
CONTRACTION PROPERTIES OFTHE POINCARE SERIES OPERATORDavid E. Barrett and Jeffrey DillerUniversity of MichiganCornell University1. IntroductionIn a striking pair of papers, McMullen gave a new proof of the contraction prop-erties of Thurston's \skinning map"|an iteration on the Teichm�uller space of aRiemann surface. His approach was to reduce the problem to the study of a push-forward operator (called the Poincar�e series operator) for quadratic di�erentials[Mc2], and then show that this pushforward operator is itself contracting [Mc1].Our aim in this paper is to give new proofs of McMullen's estimates on the normof the Poincar�e series operator. Our methods di�er signi�cantly from McMullen's,especially in that we avoid the notion of \amenability," and some of the relatedcombinatorial arguments, in favor of more complex analytic and geometric tactics.Our methods have the advantage of yielding estimates that are completely explicitin terms of the injectivity radii of the Riemann surfaces involved. On the otherhand, our methods address only the case of covering surfaces with �nitely gener-ated fundamental group. This is not too serious a shortcoming, since McMullenuses only the �nite topology case in his applications to the skinning mapIn the rest of this introduction, we will provide some basic de�nitions, stateour main results, and explain the organization of this paper. The introductionsto McMullen's papers do a wonderful job of summarizing the connections betweenquadratic di�erentials and Teichm�uller theory, and between Teichm�uller theory andThurston's program. A good reference on quadratic di�erentials is [Ga]. Buser'sbook [Bu] o�ers a point of view on Riemann surfaces that is particularly well{suitedto the methods we use here.Let X be a Riemann surface. A quadratic di�erential on X is an expressionof the form � = �(z) dz2 in local coordinates. Put more abstractly, a quadraticdi�erential is a section of the square of the holomorphic cotangent bundle of X. � is1991 Mathematics Subject Classi�cation. 30F30, 30F60.First author supported in part by a grant from the National Science Foundation. Second authorsupported in part by an NSF Postdoctoral Fellowship. Typeset by AMS-TEX1



2 DAVID E. BARRETT AND JEFFREY DILLERcalled holomorphic if its local trivializations �(z) are holomorphic. \Taking absolutevalues"|j�j = j�(z)j jdzj2|identi�es any quadratic di�erential with a measure onX in a coordinate independent fashion. Thus it is natural to consider the L1 normjj�jj of �. We denote the space of all L1 holomorphic quadratic di�erentials on X byQ(X). If X is of �nite type (i.e. X is obtained from a compact surface by removing�nitely many points) then the dimension of Q(X) is �nite and determined by thegenus and number of punctures of X.Now suppose that � : Y ! X is a holomorphic covering of one Riemann sur-face by another. Then there is a natural corresponding pushforward operator� : Q(Y ) ! Q(X), similar to pushforward of measures. Given � 2 Q(Y ), onede�nes �� by (��)(z) = Xw2��1(z)(��1w )��:Taking absolute values shows that this sum converges in L1. In fact, we havejj��jj � RX ��j�j = RY j�j = jj�jj, so that � has an operator norm no greater thanone. But L1 convergence of holomorphic functions implies uniform convergenceon compact sets, so the sum de�ning �� converges pointwise to a holomorphicquadratic di�erential. For historical reasons � is known as the Poincar�e seriesoperator.With this notation, we now describe the main results and organization of thispaper. When we say that a constant depends only on the topology of a surface,we mean that it can be taken as a function of the number of generators of thefundamental group of the surface.Theorem 1.1. Suppose that X is a Riemann surface of �nite type and that Y isa Riemann surface of in�nite type with �nitely generated fundamental group. Let� : Y ! X be a holomorphic covering map. Then the norm of the correspondingPoincar�e series operator satis�es(1:1) jj�jj < 1� k < 1:Furthermore, k > 0 may be taken to depend only on the topology of X and Y , andon the length ` of the shortest closed geodesic on X. As a function of `, k may betaken to be continuous and increasing.The metric implied in the statement of the theorem is the Poincar�e (hyperbolic)metric|that is, the constant curvature �1 metric that X (and Y ) inherits fromthe Poincar�e metric on the unit disk �. A hyperbolic Riemann surface is of �niteor in�nite type according to whether it has �nite or in�nite area, respectively, inthe Poincar�e metric. Theorem 1.1 is essentially the same as Theorem 1.4 of [Mc1].It includes, among other things, an a�rmative answer to \Kra's theta conjecture,"which asserts Theorem 1.1 in the case Y = �.After �xing some notation and stating a few preliminary facts in Section 2, weprove two estimates in Section 3 that constitute the main part of the proof of



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 3Theorem 1.1. Although either estimate would su�ce for the proof, we choose toelaborate on the �rst. Both estimates depend on the existence of small solutions toa particular di�erential equation on the covering surface. Namely,Theorem 1.2. Let Y be a Riemann surface of in�nite type and with �nitelygenerated fundamental group. Let !A be the Poincar�e area form on Y and `Y bethe length of the shortest closed geodesic on Y . Then there is a (1,0) form � on Ysuch that @� = !A and h�i � t;where h�i is the pointwise length of � in the Poincar�e metric, and t can be taken tosatisfy t � C̀kYfor constants C and k that depends only on the topology of Y .A proof of this theorem in the case of in�nite type surfaces without cusps can befound in [Di]. In the appendix to this paper, we describe the fairly straightforwardmodi�cations one needs to make to [Di] to obtain the same theorem for in�nite typesurfaces with cuspsThe proof of Theorem 1.1 given in Section 3 has the virtue of being very short.However, the constant k that it provides is not very explicit. In sections 4 and 5 werevisit Theorem 1.1 with an eye to estimating k in more detail. Section 4 presentssome detailed results about the geometry of a hyperbolic Riemann surface. Mostof these results are well{known, but to our knowledge, Theorem 4.4 has not beenemployed elsewhere.In Section 5 we use the results from Section 4 to provide a value of k that iscompletely explicit in its dependence on t and `. The next two theorems follow ascorollaries.Theorem 1.3. The constant k in Theorem 1.1 can be taken to bek = �1=`Cwhere � < 1 and C > 0 depend only on the topologies of X and Y .This theorem gives a rather weak value for k, but if one is willing to �x thecovering surface (as, for example, in Kra's Theta Conjecture) a much strongerresult is possible.Theorem 1.4. The constant k in Theorem 1.1 can be taken to bek = C`;where C is a constant depending only on the constant t in Theorem 1.2 and on thetopologies of X and Y .Note that the statement of this theorem would be absurd if ` could be arbitrarilylarge. We will rely repeatedly below on the fact that, excepting annuli and the



4 DAVID E. BARRETT AND JEFFREY DILLERdisk, ` is always bounded above among hyperbolic Riemann surfaces of a giventopological type. For instance, we will assert without comment that tanh ` � C`.We conclude Section 6 and this paper by presenting an example from [Mc1] whichshows that the inequality given by Theorem 1.4 is sharp.2. Preliminaries.In this section we make de�nitions, introduce notation, and state several resultsthat we will need below.The Poincar�e metric. Any hyperbolic Riemann surface carries a complete, con-stant curvature �1 metric, which we call the Poincar�e metric (or hyperbolic metric).Holomorphic covering maps preserve this metric locally, so we use the notation dAand ds to refer to the associated length and area densities, regardless of which sur-face we are working on. We will also confuse the measure dA with the correspondingarea two form !A.For the convenience of the reader who wishes to reproduce any local coordinatecomputation that we omit, we recall that on the unit disk, � = fjzj < 1g, thePoincar�e metric has the form(2:1) ds = 2jdzj1� jzj2 ;on the upper half plane H = fIm z > 0g it has the form(2:2) jdzjIm z ;on the annulus A = AR = fe�R < jzj < eRg, it has the form(2:3) �jdzj2Rjzj cos(� log jzj2R ) ;and on the punctured unit disk �� = f0 < jzj < 1g, it has the form(2:4) � jdzjjzj log jzjGiven a hyperbolic Riemann surface X 6= � and a point p 2 X, there will be somelargest R such that the set of points lying within Poincar�e distance R of p is atopological disk. We call this R the injectivity radius I(p) of X at p.More on Pushforward Operators. The discussion in the introduction and thereferences listed in the bibliography provide su�cient background on pushforwardsof quadratic di�erentials, but since we will want to consider similar operators appliedto functions, forms, and densities, we o�er more discussion here.



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 5Suppose we have a holomorphic covering � : Y ! X of one hyperbolic Riemannsurface by another. The following discussion will apply speci�cly to a 1-form � onY , but with minor modi�cations it will apply equally well to forms of any degree(including functions) and quadratic di�erentials. Given a point p 2 X, we leth�(p)i denote the length of the covector �(p) as measured by the Poincar�e metric.We de�ne the L1 norm of � by jj�jj1 = ZY h�i dA:We also de�ne the 1-density associated with � by j�j = h�i ds (for two forms !, weset j!j = h!i dA; for functions F : Y ! C , we set jF j = hF i; etc.). Finally, wede�ne the pushforward of � by � as��(p) = Xq2��1(p)[(��1q )��](p);and the pushforward of the corresponding density as��j�j = 0@ Xq2��1(p)h�(q)i1A ds:If jj�jj1 is �nite and � is holomorphic then Cauchy estimates ([Ho] Theorem 1.2.4)imply that the sums de�ning �� and ��j�j converge locally uniformly. Clearly,��j�j � j��jThe same remarks will hold for a (not necessarily holomorphic) 1{form F � whereF is holomorphic and L1, and h�i � C on Y , since h�(f�)i � C��hF i. In particular,if � is the (1,0) form guaranteed by Theorem 1.2, then(2:5) @(�(F �)) = �(@(F �)) = �(F !A) = (�F ) dA;since the sums de�ning both �(F �) and (�F ) dA converge locally uniformly.3. Two Estimates on jj�jjThis section contains the core of the proof of Theorem 1.1. We prove two lemmasthat bound the norm of the Poincar�e series operator below 1. We elaborate on the�rst of the two lemmas in order to relate the amount of contraction to the constantt given by Theorem 1.2, the topology of X, and the length of the shortest closedgeodesic on X.Throughout the rest of this paper X will denote a hyperbolic Riemann surfaceof �nite type (i.e. �nite volume), g will denote the genus of X and ` will denote the



6 DAVID E. BARRETT AND JEFFREY DILLERlength of the shortest closed geodesic on X. By X we mean the compact Riemannsurface of genus g that one obtains by adding a single point to each end of X. Welet P = X nX denote the (�nite) set of punctures of X and we let jP j denote thecardinality of P . By a topological constant, or a constant depending only topology,we will mean a constant that can be prescribed purely in terms of g and jP j.As in Theorem 1.1, � : Y ! X will be a holomorphic covering of X by anotherRiemann surface Y . We assume that Y satis�es the conclusion of Theorem 1.2 andtake � : Q(Y )! Q(X) to be the Poincar�e series operator corresponding to �. Thesurface Y will enter into estimates on jj�jj only through the constant t given byTheorem 1.2.Suppose that � 2 Q(Y ) satis�es jj�jj = 1. We assume without loss of general-ity that �� 6� 0. Since � is linear, we can prove Theorem 1.1 by appropriatelyestimating 1� jj��jj:Because �� 2 Q(X), we see that �� extends to a meromorphic quadratic dif-ferential on X with at worst a simple pole at each point in P . Consequently, ifZ denotes the set of zeroes of ��, the Riemann-Roch Theorem implies both thatZ [P is non{empty and that jZj is bounded above by a number depending only ong and jP j.We de�ne a meromorphic function F : Y ! C by(3:1) � = F��(��)We will want to apply � to F so we proveLemma 3.1. Let U be any relatively compact subset of X nZ. Then the L1 normof F is �nite on ��1(U).Proof. There exists a constant � such that h��i � � on U . Thus,Z��1(U)hF i dA = Z��1(U) hF ih�i h�i dA= Z��1(U)h��(��)i�1j�j� 1� : �Note that(3:2) �� = �(F��(��)) = (�F )(��);so that �F � 1 o� Z.Now we come to the �rst of our two main lemmas. Let K � X be any closed setsuch that Z [ P � K and bK is smooth (allowing point components) and compactin X. For all r � 0, let Kr be the set of points whose distance from K is no greaterthan r. We de�ne m(r) = minp2bKrh��i:



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 7Lemma 3.2. For any r0 <1(3:3) 1� jj��jj1 � Z r00 m(r)[t�1Area(X nKr)� Length(bKr)] dr:Proof. Since a measure and its pushforward have the same mass, we have1� jj��jj1 = ZX ��j�j � j��j= ZX(��hF i � 1)h��i dA � ZXnK(��hF i � 1)h��i dA(since ��hF i � h�F i = 1)= Z 10 ZbKr (��hF i � 1)h��i ds dr� Z r00 ZbKr (��hF i � 1)h��i ds dr� Z r00 m(r) �ZbKr ��(hF i ds)� Length(bKr)� dr:Now let � be the (1; 0) form guaranteed by Theorem 1.2. Using this form, we obtainZbKr ��(hF i ds) � t�1 ����ZbKr �(F�)����= t�1 �����ZXnKr @�(F�)�����= t�1 �����ZXnKr (�F ) dA����� (by (2.5))= t�1Area(X nKr);which is what we need to complete the proof. �Proof of Theorem 1.1. In order to use Lemma 3.2, we need to de�ne the set K.Were P empty, we would simply take K = Z. Then Kr could be no worse thana disjoint union of jZj disks of Poincar�e radius r|i.e. direct computation in localcoordinates reveals that Area(Kr);Length(bKr) � 2�jZj sinh r. For each p 2 P , weadd a set Kp to K as follows:By dividing the universal cover of X by a deck transformation correspondingto a simple closed curve about p, one obtains a natural holomorphic covering map�p : �� ! X which extends to a holomorphic map of � into X such that �p(0) = p.Fix a number 0 < x < 1, and set Kp = �p(f0 < jzj < x). Then another directcomputation shows that Area(Kp;r);Length(bKp;r) � �2�er= logx.



8 DAVID E. BARRETT AND JEFFREY DILLERThus K is the union of Z and all the sets Kp, and we have thatArea(Kr);Length(bKr) � 2��jZj sinh r � jP jerlogx � :By Lemma 3.2 we have(3:4): 1� jj��jj � t�1 Z r00 m(r)�Area(X)� (1 + t)�jZj sinh r � jP jerlogx �� drSince A(X) depends only on g and jP j, and jZj is bounded above in terms of gand jP j, we can choose x and r0 depending only on g and jP j so that the integrandremains positive for all 0 < r < r0.The proof will be complete once we address m(r). In sections 5 and 6, we deriveexplicit bounds for m(r). For now, we argue abstractly for a bound. We can assumethat jj��jj > 12 ; if this were not true, then we would already have that 1�jj��jj > 12 .m(r) will vary continuously with ��. In particular, scaling �� will scale m(r) bythe same amount. Since Q(X) is �nite dimensional, and we have a lower boundon jj��jj, we see that m(r) admits a positive lower bound independent of �. It iswell{known in Teichm�uller theory that Q(X) varies continuously with the locationof X in the Teichm�uller space for surfaces quasiconformally equivalent to X. Hencewe may also assume that our lower bound on m(r) varies continuously. Now `�1is a continuous exhaustion function on the Teichm�uller space of X. So a positivelower bound on ` forces X to lie in a compact subset of Teichm�uller space. On thisset, we can choose our lower bound on m(r) to be independent of X. Such a boundsu�ces for our purposes, and it �nishes the proof. �We conclude this section with our second, alternative estimate on 1 � jj��jj.Although we do not pursue it further here, one could also use this lemma to proveTheorem 1.1.Lemma 3.3. Let � : X ! R be any smooth, compactly supported function van-ishing in a neighborhood of Z, and let t be the constant given by Theorem 1.2.Then(3:5) 1� jj��jj � �infX h��ih@�i�ZX(t�1�� h@�i) dA:So if one picks any function � that vanishes near Z, one obtains an estimate onthe extent to which � shrinks �. It requires more work, though, to eliminate thedependence on � from the righthand side.Proof. As in the last lemma, we write 1� jj��jj asZX ��j�j � j��j � infX h��ih@�i �ZX ��j�j h@�ih��i � ZX j��j h@�ih��i�= infX h��ih@�i �ZX ��j�j h@�ih��i � ZXh@�i dA� :



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 9Now let � be the form guaranteed by Theorem 1.2 and F be the meromorphicfunction de�ned by 3.1.ZX ��j�j h@�ih��i = ZX ���j�j h��@�ih����i�� ����ZX �(F h@� � �i dA)����� ����ZX �(t�1F (@� � �) ^ �)����= t�1 ����ZX �(F (� � �) dA)����= t�1 ����ZX(�F )�dA����= t�1 ZX �dA;which is what we need to �nish the proof. �4. More PreliminariesIn order to derive more explicit bounds for jj�jj, we need some detailed resultsconcerning the geometry of a hyperbolic Riemann surface X.Local Coordinates. Recall that the injectivity radius of X at p is the largestnumber I(p) such that fq 2 X : d(p; q) < I(p)g is a topological disk. By standardcoordinates about p, we will mean a uniformization map �p : � ! X that maps 0to p. �p will be a local isometry in the Poincar�e metric, and it will map the sub-diskfjzj < tanh(I(p)=2)g injectively onto the disk of radius I(p) about p. Consequently,�p de�nes local coordinates in the usual sense on this disk.Suppose that  is a shortest path between two points p1; p2 2 X. The notionof injectivity radius can also be used to give local coordinates about . If I =minfI(p) : p 2 g, then we haveLemma 4.1. Let �X : H ! X be a uniformization map and ~ be any lift of .Then �X maps the set U~ = fz 2 H : dist(z; ~) < I=3g:injectively onto the corresponding neighborhood U of .Proof. Suppose that �X is not injective on U~|i.e. that there are points z1; z2 2 U~such that �X(z1) = �X(z2). Let wj 2 ~ be chosen as close as possible to zj , j = 1; 2.Note thatd(w1; w2) = d(�X(w1); �X(w2)) � d(�X(w1); �X(z1)) + d(�X(w2); �X(z2)) < 2I=3



10 DAVID E. BARRETT AND JEFFREY DILLERsince z1 and z2 have the same image. On the other handd(w1; z2) � d(w1; w2) + d(w2; z2) < 2I=3 + I=3 = I :But now we have a contradiction, because both z1 and z2 lie within I of w1, whereaswe know that �X is injective on the disk of radius I about w1 �We will also be concerned with coordinate neighborhoods of punctures and ofsimple, closed geodesics. Given either a puncture p or a simple closed geodesic , letT be the corresponding deck transformation on the universal cover � of X. Thenthere is a natural covering of X by the �=fTng. In the case of a puncture, weobtain a holomorphic cover �p : �� ! Xwhich one can extend holomorphically past the origin by setting �p(0) = p. Wede�ne the cusp C = Cp about p to be the image under �p of the setf0 < jzj < e��g:In the case of a simple closed geodesic, we obtain a holomorphic cover� : AR ! X;where R = �2=Length(), and � maps fjzj = 1g onto  bijectively. We de�ne thecollar C = C about  to be the image under � of the set AR0 where(4:1): tan �R02R = 1sinh( 12 Length())This is equivalent to settingC = �p 2 X : dist(p; ) = sinh�1 1sinh( 12 Length())� :We refer to the covering map associated with a closed geodesic (or a puncture) asstandard coordinates about the geodesic (or the puncture, respectively) We will gen-erally use standard coordinates for computations performed on cusps and collars|apractice justi�ed by the next theorem. By a short geodesic, we mean a closed geo-desic of length less than 2 sinh�1 1. Let � denote the set of all short geodesics onX.Collar Theorem. (see [Bu] sections 4.1 and 4.4 or [Ke]) The following statementshold for X.(1) If  is a simple closed geodesic on X, then � is injective on AR0 . Similarly,if p is a puncture, then �p is injective on fjzj < e��g.(2) j�j � 3g � 3 + jP j, and all geodesics in � are simple.



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 11(3) Cusps and collars about short geodesics are mutually disjoint from one an-other.(4) Let C be a collar of a short geodesic or a cusp. ThenI(p) � sinh�1 e� dist(p;bC)for every p 2 C.(5) Any point p that does not lie in a cusp or in the collar of a short geodesicsatis�es I(p) � sinh�1 1.For reference purposes, we designate several important subsets of X.Xcore = X n [p2P CpXcore(s) = fp 2 X : dist(p;Xcore) � sgXthick = Xcore n [2� CXthick(s) = fp 2 X : dist(p;Xthick) � sg:We refer to Xcore as the core of X and Xthick as the thick part of X. One canderive useful diameter estimates for the core and thick part of X in terms of ` andtopology.Lemma 4.2. There exists a topological constant C1 such that any two points inthe same connected component of Xthick are joined by a path in Xthick of lengthless than C1. There exist topological constants C2; C3 such that any two points inXcore are joined by a path  in Xcore satisfyingLength() � C2 + C3 log 1̀ :The �rst statement in this Lemma follows from Lemma 4.1, the absolute lowerbound on injectivity radius among points in Xthick, and the fact that the area of acomponent of Xthick depends only on topology (see [Di] for a full proof of a similarresult). The second statement follows quickly from the �rst statement and theCollar Theorem.Harnack's inequality and change in the size of a quadratic di�erential. Byrestating the classical Harnack inequality for harmonic functions in an invariantform, we are able to obtain useful pointwise estimates for the size of a quadraticdi�erential in the Poincar�e metric.Lemma 4.3. Let X be a hyperbolic Riemann surface, W � X a domain, andh :W ! R+ a positive harmonic function. Thenhd logh(p)i � 1tanh( 12 dist(p; bW )) :



12 DAVID E. BARRETT AND JEFFREY DILLERProof. In standard coordinates about p, we have that h is positive and harmonic onthe disk fjzj < tanh( 12 dist(p; bW ))g. After rotating coordinates, we may supposethat d~h(rei�)dr ���r=0 is maximal when � = 0. Thenhd logh(p)i = 12 d logh(r)dr ����r=0= limr!0 12r log h(r)h(0)� limr!0 12r log tanh(12 dist(p; bW )) + rtanh(12 dist(p; bW ))� r= 1tanh( 12 dist(p; bW )) :We have used the classical Harnack inequality in the transition between the secondand third lines. �Theorem 4.4. Suppose that  is a holomorphic quadratic di�erential on X withzero set Z. Suppose that W � X n Z is a domain such thath (p)i �Mfor all p 2W . Set �(p) = minfd(p; bW ); 1g. Then if  �W is a parametrized pathconnecting p1 and p2, we haveh (p1)ih (p2)i � � h (p2)iCM ��1+eR dstanh(�=2) :C is a universal constant.This theorem is especially useful when p2 can be chosen so that h (p2)i is closeto M .Proof. Fix p 2 W . In standard coordinates about p, we have  = f(z) dz2, andh i = jf(z)j(1 � jzj2)2=4, where f is de�ned on fjzj < tanh(�(p)=2)g. If we takeC = (1�tanh2(1=2))2, then log(4M=Cjf j) is a positive harmonic function on fjzj <tanh(�(p)=2)g. We apply Harnack's inequality and obtainhd log log(M=Ch i)i = hd log log(4M=Cjf j)ijz=0 � 1tanh(�=2) :After integrating this becomesj log log(M=Ch (p1)i)� log log(M=Ch (p2)i)j � Z dstanh(�=2) :The theorem follows after we exponentiate and rearrange. �



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 13Maxima of quadratic di�erentials. We now prove two results about the maxi-mum value h i of a non-zero element  2 Q(X) and about the location in X wherethe maximum occurs. As before, let Z be the zeroes of  .Lemma 4.5. h i realizes its supremum at a point pmax 2 Xcore. There existabsolute constants C1; C2 such that(4:2) jj jjArea(X) � h (pmax)i � C1jj jj`2 :and(4:3) dist(pmax; Z) � C2:Proof. Let C be a cusp inX, and in standard coordinates on C write  = f(z) dz2=z.Since  is integrable, it has at worst a simple pole at any puncture. So f extendsholomorphically across z = 0. Let M = maxjzj�e�� jf(z)j. By the maximumprinciple, this maximum is realized at some point in the boundary of the cusp. Wehave then that h i = jzf(z)(log jzj)2j �M jzj(log jzj)2for all jzj � e�� with equality achieved at some point where jzj = e��. One cancheck by hand that r(log r)2 is increasing on the interval 0 < r � e��. Hence themaximum of h i on C occurs on bC. It follows that the maximum of h i on Xoccurs in Xcore.The left estimate in 4.2 is immediate. To get the right estimate, we work instandard coordinates about pmax, writing  = f(z) dz2 for some holomorphicfunction f , and h i = jf j (1�jzj2)24 . In particular jf(0)j = 4h (pmax)i. The diskfjzj < tanh(I(pmax)=2)g injects into X, so we havejj jj = ZXh idA � Z 2�0 Z tanh(I(pmax)=2)0 jf(rei�)jr dr d�� 2� Z tanh(I(pmax)=2)0 r �����Zjzj=r f(z)z dz����� dr= 2�jf(0)j Z tanh(I(pmax)=2)0 r dr = 4�h (pmax)i tanh2(I(pmax)=2):Since pmax 2 Xcore, we have I(pmax) � `=2. Thus we haveh (pmax)i � jj jj4� tanh2(`=4) � C1jj jj`2for ` < 1 and some absolute constant C1.



14 DAVID E. BARRETT AND JEFFREY DILLERTo get 4.3, note that(4:4) h (pmax)i < dist(pmax; Z) �maxX hdh ii:Moreover, working in standard coordinates about any point in X, we estimatehdh ii � jf 0(0)j8 = 116� �����Zjzj=1=2 f(z) dzz2 ������ Ch (pmax)i:4.3 follows after we use this estimate in 4.4. �Lemma 4.6. Let M(s) = maxfh (p)i : p 2 Xthick(s)g. Then there exists atopological constant C1 such thatM(0) � C1jj jj`Secondly, if 0 � s � t, we have M(s) � es�tM(t):Finally, if pmax(s) 2 Xthick(s) is a point where M(s) is achieved, thendist(pmax(s); Z) � C2for some absolute constant C2.Proof. Suppose �rst that at least half of the mass of  is concentrated outsidecollars of short geodesics. It follows that h i � jj jj=2Area(X) at some point inXthick or in a cusp. Arguing as in the previous lemma, we see that in fact thisoccurs in Xthick. Since Area(X) depends only on the topology of X, the estimateon M(0) holds.Now suppose that at least half the mass of  is concentrated inside collars of shortgeodesics. By (2) of the Collar Theorem, there exists a collar C = C containinga de�nite fraction of the mass of  . In standard coordinates on C, we write  =f(z) dz2=z2 and let M = maxC jf j = max bC jf j. Then for R0 � R = �2=Length()satisfying 4.1, we haveCjj jj � ZC j j = Z 2�0 Z eR0e�R0 jf(z)jjzj2 r dr d� � Z 2�0 Z eR0e�R0 Mr dr d� = 4�MR0Using 2.3 to express h i in standard coordinates on bC givesM(0) � maxbC h i = 4MR2�2 cos2 �R02R� Cjj jjR2R0 tanh2 Length()2 � Cjj jjLength()� C1jj jj`



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 15To prove the inequality relating M(s) and M(t), we again use standard coor-dinates on C and write  = f(z) dz2=z2. The inequality then follows from themaximum principle, equation 2.3, and a straightforward computation. One conse-quence of the inequality between M(s) and M(t) is that for dist(p; pmax(s)) < 1=2,we have h (p)i � Ch (pmax(s))i since p 2 Xthick(s + 1=2). The lower bound ondist(pmax(s); Z) is then established just as it was in the previous lemma. �5. Explicit bounds for jj�jjIn this section we return to the proof of Theorem 1.1. Our goal is to obtain anexpression for the constant k in the theorem which is explicit in terms of the length` of the shortest closed geodesic on X and the constant t that arises in Theorem 1.2.In order to accomplish our goal, we will apply the results from the previous sectionto the bound 3.3 appearing in the conclusion of Lemma 3.2. As in Section 2, welet � 2 Q(Y ) satisfy jj�jj = 1, and we consider  = ��. Without loss of generalitywe can assume that jj jj � 1=2. Unless, otherwise stated, we will assume implicitlythat constants in this section depend only the topology of X. We will also assumefor ease of stating results that ` < 1 and t > 1.In order to apply Lemma 3.2, we must �rst choose a compact set K � X. Ourchoice here will di�er from the one we made in the proof given in Section 2 forTheorem 1.1.Lemma 5.1. There are constants C1; : : : ; C5 such that if s = logC1t and U isany connected component of Xthick(s), we have(1) Area(U)� tLength(bU) � C2;(2) I(p) � C3=t for all p 2 U ;(3) Given any p1; p2 2 U , there exists a parametrized path  � U connecting p1and p2 such that Length() < C4 + C5 log t.Proof. We will �nd a constant s that guarantees (1) and then show that (2) and (3)follow. Call the genus of U , gU . Let A1; : : : ; An � X denote the embedded annulibounded by short closed geodesics on one side and components of bU on the otherside. We allow for the possibility that for some values of j, Aj is actually part of acusp|in this case, we have a puncture rather than a short closed geodesic boundingone side of Aj. In what follows, it makes sense to treat the puncture as a geodesicof length 0.By the Gauss{Bonnet Theorem,Area(U) = 2�(2gU + n� 2)�XArea(Aj):If n = 0, U is all of X, which gives (1) automatically. Otherwise, either gU � 1 andn � 1, or gU = 0 and n � 3. ThusArea(U) � 2�(n=3)�XArea(Aj):



16 DAVID E. BARRETT AND JEFFREY DILLERLet `j denote the length of the geodesic component of bAj, and let Lj denote thelength of the other component. ThenArea(U)� tLength(bU) � 2�(n=3) +X((t� 1)Area(Aj)� t(Area(Aj) + Lj)):By di�erentiating, one shows thatArea(Aj) + Lj = e�s`jtanh `j=4is an increasing function of `j . It will be greatest when the two boundary com-ponents of Aj coincide, `j = Lj , and Area(Aj) = 0. In this case, s measures thedistance from the geodesic to the edge of the collar containing Aj . Thereforesinh(`j=2) = 1= sinh s:and Area(U)� tLength(bU) � 2n��3 � t sinh�1 1sinh s�� �3if s � sinh�1 1sinh(�=6t) :Since t > 1, the quantity on the right side is bounded above by log(C1t).(2) is a direct consequence of item (4) of the Collar Theorem above. (3) followsfrom the diameter estimate for Xcore given by Lemma 4.2, and from the de�nitionsof s and Xthick(s). �We now �x U to be the component of Xthick(s) containing the point pmax(s),where s is given by the previous lemma, and pmax(s) is given in Lemma 4.6. Weset K 0 = X n U , we let Z be the set of zeroes of  , and we de�ne K = K 0 [ Z. Asusual, K 0(r); Z(r); K(r) denote the closed sets of points within distance r of each ofK 0; Z;K, respectively. Recall that the cardinality jZj is controlled by the genus andnumber of punctures of X. Since bU is contained entirely in cusps and collars ofshort geodesics on X, one can show by direct computation that there are constantsC1; C2 such that Length(bK(r)) � Length(bU) + C1rArea(X nK(r)) � Area(U)� C2rfor all r < 1. Hence,Area(X nK(r))� tLength(bK(r)) � Area(U)� tLength(bU)� Ctris positive on an interval of length comparable to t�1.



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 17Lemma 5.2. There are positive constants C1; C2 such that if r < C1=t, then anytwo points in X nK(r) can be joined by a path in X nK(C2r).Proof. We �rst claim that for C2 small enough, any connected component ofK(C2r)which intersects K 0(C2r) must actually lie in K 0(r). Hence, such components donot separate components of X nK(r). Indeed if V is a component of K(C2r) whichintersects K 0(C2r), and p 2 V nK 0(C2r), then p is joined to K 0(C2r) by a chain ofdisks of radius C2r about points in Z. Hence, dist(p;K 0(C2r)) � 2C2jZjr. ChoosingC2 smaller than (2jZj+ 1)�1 proves the claim.So now we point out that if the Lemma is false for small C2, we can assumethat some curve  in bZ(C2r) separates components of X n K(r). If we assumethat r < C1=t � C1I, where I is the minimum injectivity radius among pointsin U , and C1 is small enough, we have that , and hence some component W ofX nK(r) lies entirely inside a hyperbolic disk of radius C3C2r. But this forces Wto lie within distance C2r + C3C2r of some point in Z. Since dist(W;Z) � r, wehave a contradiction for C2 small enough. �Lemma 5.3. Let r � C1=t be as in the previous Lemma. Any two points in inX nK(r) are joined by a path  � X nK(C2r) with the following properties.(1)  consists of length minimizing geodesic segments and at most one connectedsegment of each connected component of bK(C2r).(2) Length() � C3 + C4 log t.(3) Length( \ Z(s)) � C5s for all s > 0.Proof. Given any two points p1; p2 in X nK(r), �rst choose  to be a lengthminimizing geodesic connecting p1 to p2. By (3) of Lemma 5.1, we know thatLength() � C1 + C2 log t. If  intersects a component V of K(C2r), let q1; q2 2bK(C2r) be the �rst and last points of that intersection. By the previous lemma,weknow that there is a segment in bV connecting q1 to q2. We replace  \V with thissegment of bV , possibly increasing the length of , but by no more than a constanttimes r. After carrying out this modi�cation of  on each component of K(C2r), weobtain a new path connecting p1 and p2 satisfying item (1). Item (2) of the lemmafollows since after modi�cation the length of  has increased by at most a constanttimes t�1. It is not di�cult to verify item (3) by considering geodesic segments of and segments of  in bK(C2r) separately. �Recall that in Section 3, we de�nedm(r) = minbK(r)h i:We are now in a position to estimate m(r). Fix a point p1 2 bK(r) and let be a path from p1 to pmax(s) = p2 satisfying the conclusions of Lemma 5.3. Wecan apply Lemma 4.4, taking the set W in the statement of that lemma to beXthick(s+ 1) n Z. By Theorem 4.6 we can assume that the number M in Theorem



18 DAVID E. BARRETT AND JEFFREY DILLER4.4 satis�es M � Ch (pmax(s))i. We have for all p 2  thatdist(p; bW ) � minf1; dist(p; Z)g:Hence,(5:1) h (p1)i � h (pmax(s))i exp�C1 Z dsminf1; dist(p; Z)g� :To estimate the integral, we split the domain of integration into those points wheredist(p; Z) > 1 and those points where dist(p; Z) < 1. We haveZnZ(1) ds � Length() � C1 + C2 log tin the �rst case. In the second case, we have by Lemma 5.3Z\Z(1) dsdist(p; Z) = Z 1=C2r1 Length( \ Z(1=u)) du= Z 1=C2r1 C duu = C1 + C2 log 1r:Altogether, the integral in equation 5.1 is dominated byC1 + C2 log t+ C3 log 1r :We apply Lemma 4.6 and the assumption that jj jj � 1=2 to estimate h (pmax(s))i,concluding by Theorem 4.4 thatm(r) � ` exp(�AtBr�C)for positive constants A;B;C. Inserting this estimate (valid for r < D=t) intoequation 3.3 gives1� jj jj � t̀ Z D=t0 (E � Ftr) exp(�AtBr�C) dr� t̀2 exp(�AtB)for positive constants A and B. Since the right side does not depend on  , we haveproved



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 19Theorem 5.4. Let X be a Riemann surface of �nite type. Let Y be a Riemannsurface of in�nite type with �nitely generated fundamental group. Suppose that � :Y ! X is a holomorphic covering map and � : Q(Y )! Q(X) is the correspondingpushforward operator. Then jj�jj � 1� k;for a positive constant k. We can takek = t̀2��tC ;where � and C are positive constants depending only on the topology of X, t is thenumber associated with Y by Theorem 1.2, and ` is the length of the shortest closedgeodesic on X.Theorem 1.4 is an immediate consequence of Theorem 5.4. In particular, we haveCorollary 5.5. Suppose that � : Y ! X is a holomorphic cover of a surface of�nite type by a disk or an annulus. Then the norm of the corresponding Poincar�eseries operator satis�es jj�jj � 1� C`for some constant C depending only on the topology of X.This corollary holds because we can take t = 1 if Y is a disk or an annulus (see[Di]). On the other hand, by Theorem 1.2 one can take t = C=`DY , where C;D areconstants depending only the topology of Y and `Y is the length of the shortestclosed geodesic on Y . Since holomorphic covers are local isometries we have `Y � `.Theorem 1.3 follows.We close this paper with an example that demonstrates that Corollary 5.6 issharp. The example appears in [Mc1]Let  � X be the shortest closed geodesic on a surface X of �nite type. Let� : AR ! X be the covering map giving standard coordinates on the collar about. We consider �� where � = dz2=z2 2 Q(AR). Since � is injective on AR0 (R0 asin equation 4.1, we have jj��jj � ZAR0 j�j � ZARnAR0 j�j:An easy computation now shows thatjj�jj � jj��jjjj�jj � 1� C`;for some absolute constant C.



20 DAVID E. BARRETT AND JEFFREY DILLER6. Concluding RemarksWe stress again that the covering surface Y enters into the proof of Theorem 1.1only through Theorem 1.2. If one is unconcerned with tying the bound on 1� jj�jjto the geometry of X, then one can replace the assumption that Y has �nitelygenerated fundamental group with the assumption that there exists a boundedsolution of @� = !A on Y . The proof of the existence of � given in [Di] relies chieyon the existence of a Green's function on Y that admits adequate uniform upperbounds.On the other hand, McMullen [Mc1] showed that jj�jj < 1 whenever the cover� : Y ! X is non-amenable. It would be interesting to know whether one candemonstrate the existence and appropriate boundedness of a Green's function onY from the assumption that there exists a non-amenable cover of some �nite typesurface X by Y . Appendix: Extending Theorem 1.2 toinfinite type surfaces with punctures.In [Di] we proved Theorem 1.2 for in�nite type Riemann surfaces Y withoutpunctures. It is not di�cult to extend the proof in that paper to handle in�nitetype surfaces with punctures. Let Y be a Riemann surface of in�nite type and�nitely generated fundamental group, and let Y be the compact bordered Riemannsurface obtained by adjoining the ideal boundary of Y to Y . Note that bY consistsof a non-empty, disjoint union of simple closed curves. The proof in [Di] consists ofthe following main steps:(1) Given any connected component  of bY , there is a simple closed geodesic � Y homotopic to . One can write down a (1,0) form � such that@� = !A and h�i � 1 on the annulus between  and .(2) After choosing appropriate cuto� functions on each such annulus, �nding aglobal bounded solution to @� = !A on Y reduces to solving the equationwith !A replaced by a form !0 with compact support. Because Y is ofin�nite type, there exists a Green's function G(p; q) with pole at q on Y .We set h(q) = ZY G(z; w)!0:Then if �0 = @h=4, we have @�0 = �h = !0.(3) It is not hard to show that h�0i is controlled by estimates involving !0 andG(z; w). We then relate the size of G to the geometry of Y via the estimateG(z; w) � log+ dist(z; w) + C̀kwhere ` is the length of the shortest closed geodesic on Y .



CONTRACTION PROPERTIES OF THE POINCARE SERIES OPERATOR 21(4) The estimate on G depends in turn on a sort of inradius estimate for the coreYcore � Y that one obtains by removing all boundary annuli. In particular,we show d(p; bYcore) � C1 + C2 log 1̀for all p 2 Ycore.To handle the case where Y has punctures, one needs to make the followingmodi�cations to the proof of Theorem 1.2(1) As on boundary annuli, one can write down an explict bounded solution of@� = !A on the cusp about a puncture in Y n Y . After choosing furtherappropriate cuto� functions on the cusps, one again reduces the di�erentialequation to one with compactly supported data.(2) We use the same method to obtain the global form �0. The geometricestimates on G and the inradius of Ycore are the same as before. However,one must also remove cusps from Y to obtain Ycore.(3) The proof of the inradius estimate for Ycore becomes slighly more elaboratein the presence of cusps. It proceeds roughly as follows: Any p 2 Ycore,is joined to bYcore by a path  � Ycore that decomposes into (i) lengthminimizing geodesic segments lying in components of Ythick \ Ycore, (ii)length minimizing geodesic segments lying in collars of short geodesics, and(iii) connected arcs in the boundaries of cusps or collars of short geodesics.The number of pieces in the decomposition is bounded above in terms oftopology. The Gauss-Bonnet Theorem gives a topological upper bound onthe area of a component of Ythick \ Ycore. Combined with a slight variantof Lemma 4.1, this implies a topological upper bound for the length of atype (i) piece of . Direct computation shows that pieces of type (ii) havelength no greater than C log 1L where L is the length of the core geodesic ofthe collar. Likewise, another computation shows that the length of piecesof type (iii) admits an absolute upper bound.References[BaDi] D. Barrett and J. Diller, Poincar�e series and holomorphic averaging, Invent. Math. 110(1992), 23{27.[Bu] P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkh�auser, Boston, 1992.[Di] J. Diller, A canonical @ problem for Riemann surfaces, To appear in Indiana Univ. MathJ.[Ga] F. Gardiner, Teichm�uller Theory and Quadratic Di�erentials, John Wiley & Sons, NewYork, 1987.[Ho] L. H�ormander, An Introduction to Complex Analysis in Several Variables, North{Holland,New York, 1966.[Ke] L. Keen, Collars on Riemann surfaces, Discontinuous Groups and Riemann Surfaces (L.Greenberg, ed.), Princeton University Press, Princeton NJ, 1974, pp. 263{268.[Mc1] C. McMullen, Amenability, poincar�e series, and holomorphic averaging, Invent. Math.97 (1989), 95{127.[Mc2] C. McMullen, Iteration on teichm�uller space, Invent. Math. 99 (1990), 425{454.
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