A NEW CONSTRUCTION OF RIEMANN SURFACES WITH CORONA

DAVID E. BARRETT AND JEFFREY DILLER

University of Michigan Indiana University

1. INTRODUCTION

An open Riemann surface X is said to satisfy the corona theorem if for every collection f_1, \ldots, f_n of holomorphic functions on X such that

 $\delta^2 < |f_1|^2 + \dots + |f_n|^2 < \delta^{-2}$ for some $\delta > 0$

there are bounded holomorphic functions g_1, \ldots, g_n on X such that

$$f_1g_1 + \dots + f_ng_n \equiv 1;$$

equivalently [Gar,VIII.2], the corona $\mathcal{M}(X) \setminus \overline{\iota(X)}$ is empty. (Here $\mathcal{M}(X)$ is the maximal ideal space of the algebra $H^{\infty}(X)$ of bounded holomorphic functions on X and ι is the natural inclusion $X \hookrightarrow \mathcal{M}(X)$.) If X does not satisfy the corona theorem then X may be said to have corona.

Riemann surfaces known to satisfy the corona theorem include the unit disk [Car], bordered Riemann surfaces [All] [Sto], and various classes of planar domains [GaJo] [Moo]. The question of whether general planar domains satisfy the corona theorem is open.

The first construction of a Riemann surface with corona is due to Cole [Gam]. The goal of this paper is to prove the following.

Theorem 1.1. Let K be a compact subset of the Riemann sphere $\widehat{\mathbb{C}}$ with positive logarithmic capacity and zero length. Then the homology cover $(\widehat{\mathbb{C}} \setminus K)_{\text{Hom}}$ has corona.

Here by *length* we mean one-dimensional Hausdorff measure. Also, the *homology cover* \tilde{X}_{Hom} of a Riemann surface X is the essentially unique covering space

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

1

¹⁹⁹¹ Mathematics Subject Classification. Primary: 30H50; secondary 30F45, 32H50.

First author supported in part by a grant from the National Science Foundation.

whose fundamental group is the commutator subgroup $\pi'_1(X)$ of $\pi_1(X)$. Since the commutator subgroup is normal, \tilde{X}_{Hom} is a regular covering of X with deck group naturally isomorphic to $\pi_1(X)/\pi'_1(X) = H_1(X)$.

 \tilde{X}_{Hom} is the smallest covering space of X on which every harmonic function on X has a well-defined harmonic conjugate [For, 28.6]

We will denote by ρ_X the projection $X_{\text{Hom}} \to X$.

Any compact $K \subset \mathbb{C}$ with Hausdorff dimension strictly between 0 and 1 will satisfy the hypotheses of Theorem 1.1 [Tsu, Thm. III.19].

Theorem 1.1 is proved in Section 2. In Section 3 we show that the unsolvable corona problem used in the proof of Theorem 1.1 arises naturally in the study of multivariate dynamics. Indeed, the map F defined in Section 2 was inspired by contemplation of the paper [HuPa] of Hubbard and Papadopol.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 will be based on the following lemmata.

Lemma 2.1. Let $F = (f_1, f_2)$ be a holomorphic map from a Riemann surface X into the shell

$$S_{\delta} \stackrel{\text{def}}{=} \{ z \in \mathbb{C}^2 : \delta < \|z\| < \delta^{-1} \}.$$

Let \mathcal{W}_F denote the Wronskian form

$$f_2 df_1 - f_1 df_2$$

and let

$$\omega_F = 2i \frac{\mathcal{W}_F \wedge \overline{\mathcal{W}_F}}{\|F\|^4}.$$

Then bounded holomorphic functions g_1, g_2 solving

(2.1)
$$f_1g_1 + f_2g_2 \equiv 1$$

exist on X if and only if there is a (1,0)-form η on X solving the $\overline{\partial}$ problem

(2.2)
$$\overline{\partial}\eta = \omega_F$$

and satisfying a bound

$$(2.3) |\eta \wedge \overline{\eta}| \le 2C^2 |\omega_F|$$

for some positive constant C.

Note that F induces a map $X \to \hat{\mathbb{C}} = \mathbb{CP}^1$ given by the meromorphic function f_1/f_2 or (in homogeneous projective coordinates) by $[f_1 : f_2]$. The form ω_F is simply

the area form corresponding to the pullback $F^*(ds_{\text{sphere}})$ to X of the spherical metric

$$ds_{\rm sphere} = 2 \frac{|z_2 \, dz_1 - z_1 \, dz_2|}{|z_1|^2 + |z_2|^2}$$

on $\hat{\mathbb{C}}$. The bound (2.3) simply says that η is bounded relative to the (possibly degenerate) metric $F^*(ds_{\text{sphere}})$; we will rewrite (2.3) as

(2.4)
$$|\eta| \le CF^*(ds_{\text{sphere}}).$$

For study and application of the corresponding $\overline{\partial}$ problem for hyperbolic metrics see [Dil1], [BaDi], [Dil2].

Lemma 2.2. Let ds be a (possibly degenerate) conformal metric on a Riemann surface X and let $\omega = ds^2$ be the corresponding area form. Suppose that for some constant C > 0 there is a (1,0)-form η on X solving

$$\overline{\partial}\eta = \omega$$

and satisfying

$$|\eta| \le C \, ds.$$

Then every relatively compact subdomain $\Omega \subset X$ with piecewise smooth boundary satisfies the linear isoperimetric estimate

(2.5)
$$\operatorname{area}(\Omega) \leq C \operatorname{length}(\operatorname{b}\Omega).$$

Lemma 2.3. Let ds be a (possibly degenerate) conformal metric on a Riemann surface X and let $\omega = ds^2$ be the corresponding area form. Suppose that for some constant C > 0 there is a (1,0)-form $\tilde{\eta}$ on \tilde{X}_{Hom} solving

$$\overline{\partial}\tilde{\eta} = \rho_X^*\omega$$

and satisfying

$$|\tilde{\eta}| \le C\rho_X^* ds.$$

Then there is a (1,0)-form η on X solving

$$\overline{\partial}\eta = \omega$$

and satisfying

$$|\eta| \leq C \, ds.$$

Proof of Theorem 1.1. Since K has positive logarithmic capacity, there is a harmonic function h on $\mathbb{C} \setminus K$ such that h is bounded off of a neighborhood of ∞ and $h + \log |\zeta|$ has a removable singularity at ∞ [Tsu, Thm. III.12]. Set $\delta = \exp(-\|h(\zeta) + \frac{1}{2}\log(|\zeta|^2 + 1)\|_{L^{\infty}(\mathbb{C}\setminus K)}).$

In a neighborhood of each point in $\hat{\mathbb{C}} \setminus K$ (including ∞) we can find a holomorphic function with absolute value e^h . Continuation of such a function along a loop γ will multiply the function by a unimodular constant λ_{γ} . In particular, continuation along a commutator loop $\gamma_1 \gamma_2 \gamma_1^{-1} \gamma_2^{-1}$ is trivial; hence we can find a well-defined holomorphic function H on $(\hat{\mathbb{C}} \setminus K)_{\text{Hom}}$ with $\log |H| = h \circ \rho_{\hat{\mathbb{C}} \setminus K}$. (H will have simple zeros at points lying over ∞ .)

We define the map

$$F = (f_1, f_2) : (\hat{\mathbb{C}} \setminus K)_{\text{Hom}} \to S_{\delta},$$
$$\zeta \mapsto (\rho_{\hat{\mathbb{C}} \setminus K}(\zeta) H(\zeta), H(\zeta)).$$

(*F* is holomorphic since the poles of $\rho_{\widehat{\mathbb{C}}\setminus K}$ are canceled by the zeros of *H*.) Note that the induced map $(\widetilde{\mathbb{C}}\setminus K)_{\text{Hom}} \to \widehat{\mathbb{C}}$ is just the projection map $\rho_{\widehat{\mathbb{C}}\setminus K}$.

Suppose that $(\hat{\mathbb{C}} \setminus K)_{\text{Hom}}$ satisfies the corona theorem. Then by Lemma 2.1 there is a (1,0)-form $\tilde{\eta}$ on $(\hat{\mathbb{C}} \setminus K)_{\text{Hom}}$ bounded relative to $F^*(ds_{\text{sphere}})$ and solving $\overline{\partial}\tilde{\eta} = \omega_F = (\rho_{\hat{\mathbb{C}}\setminus K}^* ds_{\text{sphere}})^2$. By Lemma 2.3 we may push down to get a (1,0)-form η on $\hat{\mathbb{C}} \setminus K$ bounded relative to the spherical metric and solving $\overline{\partial}\eta = ds_{\text{sphere}}^2$. Thus by Lemma 2.2 the linear isoperimetric inequality (2.5) is valid for the spherical metric on suitable subdomains of $\hat{\mathbb{C}} \setminus K$. But K can be covered by an open set V with arbitrarily small area and arbitrarily short piecewise smooth boundary, so setting $\Omega = \hat{\mathbb{C}} \setminus \overline{V}$ we arrive at a contradiction. \Box

Proof of Lemma 2.1. Suppose that g_1, g_2 are bounded holomorphic functions solving (2.1) and set $C = \delta^{-1} || |g_1|^2 + |g_2|^2 ||_{L^{\infty}(X)}^{1/2}$. Let

$$u = \frac{g_2\overline{f_1} - g_1\overline{f_2}}{\|F\|^2}$$

and

$$\eta = -2iu\mathcal{W}_F$$

Then direct computation shows that

$$\overline{\partial}u = -\frac{\overline{\mathcal{W}_F}}{\|F\|^4}$$

so that η solves (2.2), and moreover

$$|\eta| = 2|u||\mathcal{W}_F| \le \frac{2C\delta}{\|F\|}|\mathcal{W}_F| \le CF^*(ds_{\text{sphere}})$$

so that η satisfies (2.4) and hence (2.3).

For the converse first note that if $\mathcal{W}_F \equiv 0$ then without loss of generality f_2 is a constant multiple of f_1 and we may take $g_1 = f_1^{-1}, g_2 = 0$. In the general case let Z denote the zero set of \mathcal{W}_F and set

$$u = \frac{i\eta}{2\mathcal{W}_F}$$

on $X \setminus Z$. Then (2.3) implies that

$$|u| = \frac{|\eta|}{2|\mathcal{W}_F|} \le \frac{C}{\|F\|^2}.$$

Set

$$g_1 = \frac{\overline{f_1}}{\|F\|^2} + uf_2,$$

$$g_2 = \frac{\overline{f_2}}{\|F\|^2} - uf_1$$

on $X \setminus Z$. Then direct computation shows that

$$\overline{\partial}g_1 \equiv 0 \equiv \overline{\partial}g_2,$$
$$|g_1|^2 + |g_2|^2 = ||F||^{-2} + u^2 ||F||^2 \le \frac{1}{\delta^2} + (\frac{C}{\delta})^2,$$

0

and

$$f_1g_1 + f_2g_2 \equiv 1$$

on $X \setminus Z$. Thus the singularities of g_1, g_2 at points of Z are removable, and g_1, g_2 extend to bounded holomorphic functions solving (2.1) on all of X. \Box

Proof of Lemma 2.2.

$$\begin{aligned} \operatorname{area}(\Omega) &= \int_{\Omega} \omega \\ \stackrel{(\operatorname{Stokes})}{=} \int_{\operatorname{b}\Omega} \eta \\ &\leq \int_{\operatorname{b}\Omega} C \, ds \\ &= C \operatorname{length}(\operatorname{b}\Omega). \quad \Box \end{aligned}$$

Proof of Lemma 2.3. This is a standard "amenability" argument. (Compare [Sto, Thm. 2.1] [McM].)

Let $\tau_1, \tau_2, \dots \in \operatorname{Aut}(\tilde{X}_{\operatorname{Hom}})$ be a list of generators for the deck group $(\simeq H_1(X))$. Let

$$\tilde{\eta}_k = (2k+1)^{-k} \sum_{|m_j| \le k} (\tau_1^{m_1})^* \dots (\tau_k^{m_k})^* \tilde{\eta}.$$

Since

$$(\tau_1^{m_1})^* \dots (\tau_k^{m_k})^* \rho_X^* \omega = \rho_X^* \omega$$

we have

$$\partial \tilde{\eta}_k = \rho_X^* \omega$$

and

$$|\tilde{\eta}_k| \leq C \rho_X^* ds_{\text{sphere}};$$

moreover, since the τ_j commute, we also have

$$|\tau_j^* \tilde{\eta}_k - \tilde{\eta}_k| \le \frac{2C}{2k+1}$$

for j = 1, ..., k.

Generalized Cauchy estimates [Hör, Thm. 1.2.4] show that derivatives of the $\tilde{\eta}_k$ are uniformly bounded on compact subsets. Hence, by a normal families argument some subsequence of the $\tilde{\eta}_k$ converges to a limit $\tilde{\eta}_{\infty}$ which satisfies

$$\overline{\partial} \tilde{\eta}_{\infty} = \rho_X^* \omega,$$
$$|\tilde{\eta}_{\infty}| \le C \rho_X^* ds_{\text{sphere}},$$

and

$$\tau_j^* \tilde{\eta}_\infty = \tilde{\eta}_\infty$$

for all j and thus induces the desired form η on X. \Box

Remark: In the proof of Theorem 1.1, Lemma 2.1 together with the corona theorem for the universal cover $\tilde{X}_{\text{univ}} \simeq \Delta$ of $X = \hat{\mathbb{C}} \setminus K$ implies that our basic $\overline{\partial}$ problem does admit a bounded solution on \tilde{X}_{univ} despite the fact that no bounded solution exists on X.

3. Connection with multivariate dynamics

Let $p_1(z_1, z_2), p_2(z_1, z_2)$ be homogeneous polynomials of degree $k \ge 2$ such that

$$\{(z_1, z_2) : p_1(z_1, z_2) = p_2(z_1, z_2) = 0\} = \{0\}.$$

Then the map

$$\Phi: \mathbb{C}^2 \to \mathbb{C}^2,$$

(z₁, z₂) \mapsto (p₁(z₁, z₂), p₂(z₁, z₂))

induces a self-map ϕ of $\mathbb{CP}^1 = \hat{\mathbb{C}}$ given by $[z_1 : z_2] \mapsto [p_1(z_1, z_2) : p_2(z_1, z_2)]$ or $z \mapsto \underline{p_1(z, 1)}$

 $\rightarrow \overline{p_2(z,1)}$. The origin is a superattractive fixed point for Φ ; let U denote the corresponding basin of attraction. Also, let $\mathcal{F} \subset \mathbb{C}$ denote the Fatou set of ϕ and let η denote the quotient map $\mathbb{C}^2 \setminus \{0\} \to \hat{\mathbb{C}}$.

Then we have the following (see [HuPa]);

- (1) There is $\delta > 0$ such that $B(0, \delta) \subset U \subset B(0, \delta^{-1})$.
- (2) U is a complete circular domain (i.e., $z \in U, |\lambda| \le 1$ implies $\lambda z \in U$).
- (3) $b U \cap \eta^{-1}(\mathcal{F})$ is a smooth hypersurface foliated by Riemann surfaces.
- (4) For each leaf L of this foliation the restriction η_L of η to l is a covering map onto \mathcal{F} .
- (5) Continuation of a branch of η_L^{-1} along a loop γ multiplies the branch by a unimodular scalar λ_{γ} .

In particular, continuation of a branch of η_L^{-1} along a commutator loop is trivial and thus the covering $\rho_L : L \to \mathcal{F}$ is subordinate to the homology covering of \mathcal{F} .

Suppose now that the Julia set $\hat{\mathbb{C}} \setminus \mathcal{F}$ has length zero: this happens in particular when Φ is given by

$$(z_1, z_2) \mapsto (z_1^2 + c z_2^2, z_2^2),$$

 $c \notin$ the Mandelbrot set [Ran, Ex. 2]. Then the proof of Theorem 1.1 now shows that L has corona; in particular, the coordinate functions z_1, z_2 satisfy $\delta^2 < |z_1|^2 + |z_2|^2 < 1$ δ^{-2} on L but fail to generate the algebra of bounded holomorphic functions on L.

Addendum. Bo Berndtsson has suggested the following alternate proof of Theorem 1.1.

Construct f_1 and f_2 as before and suppose that there are bounded holomorphic g_1 and g_2 on $(\hat{\mathbb{C}} \setminus K)_{\text{Hom}}$ solving $f_1g_1 + f_2g_2 \equiv 1$.

Averaging f_1g_1 and f_2g_2 over fibers as in Lemma 2.3 we obtain bounded holomorphic functions h_1 and h_2 on $\mathbb{C} \setminus K$ solving $h_1 + h_2 \equiv 1$. By Painlevé's Theorem h_1 and h_2 are constant. Now f_2g_2 vanishes at points lying over ∞ , so $h_2(\infty) = 0$. Assuming, as we may, that $0 \notin K$ we find similarly that $h_1(0) = 0$. But now $h_1 \equiv 0 \equiv h_2$, a contradiction.

References

- [All] N. Alling, A proof of the corona conjecture for finite open Riemann surfaces, Bull. Amer. Math. Soc. 70 (1964), 110-112.
- [BaDi] D. Barrett and J. Diller, Contraction properties of the Poincaré series operator (to appear).
- [Car]L. Carleson, Interpolations by bounded analytic functions and the corona problem, Annals of Math. 76 (1962), 547-559.
- [Dil1] J. Diller, A canonical $\overline{\partial}$ problem for bordered Riemann surfaces (to appear).
- [Dil2] J. Diller, Limits on an extension of Carleson's $\overline{\partial}$ theorem, J. Geometric Analysis (to appear).

- [For] O. Forster, Lectures on Riemann surfaces, Springer-Verlag, 1981.
- [Gam] T. Gamelin, Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Series # 32, 1978.
- [Gar] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- [GaJo] J. B. Garnett and P. W. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), 27-40.
- [Hör] L. Hörmander, An introduction to complex analysis in several variables (3rd ed.), North-Holland, 1990.
- [HuPa] J. H. Hubbard and P. Papadopol, Superattractive fixed points in \mathbb{C}^n , Indiana Univ. Math. J. 43 (1994), 321-365.
- [McM] C. McMullen, Amenable coverings of complex manifolds and holomorphic probability measures, Invent. Math. 110 (1992), 29-37.
- [Moo] C. Moore, The corona theorem for domains whose boundary lies in a smooth curve, Proc. Amer. Math. Soc. **100** (1987), 266-270.
- [Ran] T. J. Ransford, Variation of Hausdorff dimension of Julia sets, Ergodic Theorey and Dynamical Systems 13 (1993), 167-179.
- [Sto] E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255-285.
- [Tsu] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959.

ANN ARBOR, MI 48105 USA E-mail address: barrett@math.lsa.umich.edu

BLOOMINGTON, IN 47405 USA E-mail address: jdiller@ucs.indiana.edu