
TOPOLOGICAL ENTROPY ON SADDLE SETS IN P2
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Abstract. We consider hyperbolic sets of saddle type for holomorphic map-
pings in P

2. Our main result relates topological entropy on such sets to a
normal families condition on local unstable manifolds.

0. Introduction

The Fatou set F of a holomorphic map f : Pk 	 is the largest open subset of
Pk on which iterates of f form a normal family. The complement of F is called
the Julia set when k = 1, and it is well-known that the Julia set is the closure
of the set of repelling periodic points. When k = 2, however, even product maps
suffice to show that the structure of P2 \ F is more intricate. For instance, P2 \ F
contains both repelling periodic points and periodic points of “saddle” type—with
one expanding and one contracting direction. In nice situations, these distinct
types of periodic points occupy distinct regions in P2 \F , and each of these smaller
regions legitimately vies with P2 \ F for the designation of Julia set.

Our concern in this paper is with what we call saddle sets of a holomorphic
map f : P2 	. These generalize the notion of a saddle periodic point, and while
we defer the precise definition until Section 1, the following description will suffice
for the moment. A closed invariant set Λ = f(Λ) ⊂ P2 is a saddle set of f if f
acts transitively and hyperbolically on Λ with one contracting and one expanding
direction, and if Λ is in some sense both maximal and isolated as a hyperbolic set.
Important examples of saddle sets are given by the basic sets of saddle type for an
Axiom A map f : P2 	. Indeed the paper [FS2] of Fornæss and Sibony on Axiom
A holomorphic maps of P2 inspired much of the work on which this paper is based.

Given a history p̂ = (pj)j≤0 in Λ (i.e. pj ∈ Λ and f(pj−1) = pj for all j ≤ 0)
and a small fixed δ > 0, the associated local unstable manifold is

Wu
loc(p̂) = {q ∈ P2 : dist(qj , pj) < δ for j ≤ 0 and some q̂ with q0 = q}.

As is well-known, f expands local unstable manifolds near Λ. Nevertheless, we call
Λ terminal if for each history p̂ in Λ, iterates of f act normally on Wu

loc(p̂)−Λ. We
believe that terminal saddle sets play a distinguished role in the global dynamics
of f . Our main result is

Theorem A. Let Λ be a saddle set of a holomorphic map f : P2 	 of degree d.
Then the topological entropy htop(f |Λ) of f restricted to Λ is no greater than log d.
Equality holds if and only if Λ is terminal.
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Topological entropy is, roughly speaking, a non-negative number that measures the
complexity of orbits of f contained in Λ. We do not actually use the precise defi-
nition of topological entropy in this paper, so we refer the reader to the book [KH]
for such a definition, but we do point out that for any saddle set Λ,

htop(f |Λ) = lim
n→∞

1

n
log #{p = fn(p) ∈ Λ}.

So if, as in the Axiom A case, all saddle periodic points lie in saddle sets of f , then
either the vast asymptotic majority of these points will lie in terminal saddle sets, or
(in the absence of terminal saddle sets) saddle periodic points will be comparatively
scarce.

Notice that Theorem A connects the behavior of f on Λ to the global behavior of
f on P2. That is, topological entropy is a quantity purely intrinsic to the action of f
on Λ. On the other hand, large iterates of f might a priori take the local unstable
manifolds of Λ anywhere in P2. Thus the normal families criterion underlying
terminality is really a global condition on the behavior of f .

Despite the topological nature of the hypothesis and conclusion of Theorem A,
the proof actually relies largely on measure theory. This dependence happens in
two ways. First of all, there is a natural positive closed (1, 1) current T associated
with any holomorphic map of P2 with degree greater than one. This current is
globally defined and has the transformation property f∗T = d · T . It also has the
property that suppT is the complement of the Fatou set. Secondly, as Ruelle and
Sullivan [RS] observed in the case of Axiom A diffeomorphisms, there is a canonical
local current σu supported on the local unstable manifolds of a saddle set Λ. This
local current satisfies f∗σ

u = λ·σu where λ = htop(f |Λ). It is possible to understand
the wedge product σu ∧ T as a positive measure defined near Λ, and the proof of
Theorem A proceeds by considering the support and invariance of this measure.

Bedford and Smillie [BS] were the first to realize the importance of currents like
σu for multivariable complex dynamics. At least in the terminal case, the current
σu that we use here is identical with the current σ constructed by very different
means in [FS2, Theorem 5.10]. We plan to explore this and other properties of σu

further in a future paper.
It is not difficult to give examples of terminal saddle sets. We present several in

Section 3. It is harder to find examples of non-terminal saddle sets. Nevertheless,
we show

Theorem B. There exist holomorphic maps of P2 with non-terminal saddle sets.
More precisely, given integers d ≥ 2 and 0 < k < d one can find a holomorphic
map of degree d with a saddle set Λ such that htop(f |Λ) = log k.

The proof of this theorem is constructive. That is, we actually manufacture exam-
ples of the desired type. These examples all come from the family of skew product
maps, which have been studied in their own right by the second author [J2, J3] and
Heinemann [H1, H2]. The fact that our examples fail to be terminal follows from
Theorem A.

The contents of the rest of this paper are arranged as follows. Section 1 contains
most of the background needed for this paper, including a review of the hyperbolic
theory, the constructions of σu and T , and the (precise) definition of a saddle
set. Section 2 provides the proof of Theorem A. Section 3 presents examples of
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both terminal and non-terminal saddle sets. In particular, it contains the proof of
Theorem B.

1. Background

In this section we review the theory of hyperbolic dynamical systems. In particu-
lar, we describe the transversal measure and laminar current associated to the local
unstable manifolds of a hyperbolic set. Our presentation is biased in two important
ways. First of all, we are interested in non-invertible maps, and this leads to extra
subtlety in the definition and properties of a hyperbolic set. The first paper in
the second author’s thesis [J1] provides further detail about hyperbolicity in the
non-invertible setting. Secondly, we seek to prove results that are largely semi-local
in nature. That is, we will usually be concerned with assertions that are valid only
in a small neighborhood of a hyperbolic set. After generalities about hyperbolicity,
we will discuss the hyperbolic sets of particular interest to us and indicate how such
sets arise naturally for maps satisfying the (global) Axiom A condition. We will
close the section with a brief review of the definition and properties of the global
current T associated with a holomorphic map f : P2 	.

1.1. Hyperbolicity. Let f : X 	 be a holomorphic (possibly branched), finite-
to-one map of a compact complex manifold X . Suppose that Λ = f(Λ) ⊂ X is a

compact subset. We define the natural extension f̂ : Λ̂ 	 to be the induced map on
histories contained in Λ. That is, a point in Λ̂ is a sequence p̂ = (pj)j≤0 of points

pj ∈ Λ such that f(pj) = pj+1, and f̂ is the shift map sending (pj) to (pj+1). We

give Λ̂ the product topology induced from X∞ so that f̂ is a homeomorphism of
a compact metric space. For every j ≤ 0 we define the projections πj : Λ̂ → Λ

by πj(p̂) = pj . We obtain a vector bundle T̂Λ over Λ̂ by using π0 to pull back
the tangent bundle of X . Points in this bundle are specified by (p̂,v) where v is
tangent to X at p0.

We will say that f is hyperbolic on Λ if there is a continuous f̂ -invariant splitting

T̂Λ = Es ⊕ Eu and constants C > 0, ρ > 1 such that

‖Dfnv‖ ≤ Cρ−n ‖v‖ ,
∥∥(Dfn)−1w

∥∥ ≤ Cρ−n ‖w‖

for n ≥ 0 and all v ∈ Es and w ∈ Eu. The inequalities imply the choice of an
Hermitian metric on X , but any such metric will do. After a continuous change of
metric near Λ, one can assume (as we will do) that the constant C is 1. Note that
the definition of hyperbolicity requires only that Df be invertible on the space Eu.

While Eu(p̂) necessarily depends on the entire history p̂ of the point p = p0,
characterization in terms of forward iteration implies that Es(p̂) = Es(p) depends
only on p and can therefore be considered a subspace of TXp. In particular, the
dimensions of Es and Eu are constant on Λ if we assume that f |Λ is topologically
transitive—an assumption we now adopt for the sake of simplicity. As advertised
in the introduction, our concern in this paper is with hyperbolic sets in P2 where
both Eu and Es have dimension one.

The primary consequence of hyperbolicity is the existence of local stable and
unstable manifolds attached to points in the hyperbolic set (see for example, [Sh]
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or [PS]). For small enough δ > 0 and for any history p̂ ∈ Λ̂, the sets

W s
δ (p) = {q ∈ X : dist(fn(q), fn(p0)) < δ for all n ≥ 0}

Wu
δ (p̂) = {q ∈ X : there exists a history q̂ ∈ X̂ of q

such that dist(qn, pn) < δ for all n ≤ 0}
are f -invariant complex submanifolds tangent to Es(p) and Eu(p̂), respectively.
These are the local stable and unstable manifolds of p and p̂, respectively. As the
notation implies, there is a unique local stable manifold but possibly many local
unstable manifolds passing through a point p ∈ Λ. Where it is not important to be
explicit about δ, we shall write W s

loc(p) and Wu
loc(p̂).

If we restrict to Λ, then we can lift the local stable and unstable manifolds to the
natural extension Λ̂, provided that we are willing to settle for a bit more asymmetry
in the results. We define Ŵ s

loc(p) = π−1
0 (W s

loc(p) ∩ Λ) simply by pulling back. On

the other hand we let Ŵu
loc(p̂) = {q̂ ∈ Λ̂ : qj ∈ Wu

loc(f̂
j(p̂)) for all j ≤ 0} consist

of only those histories q̂ of points q ∈ Wu
loc(p̂) that are backward asymptotic to p̂.

The projection π0 is not generally injective on Ŵ s
loc(p), but since f acts injectively

on local unstable manifolds, π0 : Ŵu
loc(p̂) → Wu

loc(p̂) is a homeomorphism onto its
image. We observe that it is possible to take a more intrinsic approach to defining
local stable/unstable sets in Λ̂, but for our purposes, it is more convenient to use
the above definitions.

Continuous variation of the splitting and compactness of Λ guarantee that a local
stable manifold W s

loc(p) intersects a local unstable manifold Wu
loc(q̂) in at most one

point. It also guarantees that the intersection will be non-empty if q0 and p0 are
close enough. It turns out to be quite useful to know that the intersection lies in Λ
and, stronger still, that the intersection has a unique history lying in Λ̂. In other
words,

Definition 1.1. We say that Λ̂ has local product structure if there exist constants
δ, δ′ > 0 such that for all p ∈ Λ and all q̂ ∈ Λ̂ such that dist(p, q0) < δ′, the

intersection {[p, q̂]} def
= Ŵ s

δ (p) ∩ Ŵu
δ (q̂) consists of a unique point in Λ̂.

Local product structure is equivalent (see [J1]) to the following local maximality
condition: there exists a neighborhood N of Λ such that any full orbit in N is

actually contained in Λ. We remark that [·, ·] commutes with f . That is, f̂([p, q̂]) =

[f(p), f̂(q̂)]. If Λ̂ has local product structure, then continuous variation of local

stable/unstable manifolds implies that the map [·, ·] : Wu
loc(p̂) × Ŵ s

loc(p) → Λ̂ is a

homeomorphism onto a neighborhood (in Λ̂) of p̂. In particular, π0 : Ŵu
loc(p̂) →

Wu
loc(p̂) ∩ Λ is surjective.

1.2. Transversal measures and laminar currents. We continue our discussion
with the additional assumption in this subsection that f is topologically mixing
on Λ. Local product structure on Λ̂ allows us to define holonomy along unstable
manifolds. Given p ∈ Λ, we define the unstable holonomy map χ̂u

p : R → Ŵ s
loc(p)

on a neighborhood R ⊂ Λ̂ of Ŵ s
loc(p) by χ̂u

p(q̂) = [p, q̂]. The restriction χ̂u
q,p of χ̂u

p

to R ∩ Ŵ s
loc(q) is a homeomorphism onto its image.

Ruelle–Sullivan [RS] and Bowen–Marcus [BM] considered the notion of transver-
sal measures for Axiom A diffeomorphisms. A translation of their results into our
setting reads as follows.
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Theorem 1.2. Given f,Λ as above, there exists for each p ∈ Λ a positive measure
µ̂u

p on Ŵ s
loc(p) with the following properties:

(1) If χ̂u
p,q(E) = F for Borel sets E ⊂ Ŵ s

loc(q) and F ⊂ Ŵ s
loc(p), then µ̂u

q (E) =
µ̂u

p (F );

(2) f̂∗µ̂
u
p = λµ̂u

f(p)|f̂(Ŵ s
loc

(p)) where logλ is the entropy of f |Λ;

(3) supp µ̂u
p = Ŵ s

loc(p).

The measures µ̂u
p are known as (unstable) transversal measures. Bowen and Mar-

cus [BM] showed that transversal measures are unique up to rescaling by a factor
independent of p. In fact, they are unique given only that they satisfy a more
global variant of the first item in the conclusion of Theorem 1.2. We will not actu-
ally need this fact here, so we pursue it no further. We remark that the restriction
is important on the right side of the equation in the second item of Theorem 1.2.

Under our definition, there need not be an ǫ > 0 such that Ŵ s
ǫ (f(p)) ⊂ f̂(Ŵ s

δ (p)).
Rather, if ǫ > 0 is small enough, we have

Ŵ s
ǫ (f(p)) ⊂

⋃

p′∈f−1(f(p))

f̂(Ŵ s
δ (p′)), (1.1)

where, since f̂ is a homeomorphism, the sets in the union on the right side are
mutually disjoint.

The proofs of existence and uniqueness for transversal measures were originally
given for basic sets of Axiom A diffeomorphisms. These proofs rest principally on
the existence and properties of so-called Markov partitions of a basic set. Careful
examination of the literature ([A], [B2], [KH], [Sh]) reveals that one can establish
all relevant results about Markov partitions (with proofs nearly unchanged) for any
expansive homeomorphism h : S 	 of a compact metric space S with the following
shadowing property: given any ǫ > 0, there exists δ > 0 such that any for δ-
pseudoorbit {sj} ⊂ S, there exists a unique point s ∈ S such that dist(f j(s), sj) <

δ for all j ∈ Z. The shadowing property for f̂ : Λ̂ 	 holds as a consequence
of local product structure (see [J1] for a proof). For those interested in further
discussion of notions like hyperbolicity, shadowing, and local product structure for
homeomorphisms, we recommend the last chapter of Akin’s book [A].

Ruelle and Sullivan [RS] observed that transversal measures can be used to define
a current σu supported on the local unstable manifolds of Λ. For instance, if ϕ is
a test (1, 1) form supported on a small neighborhood of p, then the action of the
laminar current σu on ϕ is given by

〈σu, ϕ〉 =

∫

Ŵ s
loc

(p)

(∫

W u
loc

(q̂)

ϕ

)
dµ̂u

p (q̂). (1.2)

Then σu is extended to an entire neighborhood N of Λ using a partition of unity.
Holonomy invariance of transversal measures guarantees that the result is well-
defined. Clearly, σu is positive and suppσu = Wu

loc(Λ) ∩ N . The property f∗σ
u =

λ · σu on N inherits from equation (1.1), the pushforward property of µ̂u
p , and the

fact that unstable manifolds are expanded by f . Finally, σu is closed because any
local unstable manifold Wu

loc(q̂) will intersect small neighborhoods of p in relatively
compact subsets when q is close to p.
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The preceding discussion can be modified to define holonomy along stable mani-
folds, stable transversal measures, and a laminar current supported on stable man-
ifolds. Since we do not need these objects in this paper, we omit the details.

1.3. Saddle Sets in P2. Now we describe the situation of particular interest in
this paper. We use Wu

loc(Λ) to denote the union of all local unstable manifolds

associated with points p̂ ∈ Λ̂.

Definition 1.3. Suppose f : P2 	 is holomorphic. We call Λ a saddle set for f
if:

(1) Λ is a hyperbolic set for f , and both Es and Eu are one dimensional;
(2) f |Λ is topologically transitive;

(3) Λ̂ has local product structure;
(4) there exists a neighborhood N of Λ such that fn(Wu

loc(Λ))∩N = Wu
loc(Λ)∩

N for all n ≥ 0.

Note that except for the last condition on Λ, the requirements of this definition
are semi-local in nature—i.e. they only apply to the behavior of f near Λ. Such sets
Λ arise naturally if we place a global restriction on the behavior of f . Recall that the
non-wandering set Ω of f consists of those points p ∈ P2 such that fn(U) ∩U 6= ∅
for any neighborhood U ∋ p and arbitrarily large n. The map f is Axiom A if
f is hyperbolic on Ω and if in addition periodic points are dense in Ω. Under
these conditions, the set Ω decomposes into a finite number of closed sets, on each
of which f is topologically transitive. These are called the basic sets for f . By
passing to a higher iterate and further decomposing, one can assume that f is
actually topologically mixing on each basic set.

If Λ is a basic set for an Axiom A holomorphic map f : P2 	 with dimEs(Λ) =
dimEu(Λ) = 1, then it turns out that Λ is a saddle set. Condition 3. is proved
in [J1, Proposition 3.3 on page 32]. A proof of 4. is given for diffeomorphisms
in [BM, pp. 46-47].

Stable and unstable manifolds from different saddle sets Λ,Λ′ of an Axiom A
map can intersect in complicated ways. If W s

loc(Λ) ∩ fn(Wu
loc(Λ

′)) 6= ∅ for some
n ≥ 0, then we say that Λ ≺ Λ′. When this relation actually orders the basic sets,
then f is said to satisfy the no cycles condition. We are interested in singling out
basic sets Λ of saddle type such that Λ′ 6≺ Λ for all other such Λ′. These basic sets
figured importantly in the study [FS2] (where they were referred to as “minimal”)
of hyperbolic holomorphic maps of P2 by Fornæss and Sibony. Since we do not
wish to restrict ourselves to the Axiom A setting, we phrase our condition in terms
of normal families.

Definition 1.4. Suppose that Λ is a saddle set for a holomorphic map f : P2 	.
We call Λ terminal if for any p̂ ∈ Λ̂ the iterates of f restricted to Wu

loc(p̂)−Λ form
a normal family.

Our use of the word “terminal” is motivated by the case of Axiom A maps.
If f is Axiom A and an unstable manifold Wu

loc(p̂) of Λ does not intersect the
stable manifolds of some other basic set, then Wu

loc(p̂)−Λ must lie in the basins of
attracting cycles. Hence basic sets of an Axiom A map which are “minimal” with
respect to ≺ are necessarily terminal. On the other hand, iterates of f cannot form
a normal family in a neighborhood of any point in a stable manifold, because a
disk transverse to the stable manifold will eventually be expanded. Therefore, if we
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assume that Wu
loc(Λ) − Λ lies in the Fatou set of f , then Λ must be minimal with

respect to ≺. It would be interesting to know whether (or when) this apparently
slightly stronger condition on Wu

loc(Λ) is actually equivalent to terminality.
Before moving on, we mention that the “spectral decomposition” discussed above

for basic sets of an Axiom A diffeomorphism applies to any saddle set, regardless
of whether or not f is Axiom A (see [KH], Theorem 18.3.1). In particular, we lose
no generality by assuming that f is topologically mixing on saddle sets.

1.4. Pluripotential Theory and Holomorphic Maps of P2. A fundamental
tool for understanding complex dynamics on Pk is the use of pluripotential theory
to construct and study positive closed currents with good transformation properties.
The papers [HP], [U1], [FS1] present early applications of pluripotential theory to
dynamics, and they remain excellent references.

A degree d holomorphic map f : P2 	 acts linearly by pullback on the middle
cohomology group. The group is freely generated by the cohomology class of the
Fubini-Study Kähler form ω and f∗ multiplies this class by d. It is an interesting
and very useful fact that there is a representative for the class of ω that is canonical
for f . Namely, the sequence

1

dn
fn∗ω

converges weakly to a positive closed (1, 1) current T such that f∗T = d · T . Posi-
tivity means that locally T = ddcu where u is a plurisubharmonic function. In the
particular case of T , the local potentials u are always continuous. This allows us
to consider the slice measure T |R = ddc(u ◦ ι) of T along an embedded Riemann
surface ι : R → P2. The following proposition concerning slice measures of T is
well-known.

Proposition 1.5. Slice measures of T vary continuously. That is, if ϕ is a test
function in P2 and Rj ⊂ P2 are Riemann surfaces converging uniformly to a
surface R ⊂ P2, then ∫

Rj

ϕT |Rj
→
∫

R

ϕT |R.

Slice measures transform according to the formula

f∗(T |R) =
1

d
· T |f(R)

provided that f is injective on R.

There is a remarkable characterization of T in terms of normal families.

Theorem 1.6. The support of T is equal to the complement of the Fatou set of f—
i.e. of the largest open set on which iterates of f form a normal family. Likewise,
if R ⊂ P2 is a Riemann surface, then suppT |R is the complement of the largest
open subset of R on which iterates of f act normally.

A more recent paper [FS2] of Fornæss and Sibony gives another method of con-
structing positive closed (1, 1) currents from iterates of f . In order to state the
next result, we recall that the mass M[S] of a current S is given by

M[S] = sup{ 〈S, ϕ〉 : ‖ϕ‖∞ ≤ 1}.
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Theorem 1.7. Let S be a positive closed (1, 1) current defined on an open set
U ⊂ P2, and let ψ : U → C be a smooth, compactly supported function. Then there
is a constant C such that M[fn

∗ (ψS)] ≤ Cdn and M[∂fn
∗ (ψS)] ≤ Cdn/2 for all n.

Therefore, the sequence fn
∗ (ψS)/dn has weak limit points and all such points are

closed.

A construction of Bedford and Taylor [BT] allows us to understand the wedge
product S ∧ T , where S is a positive closed (1, 1) current on U ⊂ P2, as a positive
measure. Locally, one chooses a continuous potential u for T and sets

∫

U

ψ S ∧ T = 〈S, u ddcψ〉.

It is shown in [FS2] that

Proposition 1.8. We have the transformation property

f∗(S ∧ T ) =
f∗S

d
∧ T.

In particular, if S is defined on all of P2 and f∗S = d ·S, then S∧T is an invariant
measure.

2. Proof of Theorem A

Given a small neighborhood N of Λ, let σu be the laminar current in N supported
on local unstable manifolds. As indicated above, it is possible to interpret σu ∧ T
as a positive measure on N . In this section we will study this measure carefully,
ultimately proving Theorem A. Let us first show that the wedge product σu ∧ T
“commutes” with the laminar structure of σu.

Proposition 2.1. If ϕ is a test function supported on a small neighborhood of
p ∈ Λ, then

∫

U

ϕσu ∧ T =

∫

Ŵ s
loc

(p)

(∫

W u
loc

(q̂)

ϕT |W u
loc

(q̂)

)
dµ̂u

p (q̂).

Proof. Note that by Proposition 1.5, the right side of the equation in the conclusion
of this proposition defines a positive distribution (acting on ϕ)—i.e. it defines a
Radon measure. Let v be a local potential for T on a neighborhood U of the support
of ϕ. Let vj be smooth plurisubharmonic functions that decrease uniformly locally
to v as j goes to infinity. We can assume without loss of generality that ϕ is smooth.
Then ∫

U

ϕσu ∧ T = lim
j→∞

〈σu, vj dd
cϕ〉

= lim
j→∞

∫

Ŵ s
loc

(p)

(∫

W u
loc

(q̂)

vj dd
cϕ

)
dµ̂u

p (q̂)

=

∫

Ŵ s
loc

(p)

(∫

W u
loc

(q̂)

v ddcϕ

)
dµ̂u

p (q̂)

=

∫

Ŵ s
loc

(p)

(∫

W u
loc

(q̂)

ϕT |W u
loc

(q̂)

)
dµ̂u

p(q̂)
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as desired. The first equality takes advantage of continuity of the wedge product
operation under decreasing limits of plurisubharmonic functions (see [BT]). The
third equality relies on the fact that, viewed as a function of q̂, the inner integral
on the second line converges uniformly to the inner integral on the third line. The
last equality holds by definition. �

Corollary 2.2. The support of σu∧T contains Λ. The support of σu∧T equals Λ if
and only if Λ is terminal. In particular, if Λ is terminal, then σu∧T is independent
of the choice of the neighborhood N ⊃ Λ on which σu is defined.

Proof. Pick p ∈ Λ and let p̂ be a history. The support of T |W u
loc

(p̂) contains p because

iterates of f applied to Wu
loc(p̂) do not form a normal family on any neighborhood

of p. If ϕ ≥ 0 is a continuous function equal to one at p, then
∫

W u
loc

(p̂)

ϕT |W u
loc

(p̂) > 0.

By continuity of slice measures the same is true for all q̂ ∈ Ŵ s
loc(p) near p̂. Therefore,

Proposition 2.1 and the fact that supp µ̂u
p contains p̂ imply that

∫
ϕσu ∧ T > 0.

That is, p ∈ suppσu ∧ T and the first assertion is proved.
If Λ is terminal then we have that T |W u

loc
(p̂) is zero outside Λ, so another ap-

plication of Proposition 2.1 shows that suppT ∧ σu ⊂ Λ. If Λ is not terminal,
let p̂ ∈ Λ̂ be a point such that suppT |W u

loc
(p̂) contains a point q /∈ Λ. Continuous

variation of slice measures and Proposition 2.1 again allow us to conclude that
q ∈ suppσu ∧ T . �

Transversal measures are only determined up to constant multiples, so there is
no canonical way to completely fix σu in general. In the terminal case, however,
we can normalize by rescaling σu so that σu ∧ T is a probability measure. The
preceding results show that this defines the measure unambiguously.

We are now ready to prove the main result of this paper.

Proof of Theorem A. Let logλ be the entropy of f |Λ, and let σu be the laminar
current supported on local unstable manifolds. We can assume that σu is defined on
the neighborhood N of Λ provided for in the definition of a saddle set. Suppose that
χ is a cutoff function equal to one on some smaller neighborhood of Λ but vanishing
outside N . Then by expansion along unstable manifolds and the transformation
property of σu we have a neighborhood N ′ ⊂ N of Λ on which 1

dn f
n
∗ (χσu) ≥ λn

dn σ
u.

Now Theorem 1.7 gives that pushforwards of χσu have mass bounded by Cdn for
some C, so we conclude that λ ≤ d.

If Λ is terminal, then the results above show that ν := σu∧T defines a probability
measure on Λ. Now σu has the invariance property f∗σ

u = λ · σu near N , so by
Proposition 1.8 we see that f∗ν = λ

d · ν. But the mass of a positive measure is
preserved under pushforward, so λ = d.

Finally suppose that λ = d and that χ is as before. By Theorem 1.7, the sequence

σu
n =

1

n

n∑

j=1

1

dj
f j
∗ (χσu).

has a subsequence that converges weakly to a positive closed (1, 1) current σu
∞ on

P2. Further, f∗σ
u
∞ = d · σu

∞. Since f∗σ
u = d · σu near Λ, we have σu

∞ ≥ σu. The
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last condition in the definition of a saddle set gives in fact that σu
∞ = σu near Λ.

But the set Wu
loc(Λ) is locally closed in N , so we have that suppσu

∞∩N ⊂Wu
loc(Λ).

Because of the transformation property f∗σ
u = d · σu, Proposition 1.8 gives us

that the (finite) measure ν = σu
∞ ∧T is f–invariant. In particular, the Poincaré re-

currence theorem tells us that ν almost every point is recurrent. But supp ν ∩ N ′ ⊂
Wu

loc(Λ) for the neighborhood N ′ ⊃ Λ described above, and the last condition in
the definition of a saddle set guarantees that the only recurrent points in Wu

loc(Λ)
are those in Λ. We conclude that supp ν ∩ N ⊂ Λ. Near Λ we have that ν =
σu
∞ ∧ T = σu ∧ T , so it follows from Corollary 2.2 that Λ is terminal. �

We remark that a more general version of Theorem A can be had with essentially
the same proof we have just given. If f : Pk 	 is a holomorphic map and Λ ⊂ Pk

is a saddle set with a single expanding direction, then one can again show that
htop(f |Λ) ≤ log d and that equality holds if and only if Λ is terminal. The definitions
of saddle set and terminal are, moreover, exactly the same as the ones we have used
here.

Our proof does not work as is, however, for saddle sets with l > 1 expanding
directions. The problem here is that the appropriate slice measures to consider are
of the form T l|W u

loc
(p̂), p̂ ∈ Λ̂. Whereas the support of a slice of T is equal to the

set on which iterates of f fail to be normal, no such relationship is known for slices
of T l. In particular, there is no guarantee that slices of T l are nonzero on any of
the local unstable manifolds.

3. Examples—Proof of Theorem B

In this section we will give several examples of saddle sets in P2, both terminal
and nonterminal. The latter ones are significantly harder to construct and their
existence constitutes the statement of Theorem B.

3.1. Terminal saddle sets. Terminal saddle sets in P2 are easy to find.

Example 3.1. Let p and q be polynomial mappings of C of common degree d ≥ 2,
and let f(z, w) = (p(z), q(w)) be the product map. Assume that q is hyperbolic
and let Aq be the set of attracting periodic points of q. If z is an attracting fixed
point of p and Jq is the Julia set of q, then Λ := {z} × Jq is a terminal, mixing

saddle set for f . Indeed, if r̂ ∈ Λ̂, then Wu
loc(r̂) − Λ = {z} × (C − Jq), so if

U ⊂⊂ Wu
loc(r̂) − Λ is connected, then fn converges uniformly on U to some point

in ({z} × Aq) ∪ {[0 : 1 : 0]}. Thus Λ is terminal.

The next two examples are quite similar to the first one.

Example 3.2. This example uses a construction of Ueda [U2]. Namely, let g be

a rational map of Ĉ ≃ P1 of degree d ≥ 2. There exists a branched covering
π : P1 ×P1 → P2, which semiconjugates g× g to a holomorphic mapping f : P2 	

of degree d. If g is hyperbolic with Julia set Jg and z is an attracting fixed point
for g, then Λ := π({z} × Jg) is a terminal, mixing saddle set for f .

Example 3.3. Let f(z, w) = (p(z, w), q(z, w)) be a polynomial mapping of C2

of degree d ≥ 2. Assume that f is regular, i.e. that f extends to a holomorphic
mapping of P2 (see [BJ]). The line at infinity Π := P2 − C2 ≃ P1 is completely
invariant and the restriction fΠ of f to Π is a rational map fΠ, the Julia set of
which we denote by JΠ. If fΠ is hyperbolic, then Λ := JΠ is a terminal, mixing
saddle set for f in P2.
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Remark 3.4. In the above three examples the unstable currents σu are given as
currents of integration on the curves {z} × C, π({z} × P1) and Π, respectively.
Perturbations of these examples will yield new terminal saddle sets. Indeed, if Λ is
a terminal saddle set for a holomorphic mapping f : P2 	 such thatWu

loc(Λ)−Λ is in
the union of basins of attraction of finitely many sinks, then any small perturbation
of f will have a terminal saddle set close to Λ. For perturbations of the three
examples, the current σu will, in general, not be a current of integration on an
analytic set.

Example 3.5. Consider a polynomial automorphism of C2 of the form f0(z, w) =
(p(z)+aw, z), where p is a polynomial of degree d ≥ 2. Assume that f0 is hyperbolic,
i.e. that J is a hyperbolic set (see [BS]). Let f(z, w) = (p(z) + aw, z + ǫwd) for
small ǫ > 0. Then f has a terminal saddle set Λ, which is a perturbation of J .

3.2. Nonterminal saddle sets. We now prove Theorem B by constructing map-
pings with nonterminal saddle sets in P2. The examples that we will describe belong
to the family of polynomial skew products on C2—a class of nontrivial holomorphic
mappings on P2 with tractable dynamics.

We start by recalling some facts about skew products on C2. Then we state suf-
ficient conditions for a skew product to be Axiom A and have a nonterminal saddle
set. Finally, we show how to construct explicit examples where these conditions
are satisfied.

3.2.1. Polynomial skew products on C2. These are mappings of C2 of the form

f(z, w) = (p(z), q(z, w)) (3.1)

where p and q are polynomials of the same degree d ≥ 2, and q has nonvanishing
wd-term. Polynomial skew products have been studied by Heinemann [H1, H2], by
Sester [Se1, Se2], and by one of the authors [J2, J3]. We recall a few definitions
and results from [J2].

The first component of (3.1) defines a polynomial mapping of C, the Julia set
and filled Julia set of which are denoted by Jp and Kp, respectively. The polynomial
p is said to be uniformly expanding on Jp (or hyperbolic) if there exist c > 0 and
λ > 1 such that |Dpn(z)| > cλn for z ∈ Jp and n ≥ 1.

We write qz for the polynomial mapping q(z, ·) of C, defined by (3.1) and we
denote the composition qzn−1

◦ · · · ◦ qz by Qn
z . If z ∈ Kp, then we denote by Kz the

filled Julia set of {Qn
z}n≥1, i.e. the set where this family is bounded. Also, we set

Jz = ∂Kz. If Z ⊂ Kp is compact and p(Z) ⊂ Z, then we say that f is vertically
expanding over Z if there exists c > 0 and λ > 1 such that |DQn

z (w)| ≥ cλn for
z ∈ Z, w ∈ Jz and n ≥ 1.

A polynomial skew product (3.1) of C2 extends to a holomorphic mapping of P2.
The line at infinity Π := P2 − C2 ≃ P1 is completely invariant and the restriction
fΠ of f to Π is a polynomial map fΠ, the Julia set of which we denote by JΠ.

The following result characterizes Axiom A for polynomial skew products:

Theorem 3.6. [J2, Theorem 8.2] A polynomial skew product (3.1), viewed as a
holomorphic mapping of P2, is Axiom A if and only if:

(i) p is uniformly expanding on Jp;
(ii) f is vertically expanding over Jp;
(iii) f is vertically expanding over Ap, the set of attracting periodic points for

p;
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(iv) fΠ is uniformly expanding on JΠ.

The conditions (i)–(iv) are most easily checked in terms of the postcritical set.
Indeed, it is a standard one-dimensional result that a rational map is uniformly
expanding on its Julia set if and only if its postcritical set is disjoint from the Julia
set. A generalization of this holds for skew products. Let Cz denote the critical
set of qz for z ∈ C. Let Z ⊂ Kp be compact and invariant, and let DZ denote the
postcritical set over Z, i.e.

DZ =
⋃

n≥1

fn

(
⋃

z∈Z

{z} × Cz

)
=:
⋃

z∈Z

{z} ×DZ,z ,

where the last equation defines DZ,z. Also, let

J∗
Z,z = lim sup

ζ→z,ζ∈Z
Jz

in the Hausdorff metric (z → Jz is not continuous in general).

Theorem 3.7. [J2, Theorem 3.1] f is vertically expanding over Z if and only if
DZ,z ∩ J∗

Z,z = ∅ for all z ∈ Z.

The most important situation is when Z = Jp. We then write Dz := DJp,z and
J∗

z := J∗
Jp,z.

3.2.2. A sufficient condition. The following proposition gives a sufficient condition
for a polynomial skew product on C2 to be Axiom A and to have a nonterminal
saddle set with topological entropy log k for some integer k less than the degree of
the skew product. In Section 3.2.3 we will show how to construct skew products
satisfying the conditions in the proposition below. Taken together, this will provide
a proof of Theorem B.

Proposition 3.8. Let 1 ≤ k < d and let f(z, w) = (p(z), q(z, w)) be a polynomial
skew product of degree d on C2 such that qz(w) = wd + r(z) for some polynomial r
of degree < d and such that:

(i) there exist λ > 1, a compact set D ⊂ C and d disjoint subsets Dj of D
such that

p−1(D) = D1 ∪ · · · ∪Dd

and p : Dj → D is a homeomorphism with |Dp(z)| ≥ λ, z ∈ Dj, 1 ≤ j ≤ d;
(ii) there exist numbers M ≥ 3, A ≥M + 2 such that if we write

E = D1 ∪ · · · ∪Dk and E′ = Dk+1 ∪ · · · ∪Dd,

then
(a) |r(z)| ≤ 1/5 for z ∈ E;
(b) 3A ≤ |r(z)| ≤MA for z ∈ E′.

Then f is Axiom A on P2 and has a nonterminal basic set Λ with htop(f |Λ) = log k.

The idea is that if z ∈ E, then qz(w) ≈ wd, whereas if z ∈ E′, then qz(w) =
wd + r(z), where is r(z) is large. The set Λ will be the closure of the set of all
periodic saddle points (z, w) with z ∈ E.
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Proof of Proposition 3.8. It follows easily from (i) that Jp =
⋂

n≥0 p
−n(D) and that

p is uniformly expanding on Jp. In fact p|Jp
is isomorphic to the full shift on d

symbols. Let L be the set of z ∈ Jp such that zn ∈ E for all n ≥ 0. Then L is
compact and p|L is isomorphic to the full shift on k symbols.

We will estimate the position of the Julia set Jz and the postcritical set Dz for
z ∈ Jp. Using the triangle inequality we easily show

z ∈ E ∪ E′, |w| ≥ A =⇒ |qz(w)| ≥ 2|w| (3.2)

z ∈ E′, |w| ≤ 1/3 =⇒ |qz(w)| ≥ 2A (3.3)

z ∈ E, |w| ≤ 1/3 =⇒ |qz(w)| ≤ 14/45. (3.4)

It follows from this that

z ∈ Jp =⇒ Kz ⊂ DA (3.5)

z ∈ L =⇒ D1/3 ⊂ Kz (3.6)

z ∈ Jp − L =⇒ D1/3 ∩Kz = ∅. (3.7)

Since Cz = {0} for all z ∈ C we also get

z ∈ Jp =⇒ Dz ⊂ D14/45 ∪ (C− D2A). (3.8)

We are now in position to prove that f is Axiom A, using Theorem 3.6. Indeed, p
is uniformly expanding on Jp by (i) and fΠ is uniformly expanding on JΠ, since fΠ
is affinely conjugate to ζ → ζd. Further, (3.6)–(3.8) imply that d(Dz, J

∗
z ) ≥ 1/45

for all z ∈ Jp, so by Theorem 3.7 f is vertically expanding over Jp. Since p has no
attracting periodic points, f must be Axiom A on P2 by Theorem 3.6.

From the proof of Theorem 3.6 it follows that the nonwandering set of f can be
written as Ω = AΠ ∪ JΠ ∪ J2 ∪ Λ. Here AΠ is the set of sinks of fΠ, and JΠ is the
Julia set of fΠ. Further, J2 =

⋃
z∈Jp

{z}×Jz is the closure of the repelling periodic

points of f and Λ is the closure of the periodic saddle points (z, w) with z ∈ Jp.
We analyze the set Λ in more detail. If (z, w) is a periodic point in Λ, say

of period n, then pn(z) = z and w ∈ intKz. Suppose that z /∈ L. Then it
follows from (3.2)–(3.4) that all critical points of Qn

z have unbounded orbits. Thus
intKz = ∅, a contradiction. We conclude that all periodic points (z, w) ∈ Λ have
z ∈ L.

By (3.4) we have qz(D1/3) ⊂ D14/45 for z ∈ L. A theorem of Sester [Se2] applied
to the restriction of f to L× C then shows that Kz is a quasidisk for all z ∈ L.

Let (L̂, p̂) be the natural extension of p|L. If ẑ = (zi)i≤0 is a history in L̂ then
we define θ(ẑ) ∈ Λ by

θ(ẑ) =
⋂

k≥0

qk
z−k

(D1/3).

This is well defined by (3.4) and θ is continuous on L̂. Write

Λ̃ :=
⋃

ẑ∈L̂

θ(ẑ).

Then Λ̃ is compact. We claim that Λ̃ = Λ. To see this, first notice that if ẑ is a
periodic history, say of order n, then θ(ẑ) coincides with the (unique) fixed point

of Qn
z . Thus every periodic saddle point in L× C is contained in Λ̃ so Λ ⊂ Λ̃.

To prove the reverse inclusion we show that f is topologically mixing on Λ̃.
The argument is adapted from [JW]. Let U1 and U2 be two open sets in C2 with
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Ui ∩ Λ̃ 6= ∅ for i = 1, 2. We will show that fn(U1) ∩ U2 6= ∅ for large n. Pick

x ∈ U2 ∩ Λ̃ and write x = θ(ẑ) for some ẑ ∈ L̂. We can find k ≥ 0 such that
fk({z−k}×Vz−k

) ⊂⊂ U2. By continuity there is an open subset ω of z−k in L such

that fk({z}×Vz−k
) ⊂⊂ U2 for z ∈ ω. Let ω1 be the projection of U1 on the z-axis.

Since p is topologically mixing on L there exists N ≥ 0 such that if n ≥ N , then
pn(ω1)∩ ω 6= ∅. It follows that fn(U1) ∩U2 for n ≥ k+N . Thus f is topologically

mixing on Λ̃ and Λ̃ = Λ.
Finally, we claim that the topological entropy of f |Λ equals log k. Since d < k,

Theorem A then shows that Λ is nonterminal. On the one hand, the projection
(z, w) → z semiconjugates f |Λ to p|L, so

htop(f |Λ) ≥ htop(p|L) = log k,

since p|L is isomorphic to the full shift on k symbols. On the other hand, by a
result of Bowen [B1] we have

htop(f |Λ) ≤ htop(p|L) + sup
z∈L

htop(f,Λ ∩ {z} × C) = log k,

since htop(f,Λ ∩ {z} × C) = 0 for z ∈ L by contraction. This completes the proof
that htop(f |Λ) = log k. �

3.2.3. Satisfying the hypotheses. We now show that we can find, for every d and k,
a polynomial skew product on C2 that satisfies the assumptions of Proposition 3.8.
The following example, which is similar to [J2, Example 9.6], does the job for d = 2,
k = 1.

Example 3.9. Let f(z, w) = (z2−9900, w2+(99+z)/6). We takeD = [−100, 100],

D1 = [−100,−b], D2 = [b, 100] where b =
√

9800 ≈ 98.99. Then |Dp(z)| = 2|z| ≥
196 for z ∈ D1 ∪ D2. Further, r(z) = (99 + z)/6 so we have |r(z)| ≤ 1/5 when
z ∈ D1 and 32 ≤ |r(z)| ≤ 34 when z ∈ D2. Thus we can take A = 10, M = 4. In
this case the nonterminal basic set Λ is the single saddle fixed point (−99, 0).

We now turn to the general case with 1 ≤ d < k.
Let p0(z) be a polynomial of degree d with exactly d different zeros ξ1 . . . ξd. Let

a > 0 be a large number and define p(z) = a ·p0(z). Fix a closed disk D centered at
the origin and containing all the points ξj in its interior. If a is large enough, then
p−1(D) is contained in the interior of D and consists of d disjoint Jordan domains
Dj, j = 1 . . . , d. Further, the restriction of p maps Dj homeomorphically onto D
and |Dp| ≥ 2 on Dj . Notice that diam(Dj) ∼ 1/a.

Pick an integer k with 1 ≤ k < d, let E be the union of k of the sets Dj and let
E′ be the union of the remaining sets Dj . Define

r0(z) =
∏

ξj∈E

(z − ξj).

Then there exist constants m0, m1 and m2 such that

|r0(z)| ≤ m2/a for z ∈ E and m0 ≤ |r0(z)| ≤ m1 for z ∈ E′

for all large enough a. Now let r(z) = a
5m2

r0(z), A = am0

15m2
, M = 3m1

m0
. Then, for

large a, we have M ≥ 3, A ≥M + 2,

|r(z)| ≤ 1/5 for z ∈ E and 3A ≤ |r(z)| ≤MA for z ∈ E′.

This completes the construction and hence the proof of Theorem B.
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Λ

ΠJΠ

Figure 1. A nonterminal basic set. The picture shows how for-
ward images of a local unstable manifold of a history in Λ intersect
local stable manifolds of points in JΠ, and hence accumulate on all
of Π.

Remark 3.10. It is possible to say more precisely how the set Λ in Proposition 3.8
fails to be terminal. Namely, if r̂ ∈ Λ̂, then fn(Wu

loc(r̂)) will have transverse
intersections with local stable manifolds of points in JΠ for large n. This implies
that fn(Wu

loc(p̂)) will accumulate on all of Π (see Figure 1). In particular, {fn}
fails to be normal on Wu

loc(r̂) − Λ.
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