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1. Introduction

An open Riemann surface X is said to satisfy the corona theorem if for every
collection f1, . . . , fn of holomorphic functions on X such that

δ2 < |f1|2 + · · ·+ |fn|2 < δ−2 for some δ > 0

there are bounded holomorphic functions g1, . . . , gn on X such that

f1g1 + · · ·+ fngn ≡ 1;

equivalently [Gar,VIII.2], the corona M(X) \ ι(X) is empty. (Here M(X) is the
maximal ideal space of the algebra H∞(X) of bounded holomorphic functions on
X and ι is the natural inclusion X ↪→ M(X).) If X does not satisfy the corona
theorem then X may be said to have corona.

Riemann surfaces known to satisfy the corona theorem include the unit disk
[Car], bordered Riemann surfaces [All] [Sto], and various classes of planar domains
[GaJo] [Moo]. The question of whether general planar domains satisfy the corona
theorem is open.

The first construction of a Riemann surface with corona is due to Cole [Gam].
The goal of this paper is to prove the following.

Theorem 1.1. Let K be a compact subset of the Riemann sphere Ĉ with positive

logarithmic capacity and zero length. Then the homology cover ˜(Ĉ \K)Hom has
corona.

Here by length we mean one-dimensional Hausdorff measure. Also, the homol-
ogy cover X̃Hom of a Riemann surface X is the essentially unique covering space

1991 Mathematics Subject Classification. Primary: 30H50; secondary 30F45, 32H50.

First author supported in part by a grant from the National Science Foundation.

Typeset by AMS-TEX

1



2 DAVID E. BARRETT AND JEFFREY DILLER

whose fundamental group is the commutator subgroup π′1(X) of π1(X). Since the
commutator subgroup is normal, X̃Hom is a regular covering of X with deck group
naturally isomorphic to π1(X)/π′1(X) = H1(X).

X̃Hom is the smallest covering space of X on which every harmonic function on
X has a well-defined harmonic conjugate [For, 28.6]

We will denote by ρX the projection X̃Hom → X.
Any compact K ⊂ C with Hausdorff dimension strictly between 0 and 1 will

satisfy the hypotheses of Theorem 1.1 [Tsu, Thm. III.19].
Theorem 1.1 is proved in Section 2. In Section 3 we show that the unsolvable

corona problem used in the proof of Theorem 1.1 arises naturally in the study of
multivariate dynamics. Indeed, the map F defined in Section 2 was inspired by
contemplation of the paper [HuPa] of Hubbard and Papadopol.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 will be based on the following lemmata.

Lemma 2.1. Let F = (f1, f2) be a holomorphic map from a Riemann surface X
into the shell

Sδ
def= {z ∈ C2 : δ < ‖z‖ < δ−1}.

Let WF denote the Wronskian form

f2 df1 − f1 df2

and let

ωF = 2i
WF ∧WF

‖F‖4
.

Then bounded holomorphic functions g1, g2 solving

(2.1) f1g1 + f2g2 ≡ 1

exist on X if and only if there is a (1, 0)-form η on X solving the ∂ problem

(2.2) ∂η = ωF

and satisfying a bound

(2.3) |η ∧ η| ≤ 2C2|ωF |

for some positive constant C.

Note that F induces a map X → Ĉ = CP1 given by the meromorphic function
f1/f2 or (in homogeneous projective coordinates) by [f1 : f2]. The form ωF is simply



A NEW CONSTRUCTION OF RIEMANN SURFACES WITH CORONA 3

the area form corresponding to the pullback F ∗(dssphere) to X of the spherical
metric

dssphere = 2
|z2 dz1 − z1 dz2|
|z1|2 + |z2|2

on Ĉ. The bound (2.3) simply says that η is bounded relative to the (possibly
degenerate) metric F ∗(dssphere); we will rewrite (2.3) as

(2.4) |η| ≤ CF ∗(dssphere).

For study and application of the corresponding ∂ problem for hyperbolic metrics
see [Dil1], [BaDi], [Dil2].

Lemma 2.2. Let ds be a (possibly degenerate) conformal metric on a Riemann
surface X and let ω = ds2 be the corresponding area form. Suppose that for some
constant C > 0 there is a (1, 0)-form η on X solving

∂η = ω

and satisfying
|η| ≤ C ds.

Then every relatively compact subdomain Ω ⊂ X with piecewise smooth boundary
satisfies the linear isoperimetric estimate

(2.5) area(Ω) ≤ C length(bΩ).

Lemma 2.3. Let ds be a (possibly degenerate) conformal metric on a Riemann
surface X and let ω = ds2 be the corresponding area form. Suppose that for some
constant C > 0 there is a (1, 0)-form η̃ on X̃Hom solving

∂η̃ = ρ∗Xω

and satisfying
|η̃| ≤ Cρ∗Xds.

Then there is a (1, 0)-form η on X solving

∂η = ω

and satisfying
|η| ≤ C ds.

Proof of Theorem 1.1. Since K has positive logarithmic capacity, there is a har-
monic function h on C \ K such that h is bounded off of a neighborhood of
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∞ and h + log |ζ| has a removable singularity at ∞ [Tsu, Thm. III.12]. Set
δ = exp(−‖h(ζ) + 1

2 log(|ζ|2 + 1)‖L∞(C\K)).
In a neighborhood of each point in Ĉ\K (including∞) we can find a holomorphic

function with absolute value eh. Continuation of such a function along a loop γ
will multiply the function by a unimodular constant λγ . In particular, continuation
along a commutator loop γ1γ2γ

−1
1 γ−1

2 is trivial; hence we can find a well-defined

holomorphic function H on ˜(Ĉ \K)Hom with log |H| = h ◦ ρĈ\K . (H will have
simple zeros at points lying over ∞.)

We define the map

F = (f1, f2) : ˜(Ĉ \K)Hom → Sδ,

ζ 7→ (ρĈ\K(ζ)H(ζ),H(ζ)).

(F is holomorphic since the poles of ρĈ\K are canceled by the zeros of H.) Note

that the induced map ˜(Ĉ \K)Hom → Ĉ is just the projection map ρĈ\K .

Suppose that ˜(Ĉ \K)Hom satisfies the corona theorem. Then by Lemma 2.1

there is a (1, 0)-form η̃ on ˜(Ĉ \K)Hom bounded relative to F ∗(dssphere) and solving
∂η̃ = ωF = (ρ∗Ĉ\Kdssphere)2. By Lemma 2.3 we may push down to get a (1, 0)-form η

on Ĉ \K bounded relative to the spherical metric and solving ∂η = ds2
sphere. Thus

by Lemma 2.2 the linear isoperimetric inequality (2.5) is valid for the spherical
metric on suitable subdomains of Ĉ \ K. But K can be covered by an open set
V with arbitrarily small area and arbitrarily short piecewise smooth boundary, so
setting Ω = Ĉ \ V we arrive at a contradiction. �

Proof of Lemma 2.1. Suppose that g1, g2 are bounded holomorphic functions solv-
ing (2.1) and and set C = δ−1‖ |g1|2 + |g2|2‖1/2

L∞(X).
Let

u =
g2f1 − g1f2

‖F‖2

and
η = −2iuWF .

Then direct computation shows that

∂u = − WF

‖F‖4

so that η solves (2.2), and moreover

|η| = 2|u||WF | ≤
2Cδ

‖F‖
|WF | ≤ CF ∗(dssphere)
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so that η satisfies (2.4) and hence (2.3).
For the converse first note that if WF ≡ 0 then without loss of generality f2 is a

constant multiple of f1 and we may take g1 = f−1
1 , g2 = 0.

In the general case let Z denote the zero set of WF and set

u =
iη

2WF

on X \ Z. Then (2.3) implies that

|u| = |η|
2|WF |

≤ C

‖F‖2
.

Set

g1 =
f1

‖F‖2
+ uf2,

g2 =
f2

‖F‖2
− uf1

on X \ Z. Then direct computation shows that

∂g1 ≡ 0 ≡ ∂g2,

|g1|2 + |g2|2 = ‖F‖−2 + u2‖F‖2 ≤ 1
δ2

+ (
C

δ
)2,

and
f1g1 + f2g2 ≡ 1

on X \ Z. Thus the singularities of g1, g2 at points of Z are removable, and g1, g2

extend to bounded holomorphic functions solving (2.1) on all of X. �

Proof of Lemma 2.2.

area(Ω) =
∫

Ω

ω

(Stokes)
=

∫
b Ω

η

≤
∫

b Ω

C ds

= C length(bΩ). �

Proof of Lemma 2.3. This is a standard “amenability” argument. (Compare [Sto,
Thm. 2.1] [McM].)
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Let τ1, τ2, · · · ∈ Aut(X̃Hom) be a list of generators for the deck group (' H1(X)).
Let

η̃k = (2k + 1)−k
∑

|mj |≤k

(τm1
1 )∗ . . . (τmk

k )∗η̃.

Since
(τm1

1 )∗ . . . (τmk

k )∗ρ∗Xω = ρ∗Xω

we have
∂η̃k = ρ∗Xω

and
|η̃k| ≤ Cρ∗Xdssphere;

moreover, since the τj commute, we also have

|τ∗j η̃k − η̃k| ≤
2C

2k + 1

for j = 1, . . . , k.
Generalized Cauchy estimates [Hör, Thm. 1.2.4] show that derivatives of the η̃k

are uniformly bounded on compact subsets. Hence, by a normal families argument
some subsequence of the η̃k converges to a limit η̃∞ which satisfies

∂η̃∞ = ρ∗Xω,

|η̃∞| ≤ Cρ∗Xdssphere,

and
τ∗j η̃∞ = η̃∞

for all j and thus induces the desired form η on X. �

Remark: In the proof of Theorem 1.1, Lemma 2.1 together with the corona
theorem for the universal cover X̃univ ' ∆ of X = Ĉ \K implies that our basic ∂

problem does admit a bounded solution on X̃univ despite the fact that no bounded
solution exists on X.

3. Connection with multivariate dynamics

Let p1(z1, z2), p2(z1, z2) be homogeneous polynomials of degree k ≥ 2 such that

{(z1, z2) : p1(z1, z2) = p2(z1, z2) = 0} = {0}.

Then the map

Φ : C2 → C2,

(z1, z2) 7→ (p1(z1, z2), p2(z1, z2))
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induces a self-map φ of CP1 = Ĉ given by [z1 : z2] 7→ [p1(z1, z2) : p2(z1, z2)] or

z 7→ p1(z, 1)
p2(z, 1)

.

The origin is a superattractive fixed point for Φ; let U denote the corresponding
basin of attraction. Also, let F ⊂ Ĉ denote the Fatou set of φ and let η denote the
quotient map C2 \ {0} → Ĉ.

Then we have the following (see [HuPa]);
(1) There is δ > 0 such that B(0, δ) ⊂ U ⊂ B(0, δ−1).
(2) U is a complete circular domain (i.e., z ∈ U, |λ| ≤ 1 implies λz ∈ U).
(3) bU ∩ η−1(F) is a smooth hypersurface foliated by Riemann surfaces.
(4) For each leaf L of this foliation the restriction ηL of η to l is a covering map

onto F .
(5) Continuation of a branch of η−1

L along a loop γ multiplies the branch by a
unimodular scalar λγ .

In particular, continuation of a branch of η−1
L along a commutator loop is trivial

and thus the covering ρL : L → F is subordinate to the homology covering of F .
Suppose now that the Julia set Ĉ\F has length zero: this happens in particular

when Φ is given by
(z1, z2) 7→ (z2

1 + cz2
2 , z2

2),

c /∈ the Mandelbrot set [Ran, Ex. 2]. Then the proof of Theorem 1.1 now shows that
L has corona; in particular, the coordinate functions z1, z2 satisfy δ2 < |z1|2+|z2|2 <
δ−2 on L but fail to generate the algebra of bounded holomorphic functions on L.

Addendum. Bo Berndtsson has suggested the following alternate proof of Theo-
rem 1.1.

Construct f1 and f2 as before and suppose that there are bounded holomorphic

g1 and g2 on ˜(Ĉ \K)Hom solving f1g1 + f2g2 ≡ 1.
Averaging f1g1 and f2g2 over fibers as in Lemma 2.3 we obtain bounded holo-

morphic functions h1 and h2 on Ĉ \K solving h1 +h2 ≡ 1. By Painlevé’s Theorem
h1 and h2 are constant. Now f2g2 vanishes at points lying over ∞, so h2(∞) = 0.
Assuming, as we may, that 0 /∈ K we find similarly that h1(0) = 0. But now
h1 ≡ 0 ≡ h2, a contradiction.
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