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1. A family of birational maps

Very little is known concerning global dynamics of holomorphic maps
in dimensions larger than one. Results that apply to large classes of
maps (say polynomial automorphisms of C2 [?] or endomorphisms of
Pn [?], for example) are confined mostly to the level of ergodic the-
ory, describing dynamics ‘almost everywhere’ with respect to natural
invariant measures and currents. More detailed accounts exist only for
specific examples. The immediate purpose of this exposition is to dis-
cuss one such example at length. Along the way I hope to also serve
the broader purposes of making theorems about general maps more ac-
cessible and of indicating promising places to look for further tractable
examples. All of the work described here is joint with Eric Bedford
and appears in more complete form in the preprint [?]

We will consider the one parameter family of maps, given in affine
coordinates by

(1) f(x, y) =

(
y
x + a

x− 1
, x + a− 1

)
.

One checks easily that f is invertible, at least away from a couple of
‘exceptional’ curves along which the behavior of f is either degenerate
or undefined on C2. In fact f extends as a so-called birational map
to any complex surface compactifying C2. However, as I will explain
now, it is particularly convenient to regard f as a birational self-map
of P1 ×P1 ª.

Modulo linear equivalence ∼, the divisors in P1 × P1 form a group
(the Picard group) Pic (P1 ×P1) ∼= Z× Z generated by a vertical line
V := [x = const] and a horizontal line H := [y = const]. Using f
to pull back local defining functions for divisors, we obtain a linear
action f ∗ on divisors. This action clearly preserves linear equivalence
and so descends to a linear map f ∗ : Pic (P1 × P1) ª on the Picard
group. From the above formula, ones sees that horizontal lines pull
back to vertical lines, and vertical lines pull back to hyperbolas with
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horizontal/vertical asymptotes. Hence with respect to the ordered basis
(V,H)

(2) f ∗ =

(
1 1
1 0

)
.

In particular, the spectral radius of f ∗ is the golden ratio (1 +
√

5)/2.
The dynamical relevance of this quantity is revealed by the following
result due essentially to Gromov (see Dinh and Sibony [?] for the most
general version to date)

Theorem 1.1. Let f : X ª be a birational map on a complex projective
surface X. Then the topological entropy htop(f) of f satisfies

htop(f) ≤ lim
n→∞

log ‖(fn)∗‖
n

.

In addition, Dujardin [?] has recently shown that this inequality is
actually an equality for a large class of birational maps (including those
in (1). So for f given by (1) we have

htop(f) = log
1 +

√
5

2
provided that

(3) (fn)∗ = (f ∗)n for all n ∈ N.

This latter identity can fail dramatically in general, but we will see
shortly that it holds for the family (1) for all but countably many
values of the parameter a. Fornæss and Sibony call maps satisfying (3)
algebraically stable.

It should perhaps be stressed that (3) is a property of both the
map and the choice of compactification of C2. For example, if I were
treating f as a self-map of P2, then the Picard group acted on by f ∗

would be one-dimensional, generated by a generic line in P2, and f ∗

would simply double this generator. However, (f 2)∗ would multiply
by 3 (check this!) rather than 22 = 4. Thus the surface P1 × P1 is
‘compatible’ with the map f in a way that P2 is not.

To better understand the situation, let us reconsider things from a
geometric point of view. On P1 × P1, the critical set C(f) of f is
the pair of lines {x = −a} ∪ {x = 1}. As is the case for birational
maps generally, the components of C(f) are critical because they are
exceptional : each is mapped to a single point1: {x = −a} to (0,−1)

1When V is a curve that meets I(f), we define f(V ) to be the set f(V − I(f)).
In other words, f(V ) is the proper transform of V and excludes all components of
C(f−1). This notion of f(V ) does not entirely accord with that of f∗V := (f−1)∗V :
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and {x = 1} to (∞, a). Consequently, the inverse map

f−1(x, y) = (y − a + 1, x
y − a

y + 1
)

cannot be defined continuously at either image point, a fact which
one can verify directly from the formula for f−1. The set I(f−1) :=
{(0,−1), (∞, a)} is called the indeterminacy set of f−1. Similar anal-
ysis reveals that

C(f−1) = {y = −1} ∪ {y = a} I(f) = {(−a,∞), (1, 0)}.
If we change our compactification of C2, the sets C(f±1) and I(f±1)
are all prone to change as well. It turns out (in general) that (3) is
equivalent to

(4) fnC(f) ∩ f−mC(f) = ∅ for all n,m > 0

In other words f satisfies (3) if and only if ‘postcritical’ orbits

PC(f) :=
⋃
n>0

fnC(f), PC(f−1)
⋃
m>0

f−mC(f−1)

avoid each other.
The condition (4) has a deceptively simple appearance. For general

maps, it can be quite difficult to verify, because it requires knowing
about the full orbit of each component of C(f). Things are easier,
however, for the example at hand. Our map f has the additional
virtue that it preserves a meromorphic two form:

f ∗η = f∗η = η :=
dx ∧ dy

y − x + 1
.

It follows more or less immediately that the support of the divisor

[η] = [x = ∞] + [y = ∞] + [y = x− 1]

of η is invariant under f . Direct computation with parametrizations
reveals more specifically that {y = x − 1} is fixed and the lines at
infinity are switched according to

(x, x− 1) 7→ (x + a, x + a− 1) (∞, y) 7→ (y,∞) 7→ (∞, y + a− 1).

In particular, the point (∞,∞) is fixed by f .
Invariance of η also implies that critical components of f must map

into supp [η]. Hence PC(f),PC(f−1) ⊂ supp [η], and the happy con-
sequence is that we can determine whether or not f satisfies (4) by

in general f(V ) ⊂ supp f∗V , but the inclusion will be proper when V ∩I(f) 6= ∅. To
take a concrete example, we have f({x = a}) = (0, 1), whereas f∗[x = −a] = [y = 1]
includes the ‘image’ of the point (−a,∞) ∈ I(f).
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restricting our attention to the completely tractable one dimensional
dynamics of f on supp [η].

2. Real dynamics for negative parameters

Though we could easily, in light of the preceeding discussion, identify
all parameters a for which (4) fails, let us attend only to the case
a < 0. The parameter a = −1 is special, because the first coordinate
of f degenerates, the critical and indeterminacy sets disappear, and
the map dynamics become trivial. For all other a < 0, (4) holds in a
particularly robust fashion. For example PC(f) ∩ {y = x − 1} is just
the forward orbit of the point (−1, 0). If we let

S := {(x, x− 1) : x ≤ 0}
be the real interval in {y = x − 1} that stretches from (−1, 0) down
and left to (∞,∞), then we see that f(S) ⊂ S when a < 0. Therefore
PC(f) ∩ {y = x− 1} ⊂ S. Likewise, the interval

U := {(x, x− 1) : x ≥ 1}
stretching from (1, 0) up and right to (∞,∞) satisfies f−1(U) ⊂ U
when a < 0 and therefore contains PC(f−1) ∩ {y = x− 1}. As U and
S are disjoint, it follows that PC(f) ∩ PC(f−1) contains no points in
{y = x− 1}.

Similar observations apply to the lines {x = ∞} and {y = ∞}.
When a < 0, each line contains disjoint, forward/backward invariant,
real intervals S and U separating PC(f) from PC(f−1), and it follows
that PC(f) ∩ PC(f−1) is empty.

Figure 1 summarizes this state of affairs for a < −1. The real points
in P1 × P1 form a torus. Removing supp [η] divides the remaining
real points into two open sets, labeled 0 and 1. The boundary of each
open set is exactly equal to the real points in supp [η]. S(table) and
U(nstable) segments in each boundary component are thickened for
emphasis. Finally, the critical and indeterminacy sets of f and f−1 are
included for the sake of completeness. The picture remains valid for
parameter values −1 < a < 0, except that the critical lines for f (and
for f−1) switch places.

Let us regard two stable segments that are adjacent in the boundary
of region 0 or 1 as part of a single larger boundary segment. In this way,
the boundaries of regions 0 and 1 may be regarded as ‘rectangles’, each
with opposing pairs of stable and unstable ‘sides’. This suggests that
for real parameters a, we try to use the two regions as a Markov parti-
tion for the dynamics of f . Let Σ be the space of bi-infinite sequences
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Figure 1. Real partition by supp η. The critical set
of f/f−1 is shown as dashed/dotted lines, indeterminacy
set of f/f−1 as hollow/solid circles, and sample stable
arcs as wavy lines. The arrows indicate the direction of
motion of points under iteration of f .

{0, 1}Z (with the product topology) and

D := {p ∈ R2 : fn(p) /∈ supp [η] for all n ∈ Z} = R2−supp [η]−
⋃
n∈Z

C(fn)

consist of those points whose orbits lie entirely in the interior of regions
0 and 1. Define a map

w : D → Σ, p 7→ . . . w−1w0 · w1w2 . . . ,

where wj ∈ {0, 1} records the region that contains f j(p). It is not
hard to see that w is continuous. Moreover, if σ : Σ ª is the shift
homeomorphism

. . . w−1w0 · w1w2 . . .
σ7→ . . . w−1w0w1 · w2 . . . ,
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then we clearly have a commutative diagram

D
f→ D

w ↓ ↓ w

Σ
σ→ Σ

More importantly and much less obviously, we can say a great deal
about the fiber of w over any point in Σ. Consider the following subsets
of D.

D+ = {p ∈ D : lim
n→∞

fnp = (∞,∞)}
D− = {p ∈ D : lim

n→∞
f−np = (∞,∞)}

Ω = D −D+ −D−.

Let us call the coding w(p) of p ∈ D forward alternating if some right-
hand tail wjwj+1wj+2 . . . of w(p) has the form 0101 . . . . Let us call
w(p) backward alternating if some lefthand tail . . . wj−2wj−1w−j has
the analogous property. Let ΣG ⊂ Σ denote the (closed) subset con-
sisting of all sequences without consecutive 1’s. The main result of this
exposition is

Theorem 2.1. Suppose that a < 0, a 6= −1. Let p ∈ D be any point.
Then

• p ∈ D+ if and only if w(p) is forward alternating.
• p ∈ D− if and only if w(p) is backward alternating.

Finally, w : Ω → Σ is a homeomorphism onto those sequences in ΣG

that are neither forward nor backward alternating.

Since the dynamics of f on supp [η] are trivial, Theorem 2.1 gives a
rather precise topological description of the real dynamics of f . I will
quickly indicate two consequences of this theorem and then discuss
some ingredients of the proof.

Corollary 2.2. Ω consists exactly of those points in D with recurrent
orbits.

The entropy of a restricted map never exceeds that of the map itself,
so on this general principle we know that

htop(f : Ω ª) ≤ htop(f : R2 ª) ≤ htop(f : P1 ×P1 ª) =
1 +

√
5

2
.

On the other hand, the shift map σ restricts to a well-defined home-

omorphism of ΣG whose entropy is well-known to be log 1+
√

5
2

. Since
removing the relatively small sets of forward/backward alternating cod-
ings does not alter the value of the entropy, we can conclude that
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Corollary 2.3. For all a < 0, a 6= −1, the topological entropy of f as

a real map is log 1+
√

5
2

.

The fundamental idea underlying Theorem 2.1 is that forward and
backward images of real arcs may be studied in two different ways:
from a combinatorial point of view based on Figure 1, and from the
more abstract perspective of complex intersection theory. I discuss
these points of view in order.

3. Combinatorics

From now on I will assume that a < −1. I call a real arc ‘stable’ if
it is completely contained in one of the two regions in Figure 1, and
it joins the two unstable segments in the boundary of that region. To
justify this definition, let me consider for example the preimage f−1(γ)
of a stable arc γ in region 0. Say for specificity’s sake that γ joins
the unstable segment in {y = x− 1} to the unstable segment in {y =
∞}. Then γ necessarily crosses both lines in C(f−1), and the preimage
f−1(γ) must therefore contain three subarcs: one joining the unstable
segment in {y = x− 1} = f−1{y = x− 1} to (∞,−a) = f−1{y = −1},
one joining (∞,−a) to (1, 0) = f−1{y = a}, and one joining (0,−1)
to the unstable segment in {x = ∞} = f−1{y = ∞}. By checking
the images of points in γ near supp [η]∪ C(f−1), one sees that the first
and third arcs lie in region 0, whereas the second lies in region 1. In
particular the second third subarcs join opposing unstable segments in
regions 0 and 1, respectively, and are therefore themselves stable (the
first subarc is not stable since both of its endpoints lie in the same
unstable segment in region 0). Repeating this argument proves that
the preimage f−1(γ) of an stable arc γ in region 1 must contain an
stable arc in region 0. After induction we arrive at

Theorem 3.1. Let m ≥ 0 and w0 · w1 . . . wm be a finite righthand
sequence of 0’s and 1’s without consecutive 1’s. Let α be a stable arc
in region wm. Then f−m(α) contains a stable arc γ in region w0 such
that f j(γ) lies in region wj for j = 0, . . . , m.

Of course, we can also define ‘unstable’ arcs in regions 0 and 1, and
proceed in exactly the same fashion to prove

Theorem 3.2. Let n ≥ 0 and w−n . . . w0· be a finite lefthand sequence
of 0’s and 1’s without consecutive 1’s. Let β be an unstable arc in
region w−n. Then fn(β) contains an unstable arc γ in region w0 such
that f−j(γ) lies in region wj for j = 0, . . . , n.
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The fact that stable and unstable boundary segments of regions 0
and 1 are disjoint implies that any stable arc in a given region intersects
any unstable arc from the same region. So Theorems 3.2 and 3.1 give
us a convenient way to produce points with orbits coded by finite two-
sided sequences of any extent.

Corollary 3.3. Let n,m ≥ 0 and w−n . . . w0 · w1 . . . wm be any finite
sequence of 0’s and 1’s without consecutive 1’s. Then there is a point
p ∈ D such that c(p) = . . . w−n . . . w0 · w1 . . . wm . . . .

It is not quite immediate (and not quite true!) that the image w(D)
of the coding map contains ΣG, let alone that the assertions of Theorem
2.1 concerning w|Ω are true. However, Corollary 3.3 is clearly a step in
the right direction. Further progress depends on refining the partition
shown in Figure 1.

For any n ≥ 0, every component in the critical set C(fn) maps,
eventually, into the stable portion of supp [η]. So we can subdivide our
original partition using C(fn) for any n ∈ N, designating all the new
boundary components ‘stable’. Similarly, we can subdivide by C(f−n),
designating all inverse critical components ‘unstable’. And while it is
not strictly necessary, we can try to simplify the picture that results by
recombining some of the new partition pieces, provided we take care
to preserve invariance of stable/unstable boundary components. The
result of this process, obtained with care and hindsight, is shown in
Figure 2. The original regions 0 and 1 become smaller rectangles R0

and R1, and the complement of R0 ∪ R1 decomposes into overlapping
regions labeled R+ and R−. Using only combinatorial arguments like
the ones above, the following can be established.

Proposition 3.4. The conclusion of Corollary 3.3 holds with the re-
gions 0 and 1 from Figure 1 replaced by regions R0 and R1 from Figure
2. Moreover,

• f(R+) ⊂ R+, and any point p ∈ R+ ∩D has a forward coding
w0 · w1 . . . that alternates and a forward orbit that tends to
(∞,∞).

• f−1(R−) ⊂ R−, and any point p ∈ R− ∩ D has a backward
coding . . . w−1w0· that alternates and a backward orbit that tends
to (∞,∞).

• f(R1) ∩R1 = ∅.
Together with the following, somewhat technically difficult result,

Corollary 3.3 and Proposition 3.4 combine to imply everything in The-
orem 2.1 except the injectivity of f |Ω.
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Figure 2. Refinement of the original partition to in-
clude critical curves. Stable and unstable boundary seg-
ments are labeled ‘s’ and ‘u’, respectively.

Proposition 3.5. Any point p ∈ D such that limn→∞ fn(p) = (∞,∞)
(respectively, limn→∞ f−n(p) = (∞,∞)) must satisfy fn(p) /∈ R0 ∪ R1

(respectively, f−n(p) /∈ R0 ∪R1) for arbitrarily large n ∈ N.

4. Intersection Theory

Here is a slightly different and less precise way to state Corollary
3.3. Suppose we are given i, j ∈ {0, 1}, a stable arc α in region i, an
unstable arc β in region j, and m,n ∈ N. Then f−m(α) ∩ fn(β) must
contain at least

(5)

〈(
1 1
1 0

)n

ei,

(
1 1
1 0

)m

ej

〉

distinct points in R0∪R1. Equation (5), in which e0, e1 are the standard
basis vectors for R2, simply counts the number of codings w−n . . . w0 ·
w1 . . . wm that begin with digit w−n = i, end with digit wm = j, and
contain no consecutive 1’s throughout. The combinatorial arguments
sketched above do not rule our the possibility that there might be more
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intersections than (5) provides. To obtain control from above, I change
tactics and consider only very special examples of stable and unstable
curves.

Namely, I suppose that α is obtained by intersecting R0 with a verti-
cal line or R1 by the preimage of a vertical line, and that β is obtained
similarly. This turns out not to be too severe since both regions have
a product structure given by stable and unstable curves of this sort.
The advantage to the restriction is that complex intersection theory
tells us exactly how many times one algebraic curve intersects another
and therefore gives us an upper bound on #f−m(α)∩ fn(β). The data
needed to obtain this upper bound are the basis (V,H) for Pic (P1×P1),
the matrix (2) for f ∗ with respect to this basis, and additionally, the
matrix (

0 1
1 0

)

for the intersection form for complex curves in P1×P1. The results take
a bit of interpreting because the algebraic curves giving the stable and
unstable foliations of R1 also intersect R0 is stable and unstable arcs.
However, in the end we obtain an upper bound for #f−m(α) ∩ fn(β)
that matches (5) exactly in all cases. In light of (2), we might have
expected close agreement even before setting pencil to paper, but exact
agreement is not a priori obvious (at least not to me). It is fortunate,
though, because precise agreement between upper and lower bounds is
the main thing needed to complete the proof of Theorem 2.1 (i.e. of
injectivity of f : Ω → ΣG.)

Rather than go into more detail here, I will describe some further
consequences of intersection theory for dynamics of f . By using Lef-
schetz’ theorem on periodic points, it can be shown that

Theorem 4.1. All periodic points of f are real. Indeed all except
(∞,∞) are saddle points contained in Ω, and saddle periodic points
constitute a dense subset of Ω.

So far, I have mostly described the set Ω = D −D− −D+ of points
whose orbits lie neither the forward nor the backward basin of (∞,∞),
but in fact the individual complements of Ω+ := D − D+ and Ω− :=
D −D− yield to the same analysis.

Theorem 4.2. Ω+ is the support of a geometric 1 current µ+. That
is, there is a lamination L+ in P1 × P1 − supp [η] and a measure ν+

on the set |L|+ of leaves of this lamination such that

• µ+(ζ) =
∫
|L+|

(∫
L

ζ
)

ν+(L) for all 1 forms ζ;

• suppL+ = Ω+;
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Figure 3. Stable lamination alone (left) and with the
unstable lamination (right), for parameter a = −2. Note
that coordinates are adapted to show behavior near in-
finity and that intersection points among the leaves of
L+ occur only on supp [η].

• Every leaf of L+ is a stable curve in regions 0 or 1 from Figure
1;

• ν+ is invariant under holonomy along L+;
• f ∗µ+ = −µ+.

Note that I am avoiding the matter of orientation in the first and last
items. Figure 4 shows L+ by itself and together with the corresponding
lamination L− complementing D−. The common intersection of the
two laminations is just (the closure of) Ω.

5. Conclusion

Complex intersection theory can be used to study dynamics of any
rational map. Indeed the currents µ+ and µ− have general complex
analogues for any dynamically interesting birational map, and the in-
tersection between µ+ and µ− can often be understood in at least a
measure theoretic sense (see [?]). What is special to the example I
have just described is the presence of a good combinatorial structure.
In my view, there are two key features of the example from which the
combinatorics proceed. First of all, the post-critical orbits PC(f) and
PC(f−1) lie in invariant curves and are therefore very easy to under-
stand. Second, rather than being interlaced in some complicated fash-
ion, the sets PC(f) and PC(f−1) are easily separated by dividing each
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real invariant curve into a pair of intervals. Some of the other aspects of
the example, such as the perfect agreement between intersection theory
and combinatorics, remain mysterious to me. In a forthcoming paper,
Bedford and I will describe another family of birational maps whose
real dynamics can be analyzed in a similar fashion. It does not seem
too hard to come by further families of maps with “sparse postcritical
sets” so it is interesting to wonder how far the analysis described here
can be extended.
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