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1. INTRODUCTION

An open Riemann surface X is said to satisfy the corona theorem if for every
collection fi,..., f,, of holomorphic functions on X such that

82 <|fiP+- 4 |fu|* <62 for some § > 0

there are bounded holomorphic functions ¢, ..., g, on X such that

flgl+"'+fngn51;

equivalently [Gar,VIIL.2|, the corona M(X) \ ¢(X) is empty. (Here M(X) is the
maximal ideal space of the algebra H*>°(X) of bounded holomorphic functions on
X and ¢ is the natural inclusion X — M(X).) If X does not satisfy the corona
theorem then X may be said to have corona.

Riemann surfaces known to satisfy the corona theorem include the unit disk
[Car], bordered Riemann surfaces [All] [Sto], and various classes of planar domains
[GaJo] [Moo]. The question of whether general planar domains satisfy the corona
theorem is open.

The first construction of a Riemann surface with corona is due to Cole [Gam].

The goal of this paper is to prove the following.

Theorem 1.1. Let K be a compact subset of the Riemann sphere C with positive

logarithmic capacity and zero length. Then the homology cover (@\K) has

corona.

Hom

Here by length we mean one-dimensional Hausdorff measure. Also, the homol-
ogy cover Xpom of a Riemann surface X is the essentially unique covering space
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whose fundamental group is the commutator subgroup 77 (X) of 71 (X). Since the
commutator subgroup is normal, Xgom is a regular covering of X with deck group
naturally isomorphic to m (X) /71 (X) = H1(X).

Xtom is the smallest covering space of X on which every harmonic function on
X has a well-defined harmonic conjugate [For, 28.6]

We will denote by px the projection Xtom — X.

Any compact K C C with Hausdorff dimension strictly between 0 and 1 will
satisfy the hypotheses of Theorem 1.1 [Tsu, Thm. III.19].

Theorem 1.1 is proved in Section 2. In Section 3 we show that the unsolvable
corona problem used in the proof of Theorem 1.1 arises naturally in the study of
multivariate dynamics. Indeed, the map F' defined in Section 2 was inspired by
contemplation of the paper [HuPa] of Hubbard and Papadopol.

2. PROOF OF THEOREM 1.1
The proof of Theorem 1.1 will be based on the following lemmata.
Lemma 2.1. Let F = (f1, f2) be a holomorphic map from a Riemann surface X

into the shell

def

Ss & e85 < |z <61

Let Wr denote the Wronskian form
f2dft — f1dfs
and let L
w 21 We NV
F = 20—
(Pl

Then bounded holomorphic functions g1, gs solving

(2.1) J191 + fag2 =1

exist on X if and only if there is a (1,0)-form n on X solving the O problem

(2.2) on =wp
and satisfying a bound
(2.3) n AT < 2C%|wp|

for some positive constant C.

Note that F' induces a map X — C = CP! given by the meromorphic function
f1/ f2 or (in homogeneous projective coordinates) by [f1 : f2]. The form wp is simply
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the area form corresponding to the pullback F*(dssphere) to X of the spherical
metric
|22 le — 21 d22|

d =2
Ssphere |Zl‘2 + |Z2|2

on C. The bound (2.3) simply says that n is bounded relative to the (possibly
degenerate) metric F*(dsgsphere); We will rewrite (2.3) as

(2.4) In| < CF*(dSsphere)-

For study and application of the corresponding 0 problem for hyperbolic metrics
see [Dill], [BaDi], [Dil2].

Lemma 2.2. Let ds be a (possibly degenerate) conformal metric on a Riemann
surface X and let w = ds? be the corresponding area form. Suppose that for some
constant C > 0 there is a (1,0)-form n on X solving

on=w

and satisfying
In| < Cds.

Then every relatively compact subdomain 2 C X with piecewise smooth boundary
satisfies the linear isoperimetric estimate

(2.5) area({2) < C'length(b ).

Lemma 2.3. Let ds be a (possibly degenerate) conformal metric on a Riemann
surface X and let w = ds? be the corresponding area form. Suppose that for some
constant C > 0 there is a (1,0)-form 11 on Xygom solving

o = piw

and satisfying
7| < Cpxds.

Then there is a (1,0)-form n on X solving
on =w

and satisfying
In| < Cds.

Proof of Theorem 1.1. Since K has positive logarithmic capacity, there is a har-
monic function h on C\ K such that h is bounded off of a neighborhood of
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oo and h + log|¢| has a removable singularity at oo [Tsu, Thm. III.12]. Set
8 = exp(—[|h(¢) + 3 log(IC]* + D)l L= (c\x))-

In a neighborhood of each point in C\ K (including o) we can find a holomorphic
function with absolute value e”. Continuation of such a function along a loop 7
will multiply the function by a unimodular constant A,. In particular, continuation
along a commutator loop y1v27y; 172_ 1 is trivial; hence we can find a well-defined

holomorphic function H on (C\ K)

simple zeros at points lying over co.)
We define the map

with log |H| = h o pg . (H will have

Hom

—~——

F= (fl;f?) : (C\K)Hom —>S‘§’

(F' is holomorphic since the poles of Pe i are canceled by the zeros of H.) Note

—_——

that the induced map (C \ K)gom — C is just the projection map Perc-

Suppose that (C\ K JHom Satisfies the corona theorem. Then by Lemma 2.1

there is a (1,0)-form 77 on (C\ K)y, .
on = wp = (p("é\desphere)2. By Lemma 2.3 we may push down to get a (1, 0)-form n

bounded relative to F*(dssphere) and solving

on C \ K bounded relative to the spherical metric and solving On = dsgphere. Thus
by Lemma 2.2 the linear isoperimetric inequality (2.5) is valid for the spherical
metric on suitable subdomains of C \ K. But K can be covered by an open set
V' with arbitrarily small area and arbitrarily short piecewise smooth boundary, so

setting Q2 = C \ V we arrive at a contradiction. [J

Proof of Lemma 2.1. Suppose that g, go are bounded holomorphic functions solv-

ing (2.1) and and set C' = 57| |g1]® + |92|2||1L/£(X)-
Let _ —
_ g2J1 — g1 /2
112
and
n = —2z'uWF.
Then direct computation shows that
= We
1]

so that 7 solves (2.2), and moreover

2C6 "
In| = 2|u||Wg| < W‘WF‘ <CF (dSSphere)
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so that n satisfies (2.4) and hence (2.3).

For the converse first note that if Wgr = 0 then without loss of generality fs is a
constant multiple of f; and we may take g1 = f; gy =0.

In the general case let Z denote the zero set of Wg and set

in
u =
2Wp
on X \ Z. Then (2.3) implies that
C
2(Wr| ~ [|F]
Set
fi
g1 = —|—’Lbf2,
172
f2
g2 = o —uf1
172

on X \ Z. Then direct computation shows that

g1 =0 = 0go,

_ 1 C
lg11* + lga* = I1F1 7 + | FI* < =5 + (%)%
and
fig1 + fago =1

on X \ Z. Thus the singularities of g1, g2 at points of Z are removable, and g1, g2
extend to bounded holomorphic functions solving (2.1) on all of X. O

Proof of Lemma 2.2.

area(() = /Q w

(Stokes)
= n
b Q

< Cds
b Q

= Clength(b ). O

Proof of Lemma 2.3. This is a standard “amenability” argument. (Compare [Sto,
Thm. 2.1] [McM].)
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Let 71,72, - - - € Aut(Xpom) be a list of generators for the deck group (~ H;(X)).

Let
=2k +1)7% Y (7" ()
|m; <k
Since
(™) (7)) pxw = pxw
we have
O = pxw

and

|ﬁk | < Cp;( dssphere ;

moreover, since the 7; commute, we also have

2C
|75 e — M| <
J 2k +1

forj=1,... k.

Generalized Cauchy estimates [Hor, Thm. 1.2.4] show that derivatives of the 7
are uniformly bounded on compact subsets. Hence, by a normal families argument
some subsequence of the 7, converges to a limit 7., which satisfies

57700 = p;(w7
|77<>o| S Cp}dsspherm
and
T;ﬁoo = Tloo
for all 7 and thus induces the desired form n on X. 0O

Remark: In the proof of Theorem 1.1, Lemma 2.1 together with the corona
theorem for the universal cover Xuniv ~Aof X =C \ K implies that our basic 0
problem does admit a bounded solution on X’univ despite the fact that no bounded
solution exists on X.

3. CONNECTION WITH MULTIVARIATE DYNAMICS

Let p1(z1, 22), p2(21, 22) be homogeneous polynomials of degree k > 2 such that
{(21, 22) : p1(21, 22) = pa(21, 22) = 0} = {0}
Then the map

P :C? - C?,

(21,22) = (p1(21, 22), p2(21, 22))
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induces a self-map ¢ of CP' = C given by [z1 : 2] — [p1(21,22) : pa(z1,22)] or
b1 (27 1)

D2 (27 1) .
The origin is a superattractive fixed point for ®; let U denote the corresponding

basin of attraction. Also, let F C C denote the Fatou set of ¢ and let 1 denote the
quotient map C2\ {0} — C.
Then we have the following (see [HuPa));
(1) There is § > 0 such that B(0,5) Cc U C B(0,671).
(2) U is a complete circular domain (i.e., z € U, |\| < 1 implies Az € U).
(3) bU Nn~Y(F) is a smooth hypersurface foliated by Riemann surfaces.
(4) For each leaf L of this foliation the restriction 7z, of  to [ is a covering map
onto F.
(5) Continuation of a branch of 77;1 along a loop v multiplies the branch by a
unimodular scalar A .

In particular, continuation of a branch of 77;1 along a commutator loop is trivial
and thus the covering pr, : L — F is subordinate to the homology covering of F.
Suppose now that the Julia set @\.7—" has length zero: this happens in particular
when @ is given by
(21,22) — (Z% + nga Z%),

¢ ¢ the Mandelbrot set [Ran, Ex. 2]. Then the proof of Theorem 1.1 now shows that
L has corona; in particular, the coordinate functions 21, 2o satisfy 62 < |21[?+|22]? <
52 on L but fail to generate the algebra of bounded holomorphic functions on L.

Addendum. Bo Berndtsson has suggested the following alternate proof of Theo-
rem 1.1.
Construct f; and f, as before and suppose that there are bounded holomorphic

g1 and gz on (C\ K)y,,, solving fig1 + fag2 = 1.

Averaging fi1g1 and fogo over fibers as in Lemma 2.3 we obtain bounded holo-
morphic functions h; and hs on C \ K solving hy + he = 1. By Painlevé’s Theorem
hi and ho are constant. Now fogo vanishes at points lying over oo, so hy(oo) = 0.
Assuming, as we may, that 0 ¢ K we find similarly that h,(0) = 0. But now
hi1 = 0 = hy, a contradiction.
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