T (z) = eiθ z−z0
1−zz̄0

, (1–1) is equivalent to

(1–2) N(λ) = sup
T∈Aut ∆

∫
∆

|(ϕ ◦ T )∗λ||dz|.

Lemma VI.3.3 on page 239 of [Gar] shows that Definitions 1.1 and 1.2 are equiv-

alent in the case of the unit disk. (1–2) makes it clear that the Carleson norm is

conformally invariant and in particular, that the Carleson norm does not depend

on the choice of the covering map ϕ. We point out in passing that the sort of

conformal invariance exhibited by the Carleson norm is more natural to one forms
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than to area measures. This justifies to some extent our choosing to deal with the

former rather than the latter in our definition.

Below we will need to actually estimate some Carleson norms. The following

lemma, due essentially to Berndtsson and Ransford [BeRa], will help us obtain the

estimates we seek.

Lemma 1.3. Given λ and a bordered Riemann surface Ω, let gΩ(z, z0) = gΩ
z0

(z)

be the Green’s function on Ω with pole at z0. Choose a meromorphic (0,1)–form ω

on Ω, and let ρ2
Ω ω⊗ ω̄ be the Poincaré (constant curvature -4) metric on Ω. Then

(1–3) N(λ) ≤ 2 sup
z0∈Ω

∫
Ω

gΩ
z0

(z)ρΩ(z) |λ||ω|.

Proof. Following Berndtsson and Ransford, we first use the explicit forms of Green’s

function and the Poincaré metric to prove (1–3) on ∆. We then use the transfor-

mation properties of the integrand to prove (1–3) for arbitrary Ω. So assume for

now that Ω = ∆.

Since the integral in (1–3) is independent of which ω we choose, set ω = dz. In

this case, recall that

g∆
z0

(z) = log
∣∣∣∣1− z̄0z

z − z0

∣∣∣∣ ,
and

ρ∆(z) =
1

1− |z|2
.

This gives

2g∆
z0

(z)ρ∆(z) =
1

1− |z|2
log
∣∣∣∣1− z̄0z

z − z0

∣∣∣∣2 .

=
1

1− |z|2
log

 1

1− (1−|z0|2)(1−|z|2)
|1−zz̄0|2


≥ 1− |z0|2

|1− zz̄0|2
,
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for all z, z0 ∈ ∆. To obtain the last inequality, we have used that log 1
1−x ≥ x when

x < 1. Thus, the right side of (1–3) is greater than the right side of (1–1). This

finishes the proof for Ω = ∆.

Now suppose that Ω is any hyperbolic Riemann surface. Then from the above

work, and the fact that the Carleson norm of λ on Ω is the same as the Carleson

norm of ϕ∗λ on ∆, we have

N(λ) ≤ 2 sup
w0∈∆

∫
∆

g∆
w0

ρ∆ |ϕ∗λ||dw|.

Suppose that Ω0 ⊂ ∆ is a fundamental polygon for Ω. Recall that the Green’s

function on Ω may be obtained from

gΩ
ϕ(w0)

(ϕ(w)) =
∑
T∈G

g∆
w0
◦ T (w).

Then

N(λ) ≤ 2 sup
w0∈∆

∑
T∈G

∫
T (Ω0)

g∆
w0

ρ∆ |dw||ϕ∗λ|

= 2 sup
w0∈Ω0

∫
Ω0

∑
T∈G

(g∆
w0
◦ T ) |(ϕ ◦ T )∗(ρΩω)| |(ϕ ◦ T )∗λ|

= 2 sup
w0∈Ω0

∫
Ω0

(∑
T∈G

g∆
w0
◦ T

)
|ϕ∗(ρΩω)||ϕ∗λ|

= 2 sup
z0∈Ω

∫
Ω

gΩ
z0

ρΩ |ω||λ|.

In taking the supremum in the second line, we were able to restrict ourselves to

w0 ∈ Ω0 because the integral in that line remains unchanged when w0 is replaced

by T (w0), T ∈ G. This concludes the proof. �

2. Carleson’s ∂–theorem

In his solution of the Corona Problem, Carleson [Car] relied on a theorem about

interpolation by bounded analytic functions. Later authors (for instance [Gar] p.
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320 Theorem VIII.1.1) following Hörmander’s insight have recast the interpolation

theorem as a ∂–theorem. We refer to the result as Carleson’s ∂–theorem, and

we state it now.

Theorem 2.1. Suppose λ is a (0,1) form on ∆ with Carleson norm N(λ) < ∞.

Then there is a solution b ∈ C∞(∆) ∩ C(∆) to

∂b = λ

such that

M(b) = sup
z∈b∆

b(z) ≤ CN(λ)

for some absolute constant C.

We emphasize that this theorem only gives control on b over the boundary of ∆

and not necessarily over the interior of ∆. In practical applications to holomorphic

functions, the maximum principle can usually be invoked at some point to give

any require interior control, but as we shall see below, the a priori lack of interior

bounds forces one to exercise a little more care at times.

With the help of a theorem of Forelli, one can easily generalize Theorem 2.1

from the setting of the unit disk to that of a bordered Riemann surface. So let

Ω be any bordered Riemann surface with finite genus and finitely many boundary

components. Let H∞(bΩ) ⊂ L∞(bΩ) be those functions which are the boundary

values of bounded holomorphic functions on Ω. Then Forelli’s theorem [For] is

Theorem 2.2. Given a holomorphic universal cover ϕ : ∆ → Ω, there is a bounded

linear operator P : L∞(b∆) → L∞(bΩ) satisfying

P : H∞(b∆) → H∞(bΩ)

and

P (ϕ∗f · g) = f · P (g)
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for all f ∈ L∞(bΩ).

We call the operator P the Forelli Projection. By the maximum principle, P

extends to a bounded linear operator from H∞(∆) to H∞(Ω), though not necessarily

to an operator between the corresponding L∞ spaces. Earle and Marden [EaMa]

showed that P can also be chosen to preserve continuity on the boundary—i.e. send

continuous boundary functions to continuous boundary functions. Now we give the

generalization of Carleson’s ∂–theorem.

Theorem 2.3. Let λ be a (0,1) form on Ω with Carleson norm N(λ). Suppose

that there is a continuous function b : Ω → C solving

(2–1) ∂b = λ.

Then b can be chosen so that

(2–2) M(b) = sup
z∈bΩ

|b(z)| ≤ CN(λ),

where C is a constant that depends only on Ω.

Proof. Let b0 be the given bounded solution to (2–1). Let b̃ : ∆ → C be the solution

to ∂b̃ = ϕ∗λ given by Theorem 2.1. We apply the Forelli projection operator P to

obtain a function b = b0 +P (b̃− b0 ◦ϕ). Note that we cannot apply P directly to b̃,

except on b∆. On bΩ, we have |b| = |b0 + P (b̃− b0 ◦ ϕ)| = |P (b̃)| ≤ CN(λ), where

C is a constant depending only on the corresponding constant in Theorem 2.1 and

the L∞ norm of P . As noted above, we can arrange that P preserves continuity on

the boundary, so we can assume that b is continuous on bΩ. We also have that

∂b = λ + ∂ P (b̃− b0 ◦ ϕ) = λ,

since P preserves holomorphic functions. Thus b satisfies (2–1). �
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3. Discussion, Setup, and Statement of the Main Result

Recall from our discussion of the Corona Problem in the introduction that it

is useful to have ∂–theorems like Theorem 2.3 in which the relevant constants are

sensitive only to the genus of the Riemann surface Ω. Thus, we might hope that C in

(2–2) varies only with genus. In our thesis ([Dil] page 50, Theorem 4.3), we showed

that the L∞ norm of the Forelli Projection depends on more than the topology of

Ω, so it is clear that the above proof of Theorem 2.3 will not give us the C we hope

for. However, the failure to yield a uniform C is not simply an artifact of the proof.

The main goal of the rest of this paper is to exhibit a collection of topologically

equivalent Ω for which the set {C(Ω)} of constants appearing Carleson’s ∂–theorem

has no upper bound. First we fix some notation.

Let Ω̂ be a compact Riemann surface of genus g > 0. We wish to choose a

reference (1,0) form on Ω̂. Unfortunately, we cannot choose such a form to be

non-vanishing unless Ω̂ is a torus, but we can choose a holomorphic (1,0) form ω

on Ω̂, such that ω has finitely many simple zeroes (see Appendix C of [Dil]) for a

justification). Let Z be the zero set of ω. Let p be any point in Ω̂\Z. We can choose

a neighborhood W of p and coordinates z on W so that ω = dz, p corresponds to

z = 0, and W corresponds to a z-disk of radius R0 about p. We will often abuse

notation by referring to any point in Ω as ‘z’, including points outside W . For

R < R0 let ΩR be the bordered Riemann surface obtained from Ω̂ by omitting a

z-disk of radius R about p. Let ρ2
R ω ⊗ ω̄ be the Poincaré metric on ΩR. Notice

that ρR will have singularities at the zeroes of ω, but that these singularities will

at least be integrable. Finally, let gR(z, z0) = gR
z0

(z) be the Green’s function on ΩR

with pole at z0 ∈ ΩR.

Now we will define a (0,1) form λ, so that we can study the bounded solutions

of (2–1) for λ on each ΩR. Our choice of λ may seem obscure, but it is motivated
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by work presented in Chapter 3 of [Dil]. Let Ω0 = Ω̂ \ {p}. Let ρ2
0 ω ⊗ ω̄ be the

Poincaré metric on Ω0. We define λ by

(3–1) ω ∧ λ = ∂∂ log ρ0.

The fact that the Poincaré metric has Gauss curvature -4 translates into the partial

differential equation ∂∂ log ρ0 = ρ2
0ω ∧ ω̄ (see [GrHa], page 77). Thus

(3–2) λ = ρ2
0ω̄.

Technically speaking, λ is not a genuine (0,1) form on all of Ω, since ρ0 has singu-

larities at points in Z. Again however, these singularities are at least integrable.

We will say that b is a bounded solution of ∂b = λ on ΩR, if b is continuous and

bounded on ΩR \Z, and b solves the equation in the classical sense on ΩR \Z. Let

NR be the Carleson norm of λ on ΩR, and let MR be the infimum of the boundary

L∞ norms of all solutions b of ∂b = λ on ΩR. We first prove a couple of lemmas

that allow us to pass from results about λ to results about genuine (0,1) forms.

Lemma 3.1. Suppose MR < ∞. Then given any ε > 0, there is a C∞–smooth

(0,1) form λε on ΩR with Carleson norm less than NR + ε, such that any solution

b of ∂b = λε that is continuous on Ω satisfies

max
z∈bΩ

|b(z)| ≥ MR − ε.

Proof. We will need a sequence of C∞–smooth cutoff functions χj defined as follows.

Let χ : R → [0, 1] be a smooth function satisfying χ(x) = 1 if |x| > 1, and χ(x) = 0

if |x| < 1/2. Given z0 ∈ Z, local coordinates z near z0, and large enough j, we

require that χj(z) = χ(j|z − z0|) for all z in a neighborhood of z0. Away from Z,

we set χj ≡ 1. These functions are designed to cancel the singularities of λ.
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Since MR is finite, we can find a bounded solution b to ∂b = λ. Let bj = χjb.

Note that each bj is smooth and has the same boundary values as b. Let λj = ∂bj .

Any solution b̃j of ∂b̃j = λj differs from bj by a holomorphic function. If b̃j is

bounded on bΩR, then b̃j − b is a bounded holomorphic function. So suppose that

for some ε > 0 and all j, there is hj ∈ H∞(ΩR) such that

sup
z∈bΩR

|bj(z) + hj(z)| ≤ MR − ε;

Since all the bj have the same boundary values, the hj will be uniformly bounded

on bΩR. By the maximum principle, the hj will be uniformly bounded on all of

ΩR. Let h ∈ H∞(ΩR) be the limit of a convergent subsequence of the hj . Then we

have ∂(b + h) = λ and

sup
z∈bΩR

|b(z) + h(z)| ≤ MR − ε.

This contradicts the definition of MR and shows that the hj cannot exist.

If we can also show that the Carleson norms of the λj tend toward the Carleson

norm NR of λ as j goes to ∞, we will be done. Set ηj = λ−λj = (1−χj)λ− b∂χj .

Note that the support of ηj is bounded away from bΩR when j is large. Furthermore,

the area of the support shrinks to 0 at the rate 1/j2. Since b is bounded, and ∂χj

increases only at the rate j, any Lp norm (p < 2) of b∂χj tends to 0 as j goes to ∞.

λ has finite Lp norm when p < 2, so we conclude that for p < 2, the Lp norm of ηj

shrinks to 0 as j goes to ∞. It will become clear in the work done to estimate II

of (4–6) below, that these conditions on ηj are enough to ensure that the Carleson

norm of ηj decreases to 0 as j goes to ∞. �

Lemma 3.2. There exists a bounded solution of

(3–3) ∂b = λ
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on ΩR. That is, MR is finite.

Proof. An unbounded solution of (3–3) is given by

(3–4) bω = ∂ log ρ0.

Any other solution will arise by adding a holomorphic function to this one. Let z0

be any zero of ω. Since we have assumed that all such zeroes are simple, in local

coordinates z (not the same as the local coordinates used near p), ω will have the

form zdz. Consequently, in these coordinates ρ0 will have the form A/|z| for some

bounded, real-analytic, positive function A. Plugging this into (3–4), we see that

the unbounded part of b has the form 1/2z2 + C/z near z0. By the Mittag-Leffler

Theorem for open Riemann surfaces, we can construct a meromorphic function h

on Ω0 with singular part exactly equal to the singular part of b near each point in

Z. b− h restricted to ΩR gives the bounded solution we seek. �

We wish to show that the constant C in Theorem 2.3 goes to infinity for ΩR

as R goes to 0. By the last two lemmas, we see that it is enough to show that

NR/MR goes to 0 with R. As an aside, we note that the last two lemmas were only

necessary because our reference form ω has zeroes. We pointed out above that if

Ω̂ were a torus, then it would be possible to choose ω without zeroes. However,

the need to choose a reference form illustrates an awkwardness in our construction.

Namely, our choice of “data” λ is most naturally a (1,1) form (the Poincaré area

form), but the “data” in Carleson’s ∂–theorem is a (0,1) form. Only with the help

of the reference form can we pass back and forth between these two objects.

Now we give the main result of this paper.

Theorem 3.3.

lim
R→0

NR

MR
= 0.
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In particular, the constant C in Theorem 2.3 depends on more than just the topology

of Ω.

4. Proof of the Main Result

Theorem 3.3 follows rapidly from the following two lemmas, whose proofs we

defer for the moment. The symbol “.” is used to mean “less than a constant

times”—where the suppressed constant is independent of R. The symbol “&” will

have the obvious similar meaning.

Lemma 4.1. For small enough R,

MR &
1
R

Lemma 4.2. For small enough R,

NR . | log R|+
∫ R0/2

R

∣∣∣∣ log R

r2(log r)3

∣∣∣∣ dr.

Proof of Theorem 3.3, assuming Lemmas 4.1 and 4.2.

lim
R→0

NR

MR
. lim

R→0

| log R|+
∫ R0/2

R

∣∣∣ log R
r2(log r)3

∣∣∣ dr

1/R

= lim
R→0

∫ R0/2

R

∣∣∣ 1
r2(log r)3

∣∣∣ dr

|R log R|−1

= lim
R→0

∣∣∣∣ R−2(log R)−3

−R−2(log R)−1 −R−2(log R)−2

∣∣∣∣ (by L’Hôpital’s Rule)

= lim
R→0

| log R|−2

= 0. �

Now we prove the two lemmas.

Proof of Lemma 4.1. Let b be any bounded solution to (3–3) on ΩR. Then

(4–1) bω = ∂ log ρ0 − h ω
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for some holomorphic function h on ΩR \ Z. We can also write

(4–2) b = uρ0

for some real analytic function u on ΩR that is continuous on ΩR. Let be V be a

small open set containing Z. Then we have∣∣∣∣∫
bV

b ω

∣∣∣∣ = ∣∣∣∣∫
bV

h ω − ∂ log ρ0

∣∣∣∣
=
∣∣∣∣∫

bΩR

−b ω +
∫

bΩR

∂ log ρ0 −
∫

bV

∂ log ρ0

∣∣∣∣
(by Cauchy’s Theorem and (4–1))

≥

∣∣∣∣∣
∫

ΩR\V
ρ2
0 ω̄ ∧ ω

∣∣∣∣∣−
∣∣∣∣∫

bΩR

uρ0 ω

∣∣∣∣
(by Stokes’ Theorem and (4–2))

≥ 2A(ΩR \ V )− C1L(bΩR),

where C1 = max
z∈bΩR

|u(z)|, and the area A and length L are evaluated with respect

to the Poincaré metric on Ω0. If we let V shrink to Z in an appropriate fashion,

then the left hand side of the calculation above goes to 0. This gives us that

(4–3) C1 ≥
2A(ΩR)
L(bΩR)

.

We have reduced our problem to studying the behavior of this isoperimetric ratio.

First note that the area term increases as R decreases, so we may assume that this

term is more than or equal to some constant. In fact, it turns out that A(Ω0) is

finite, so that this estimate is sharp. Our task becomes studying the behavior of

the length term as R decreases.

Suppose Ω0 is biholomorphic to ∆/G0 for some group G0 of Moebius transfor-

mations. Let T ∈ G0 correspond to traveling once around the puncture p (i.e.

z = 0). Then ∆/{T j}∞j=−∞ is biholomorphic to ∆\{0} and forms a covering space
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of Ω0. Let τ : ∆ \ {0} → Ω0 be the corresponding covering map. Taking τ(0) = p

extends τ to a holomorphic map on all of ∆. Traveling once about p corresponds

to traveling once about 0 ∈ ∆, so τ ′(0) 6= 0. In particular, τ has a local inverse

τ−1 defined at points z ∈ Ω0 near p. One can verify by finding an explicit covering

of ∆ \ {0} by the upper half plane that the Poincaré metric on ∆ \ {0} is given by

(|w| log |w|)−2 dw ⊗ dw̄. Then in local coordinates near p, we see that

ρ0(z) =
∣∣∣∣ (τ−1)′(z)
τ−1(z) log |τ−1(z)|

∣∣∣∣
≈ − 1

|z| log |z|
,(4–4)

since τ−1(z) ≈ z(τ−1)′(0) near z = 0. Thus,

(4–5) LPoin(bΩR) ≈
∣∣∣∣ 2π

log R

∣∣∣∣ .
From (4–2), (4–3), (4–4) and (4–5) we see that

MR = max
z∈bΩ

|b(z)|

≥ ( max
z∈bΩR

|u(z)|)( min
z∈bΩR

ρ0(z))

& log R
1

R log R
=

1
R

�

The proof of Lemma 4.2 is somewhat longer, involving several more auxiliary

lemmas. We need to estimate

NR . sup
z0∈ΩR

∫
ΩR

gR
z0

ρRρ2
0|ω|2

(4–6)

≤ sup
z0∈ΩR

∫
R<|z|<R0/2

gR
z0

ρRρ2
0 |dz|2︸ ︷︷ ︸

I

+ sup
z0∈ΩR

∫
ΩR0/2

gR
z0

ρRρ2
0 |ω|2︸ ︷︷ ︸

II

.

In writing I we have taken advantage of the local coordinates near p. We deal with

this integral first, using two lemmas. From now on, let r = |z|, for z near p.
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Lemma 4.3. On the set {R < |z| < R0/2}, we have

ρ0(z) .

∣∣∣∣ 1
r log r

∣∣∣∣ and ρR(z) .

∣∣∣∣ log R

r log(r/R) log r

∣∣∣∣ .
Proof. We use the fact the Poincaré metric is larger on smaller domains to obtain

both estimates. First, if ρ̃2
0 dz ⊗ dz̄ is the Poincaré metric on {0 < |z| < R0}, then

ρ0 . ρ̃0. As in the proof of Lemma 4.1, one can verify that ρ̃0 =
∣∣∣ 1
r log(r/R0)

∣∣∣. Thus,

for r < R0/2, ρ̃0 is comparable to the right side of the first estimate in the lemma.

Second, ρR < ρ̃R where ρ̃2
R dz ⊗ dz̄ is the Poincaré metric on {R < |z| < R0}.

One can use an explicit covering map from the upper half–plane to {R < |z| < R0}

to calculate that

ρ̃R(z) =

∣∣∣∣∣∣ 1

r log(R0/R) sin
(

π log(r/R)
log(R0/R)

)
∣∣∣∣∣∣

≈
∣∣∣∣ log(R0/R)
r log(r/R) log(R0/r)

∣∣∣∣ because sinπx ≈ x(1− x)

≈
∣∣∣∣ log R

r log(r/R) log r

∣∣∣∣ for R < r < R0/2,

which gives the second estimate. �

Lemma 4.4.

(4–7)
∫ 2π

0

gR
z0

(reiθ) dθ ≤ log
r

R
,

where the suppressed constant is independent of z0.

Proof. Let h be any harmonic function whose domain of definition includes an

annulus centered at 0. According to Ahlfors ([Ahl], section 4.6.2),

(4–8)
∫ 2π

0

h(reiθ) dθ = α log r + β,



LIMITS ON AN EXTENSION OF CARLESON’S ∂–THEOREM 17

for some constants α and β. Furthermore, let γ be a loop homologous—in the

domain of h—to the boundary components of the annulus. Then

α =
1
2π

∫
γ

∗dh,

where ∗dh denotes the conjugate differential of h. If r > |z0| then {|z| = r} is

homologous to 0 in Ω̂ \ {z0}. So if r > |z0|, the constant α in (4–8) turns out to be

0, and we are left with
1
2π

∫ 2π

0

gR
z0

(reiθ) dθ = β,

On the other hand, if |z0| > r, the circle of radius r about 0 is homologous to any

simple loop about z0. Abusing notation, we suppose that z is a local coordinate

near z0. Since

gR
z0

(z) = log |z − z0|+ h(z), h harmonic,

for z near z0, we see that

α =
1
2π

∫
|z−z0|=ε

∗d log |z − z0|

=
1
2π

∫ 2π

0

dθ = 1.

Combining this with (4–8) and the fact that gR
z0

(Reiθ) = 0, we see that

1
2π

∫ 2π

0

gR
z0

(reiθ) dθ = log
r

R

when r < |z0|. The integral in (4–7) will at least be continuous across r = |z0|, so

1
2π

∫ 2π

0

gR
z0

(reiθ) dθ =


log

r

R
, r ≤ |z0|

log
|z0|
R

, |z0| < r < R0

≤ log
r

R
.

�
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The upshot of Lemmas 4.3 and 4.4 is that

(4–9)

|I| =

∣∣∣∣∣ sup
z0∈ΩR

∫ 2π

0

∫ R0/2

R

gR
z0

ρRρ2
0 rdrdθ

∣∣∣∣∣
. sup

z0∈ΩR

∫ R0/2

R

∣∣∣∣ log R

r2 log(r/R)(log r)3

∣∣∣∣ ∫ 2π

0

gR
z0

(reiθ) dθdr

.
∫ R0/2

R

∣∣∣∣ log R

r2(log r)3

∣∣∣∣ dr.

We now turn our attention to II of (4–6), recalling that

II =
∫

ΩR0/2

gR
z0

ρRρ2
0 |ω|2.

Let dV be any finite, non-degenerate volume form on Ω̂. ΩR0/2 is compactly con-

tained in Ω0, so the Poincaré volume element ρ2
0|ω|2 will be uniformly comparable

to dV on ΩR0/2. That is,

II ≈
∫

ΩR0/2

gR
z0

ρR dV,

and this comparability is independent of R. The Poincaré metric on ΩR shrinks as

R decreases, so for small enough R, we get

II .
∫

ΩR0/2

gR
z0

ρR0/4 dV.

Since ΩR0/2 ⊂⊂ ΩR0/4, we can almost say that ρR0/4 is bounded on ΩR0/2. How-

ever, we must allow for singularities of ρR0/4 at the zeroes Z of ω. The zeroes of

ω are simple, so these singularities will be on the order of simple poles. What we

can conclude, therefore, is that (ρR0/4)t is integrable for all t < 2. Likewise, the

singularity of gR
z0

is logarithmic, so (gR
z0

)s is integrable for all s < ∞. By Hölder’s

inequality

II . ||gR
z0
||Ls ||ρR0/4||Lt . ||gR

z0
||Ls ,

for all 2 < s < ∞, and s−1 + t−1 = 1. Note that both norms are evaluated over

ΩR0/2 and with respect to dV .
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Our aim now is to show that for any s < ∞,

(4–10) ||gR
z0
||Ls . | log R|,

with a suppressed constant that is independent of z0. Once we demonstrate this,

our estimates (4–9) and (4–10) will combine to give us Lemma 4.2. We will prove

(4–10) by comparing gR
z0

with another function gz0 , harmonic on all of Ω̂—except

for a positive logarithmic singularity at z0 and a negative logarithmic singularity

at p.

Another way of describing gz0 is to say that gz0 has a Laplacian which is zero

everywhere except for a negative point mass at z0 and a positive point mass at p;

i.e. gz0 solves the equation

(4–11) 4 ∂∂gz0 = −δz0 + δp,

where δz is the point mass at z. We note that this equation is at least consistent in

the sense that both sides have the same degree as currents on a Riemann surface.

That is, both sides belong naturally to the dual space of C∞-functions—the right

side by definition, and the left side as a (1,1) form which can be multiplied by a

function and integrated over Ω̂. The advantages to finding a solution to (4–11)

are that the solution will be independent of R, and that we can arrange that the

solution will vary continuously with z0 in an appropriate sense. The difference

between gz0 and gR
z0

will be harmonic on ΩR (even at z0). Therefore, it will be

easier to study than gR
z0

alone.

Lemma 4.5. We can solve (4–11) on Ω̂ in such a way that

(i) z0 7→ gz0(·) is continuous as a map from Ω̂ to Lp(Ω̂), p < ∞.

(ii) If U ⊂ Ω̂ is open and z0, p /∈ U , then gz1 converges uniformly to gz0 on U

as z1 → z0.
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(iii) If the set U in (ii) contains z0, and z is a local coordinate on U , then

gz1(z)+log |z−z1| converges uniformly to gz0 +log |z−z0| on U as z1 → z0.

Similar statements hold if p, or both p and z0, are in U .

Proof. The total mass of the right hand side of (4–11) is zero. We also have that

−δz0 + δp is in the Sobelev space W2
−1−ε for all ε > 0 (see [Tay] page 20). Thus,

according to the Hodge Theory (see [GrHa], for example), one can find a linear

operator solving (4–11) such that

||gz0 ||W2
1−ε

. || − δz0 + δp||W2
−1−ε

,

The kernel of the Laplacian on a compact Riemann surface consists only of con-

stants, so we may suppose that the solution operator is independent of ε. A refined

version of the Sobolev embedding theorem (page 20 of [Tay] again) then gives us

||gz0 ||Ls . || − δz0 + δp||W2
−1−ε

,

for any s < s(ε), where s(ε) → ∞ as ε → 0. Since || − δz0 + δp||W2
−1−ε

depends

continuously on z0, we obtain statement (i) of the lemma. As a special case of (i),

we get the L2 continuity of gz0 as a function of z0. (ii) and (iii) follow fairly rapidly

from the observation that L2 control of harmonic functions implies pointwise control

on compact sets [Hor]. We omit the details. �

Let gz0 be the solution to (4–11) guaranteed by the last lemma. Since gz0 and

gR
z0

have the same singular part at z0, we can write

(4–12) gR
z0

= gz0 + hR
z0

,

where hR
z0

is a harmonic function of z. Suppose that z0 /∈ {|z| < R0} ⊂ Ω̂. Then

by Lemma 4.5, there is another function hz0 , harmonic on {|z| < R0}, continuous

on {z0 ∈ ΩR0}, and satisfying

gz0(z) = log |z|+ hz0(z).
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Using the fact that gR
z0

(z) = 0 for |z| = R, we see that

(4–13) |hR
z0

(z)| = | log |z|+ hz0(z)| . | log R|

for |z| = R. The suppressed constant is independent of z0 because hz0(z) is contin-

uous in both z0 and z and will take a maximum at some (z0, z) ∈ ΩR0 ×{|z| = R}.

Applying the maximum principle to hR
z0

, we see that (4–13) holds for all z ∈ ΩR.

We still need to estimate hR
z0

when R < |z0| < R0. To accomplish this, we note

that the difference g
R/2
z0 −gR

z0
is harmonic on ΩR and strictly positive on bΩR. Then

for small R, the maximum principle implies that

(4–14) |hR
z0
| = |gR

z0
− gz0 | < |gR/2

z0
− gz0 | = |hR/2

z0
|.

If R < |z| < R0, then Lemma 5.13 gives us a function hz0 that is harmonic for

|z| < R0 and continuous for |z0| ≤ R0, and satisfies

gz0(z) = log |z| − log |z − z0|+ hz0(z).

We obtain from this equation and the boundary condition on g
R/2
z0 , that

|hR/2
z0

(z)| = | log |z| − log |z − z0|+ hz0(z)|
(4–15)

≤ | log(R/2)|+ | log(R/2)|+ k1, k1 independent of z0 and z

. | log R|,

when |z| = R/2 and R is small. The maximum principle, (4–13), (4–14), and (4–15)

together tell us that |hR
z0

(z)| . | log R| for all z, z0 ∈ ΩR. We combine this fact with

(4–12) to get

|gR
z0

(z)| . |gz0(z)|+ | log R|, z, z0 ∈ ΩR.

Consequently,

||gR
z0
||Ls . ||gz0 ||Ls + | log R|.
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But ||gz0 ||Ls is a continuous function of z0 whenever s < ∞. In particular, it takes

a maximum for some z0 ∈ Ω̂. Thus, for s < ∞ and small R

||gR
z0
||Ls . | log R|.

This is the inequality (4–10) that we wanted to prove.
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