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1. INTRODUCTION

In a striking pair of papers, McMullen gave a new proof of the contraction prop-
erties of Thurston’s “skinning map”—an iteration on the Teichmiiller space of a
Riemann surface. His approach was to reduce the problem to the study of a push-
forward operator (called the Poincaré series operator) for quadratic differentials
[Mc2], and then show that this pushforward operator is itself contracting [Mcl].
Our aim in this paper is to give new proofs of McMullen’s estimates on the norm
of the Poincaré series operator. Our methods differ significantly from McMullen’s,
especially in that we avoid the notion of “amenability,” and some of the related
combinatorial arguments, in favor of more complex analytic and geometric tactics.
Our methods have the advantage of yielding estimates that are completely explicit
in terms of the injectivity radii of the Riemann surfaces involved. On the other
hand, our methods address only the case of covering surfaces with finitely gener-
ated fundamental group. This is not too serious a shortcoming, since McMullen
uses only the finite topology case in his applications to the skinning map

In the rest of this introduction, we will provide some basic definitions, state
our main results, and explain the organization of this paper. The introductions
to McMullen’s papers do a wonderful job of summarizing the connections between
quadratic differentials and Teichmiiller theory, and between Teichmiiller theory and
Thurston’s program. A good reference on quadratic differentials is [Ga]. Buser’s
book [Bu] offers a point of view on Riemann surfaces that is particularly well-suited
to the methods we use here.

Let X be a Riemann surface. A quadratic differential on X is an expression
of the form ¢ = ¢(z) dz? in local coordinates. Put more abstractly, a quadratic
differential is a section of the square of the holomorphic cotangent bundle of X. ¢ is
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called holomorphic if its local trivializations ¢(z) are holomorphic. “Taking absolute
values”—|¢| = |p(2)| |dz|*>—identifies any quadratic differential with a measure on
X in a coordinate independent fashion. Thus it is natural to consider the L! norm
||p|| of ¢. We denote the space of all L' holomorphic quadratic differentials on X by
Q(X). If X is of finite type (i.e. X is obtained from a compact surface by removing
finitely many points) then the dimension of Q(X) is finite and determined by the
genus and number of punctures of X.

Now suppose that 7 : ¥ — X is a holomorphic covering of one Riemann sur-
face by another. Then there is a natural corresponding pushforward operator
© : Q(Y) —» Q(X), similar to pushforward of measures. Given ¢ € Q(Y), one
defines ©¢ by

©9)(=) = >, (m,")¢.

wen—1(2)

Taking absolute values shows that this sum converges in L'. In fact, we have
10| < [x m|o| = [y 1¢] = [|¢]], so that © has an operator norm no greater than
one. But L! convergence of holomorphic functions implies uniform convergence
on compact sets, so the sum defining ©¢ converges pointwise to a holomorphic
quadratic differential. For historical reasons © is known as the Poincaré series
operator.

With this notation, we now describe the main results and organization of this
paper. When we say that a constant depends only on the topology of a surface,
we mean that it can be taken as a function of the number of generators of the
fundamental group of the surface.

Theorem 1.1. Suppose that X is a Riemann surface of finite type and that'Y s
a Riemann surface of infinite type with finitely generated fundamental group. Let
m:Y — X be a holomorphic covering map. Then the norm of the corresponding
Poincaré series operator satisfies

(1.1) e]l<1-k<1.

Furthermore, k > 0 may be taken to depend only on the topology of X and Y, and
on the length ¢ of the shortest closed geodesic on X. As a function of £, k may be
taken to be continuous and increasing.

The metric implied in the statement of the theorem is the Poincaré (hyperbolic)
metric—that is, the constant curvature —1 metric that X (and Y') inherits from
the Poincaré metric on the unit disk A. A hyperbolic Riemann surface is of finite
or infinite type according to whether it has finite or infinite area, respectively, in
the Poincaré metric. Theorem 1.1 is essentially the same as Theorem 1.4 of [Mcl].
It includes, among other things, an affirmative answer to “Kra’s theta conjecture,”
which asserts Theorem 1.1 in the case Y = A.

After fixing some notation and stating a few preliminary facts in Section 2, we
prove two estimates in Section 3 that constitute the main part of the proof of
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Theorem 1.1. Although either estimate would suffice for the proof, we choose to
elaborate on the first. Both estimates depend on the existence of small solutions to
a particular differential equation on the covering surface. Namely,

Theorem 1.2. Let Y be a Riemann surface of infinite type and with finitely
generated fundamental group. Let wy be the Poincaré area form on'Y and fy be
the length of the shortest closed geodesic on'Y . Then there is a (1,0) form n on'Y
such that

0n =wy and (n) <t,

where (n) is the pointwise length of n in the Poincaré metric, and t can be taken to

satisfy
C

t< —
£y
for constants C' and k that depends only on the topology of Y .

A proof of this theorem in the case of infinite type surfaces without cusps can be
found in [Di]. In the appendix to this paper, we describe the fairly straightforward
modifications one needs to make to [Di] to obtain the same theorem for infinite type
surfaces with cusps

The proof of Theorem 1.1 given in Section 3 has the virtue of being very short.
However, the constant k& that it provides is not very explicit. In sections 4 and 5 we
revisit Theorem 1.1 with an eye to estimating k& in more detail. Section 4 presents
some detailed results about the geometry of a hyperbolic Riemann surface. Most
of these results are well-known, but to our knowledge, Theorem 4.4 has not been
employed elsewhere.

In Section 5 we use the results from Section 4 to provide a value of k that is
completely explicit in its dependence on ¢ and /. The next two theorems follow as
corollaries.

Theorem 1.3. The constant k in Theorem 1.1 can be taken to be

k=AY

where A < 1 and C > 0 depend only on the topologies of X and Y .

This theorem gives a rather weak value for k£, but if one is willing to fix the
covering surface (as, for example, in Kra’s Theta Conjecture) a much stronger
result is possible.

Theorem 1.4. The constant k in Theorem 1.1 can be taken to be
k=Clt,

where C' is a constant depending only on the constant t in Theorem 1.2 and on the
topologies of X and Y.

Note that the statement of this theorem would be absurd if £ could be arbitrarily
large. We will rely repeatedly below on the fact that, excepting annuli and the
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disk, ¢ is always bounded above among hyperbolic Riemann surfaces of a given
topological type. For instance, we will assert without comment that tanh/ ~ CY/.
We conclude Section 6 and this paper by presenting an example from [Mc1] which
shows that the inequality given by Theorem 1.4 is sharp.

2. PRELIMINARIES.

In this section we make definitions, introduce notation, and state several results
that we will need below.

The Poincaré metric. Any hyperbolic Riemann surface carries a complete, con-
stant curvature —1 metric, which we call the Poincaré metric (or hyperbolic metric).
Holomorphic covering maps preserve this metric locally, so we use the notation dA
and ds to refer to the associated length and area densities, regardless of which sur-
face we are working on. We will also confuse the measure dA with the corresponding
area two form wy4.

For the convenience of the reader who wishes to reproduce any local coordinate
computation that we omit, we recall that on the unit disk, A = {|z| < 1}, the
Poincaré metric has the form

2|dz|
2.1 — .
( ) ds 1— |Z|27

on the upper half plane H = {Im z > 0} it has the form

dz| .

2.2
(2.2) s

on the annulus A = Ap = {e™f < |z| < eF}, it has the form

m|dz|

(2.3) w log |z| ;
2R|z| cos(“55—)

and on the punctured unit disk A* = {0 < |z| < 1}, it has the form

d

(2.4) B
2| log |z|

Given a hyperbolic Riemann surface X # A and a point p € X, there will be some

largest R such that the set of points lying within Poincaré distance R of p is a

topological disk. We call this R the injectivity radius I(p) of X at p.

More on Pushforward Operators. The discussion in the introduction and the
references listed in the bibliography provide sufficient background on pushforwards
of quadratic differentials, but since we will want to consider similar operators applied
to functions, forms, and densities, we offer more discussion here.
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Suppose we have a holomorphic covering 7 : Y — X of one hyperbolic Riemann
surface by another. The following discussion will apply specificly to a 1-form 7 on
Y, but with minor modifications it will apply equally well to forms of any degree
(including functions) and quadratic differentials. Given a point p € X, we let
(n(p)) denote the length of the covector n(p) as measured by the Poincaré metric.
We define the L! norm of 1 by

n||1=/y<n>dA.

We also define the 1-density associated with n by |n| = (n) ds (for two forms w, we
set |w| = (w) dA; for functions F' : Y — C, we set |F| = (F); etc.). Finally, we
define the pushforward of n by 7 as

qgem—1(p)

and the pushforward of the corresponding density as

ml=1 Y. ()] ds.

qgem—1(p)

If [|n||1 is finite and 7 is holomorphic then Cauchy estimates ([Ho] Theorem 1.2.4)
imply that the sums defining ©n and 7, |n| converge locally uniformly. Clearly,

me|n| > O]

The same remarks will hold for a (not necessarily holomorphic) 1-form F 1 where
F is holomorphic and L', and (n) < C on Y, since (O(fn)) < Cm,(F). In particular,
if n is the (1,0) form guaranteed by Theorem 1.2, then

(2.5) 9(B(Fn)) =O(0(Fn)) = O(Fwa) = (OF) d4,
since the sums defining both ©(F n) and (OF) dA converge locally uniformly.

3. Two ESTIMATES ON ||6]]

This section contains the core of the proof of Theorem 1.1. We prove two lemmas
that bound the norm of the Poincaré series operator below 1. We elaborate on the
first of the two lemmas in order to relate the amount of contraction to the constant
t given by Theorem 1.2, the topology of X, and the length of the shortest closed
geodesic on X.

Throughout the rest of this paper X will denote a hyperbolic Riemann surface
of finite type (i.e. finite volume), g will denote the genus of X and ¢ will denote the
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length of the shortest closed geodesic on X. By X we mean the compact Riemann
surface of genus g that one obtains by adding a single point to each end of X. We
let P = X \ X denote the (finite) set of punctures of X and we let |P| denote the
cardinality of P. By a topological constant, or a constant depending only topology,
we will mean a constant that can be prescribed purely in terms of g and |P|.

As in Theorem 1.1, 7 : Y — X will be a holomorphic covering of X by another
Riemann surface Y. We assume that Y satisfies the conclusion of Theorem 1.2 and
take © : Q(Y) — Q(X) to be the Poincaré series operator corresponding to m. The
surface Y will enter into estimates on ||©|| only through the constant ¢ given by
Theorem 1.2.

Suppose that ¢ € Q(Y) satisfies ||¢|| = 1. We assume without loss of general-
ity that ©®¢ # 0. Since © is linear, we can prove Theorem 1.1 by appropriately
estimating

1—[|©d]|.
Because ©¢ € Q(X), we see that O¢ extends to a meromorphic quadratic dif-
ferential on X with at worst a simple pole at each point in P. Consequently, if
7 denotes the set of zeroes of O¢, the Riemann-Roch Theorem implies both that
Z U P is non—empty and that |Z| is bounded above by a number depending only on
g and |P)|.
We define a meromorphic function F : Y — C by

(3.1) ¢ = Fr*(0¢)
We will want to apply © to F' so we prove

Lemma 3.1. Let U be any relatively compact subset of X \ Z. Then the L' norm
of F is finite on = 1(U).

_ ()
/7r—1(U)<F> A= 1) () () d4
[ s
1 (V)
I
Note that
(3.2) O¢ = O(F1*(0¢)) = (6F)(0¢),

so that ©F =1 off Z.

Now we come to the first of our two main lemmas. Let K C X be any closed set
such that Z U P C K and bK is smooth (allowing point components) and compact
in X. For all » > 0, let K, be the set of points whose distance from K is no greater
than r. We define

m(r) = min (O¢).

pELK,:
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Lemma 3.2. For any ro < oo

(3.3) 1-||0g|; > /0 ()t Area(X \ K,) — Length(bK, )] dr.

Proof. Since a measure and its pushforward have the same mass, we have
1- 0= [ ¢ - 109
X

— [ ipy - egdaz [ mip) - i da
(since m,(F) > (OF) = 1)

// (7 (F) — 1)(0) ds dr
> / /b om0 = 1)) dsdr

> /0 " () [ /b (P ds)—Length(bK,,)] dr.

T

Now let i be the (1, 0) form guaranteed by Theorem 1.2. Using this form, we obtain

[ myas e[ @(Fm\
4 /X 7o)

=1t / (OF)dA
X\K,

=11 Area(X \ K,.),

(by (2.5))

which is what we need to complete the proof. [J

Proof of Theorem 1.1. In order to use Lemma 3.2, we need to define the set K.
Were P empty, we would simply take K = Z. Then K, could be no worse than
a disjoint union of |Z| disks of Poincaré radius r—i.e. direct computation in local
coordinates reveals that Area(K,.), Length(bK,) < 27|Z|sinhr. For each p € P, we
add a set K, to K as follows:

By dividing the universal cover of X by a deck transformation corresponding
to a simple closed curve about p, one obtains a natural holomorphic covering map
T, : A* = X which extends to a holomorphic map of A into X such that 7,(0) = p.
Fix a number 0 < z < 1, and set K, = m,({0 < |2| < z). Then another direct
computation shows that Area(K, ,), Length(bK, ,) < —2me"/logz.
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Thus K is the union of Z and all the sets K, and we have that

P T
Area(K,), Length(bK,) < 27 <Z| sinh7 — ¢> .
log

By Lemma 3.2 we have

(34). 1—[0¢| > t‘l/oro m(r) (Area(X) (141 <Z|sinhr— |P|er>> dr

log

Since A(X) depends only on g and |P|, and |Z]| is bounded above in terms of g
and |P|, we can choose z and ry depending only on ¢g and |P| so that the integrand
remains positive for all 0 < r < rg.

The proof will be complete once we address m(r). In sections 5 and 6, we derive
explicit bounds for m(r). For now, we argue abstractly for a bound. We can assume
that ||©¢]| > 1; if this were not true, then we would already have that 1—||©¢|| > 3.
m(r) will vary continuously with ©¢. In particular, scaling O¢ will scale m(r) by
the same amount. Since Q(X) is finite dimensional, and we have a lower bound
on ||©¢||, we see that m(r) admits a positive lower bound independent of ¢. It is
well-known in Teichmiiller theory that (X ) varies continuously with the location
of X in the Teichmiiller space for surfaces quasiconformally equivalent to X. Hence
we may also assume that our lower bound on m(r) varies continuously. Now £7!
is a continuous exhaustion function on the Teichmiiller space of X. So a positive
lower bound on /£ forces X to lie in a compact subset of Teichmiiller space. On this
set, we can choose our lower bound on m(r) to be independent of X. Such a bound
suffices for our purposes, and it finishes the proof. [

We conclude this section with our second, alternative estimate on 1 — |[©4¢|].
Although we do not pursue it further here, one could also use this lemma to prove
Theorem 1.1.

Lemma 3.3. Let x : X — R be any smooth, compactly supported function van-
ishing in a neighborhood of 7, and let t be the constant given by Theorem 1.2.
Then

. . (O9¢ - 5
(3.5 1= lledl] > (igg (5 ) [ (- @) da
X (0x)/ Jx
So if one picks any function x that vanishes near Z, one obtains an estimate on
the extent to which © shrinks ¢. It requires more work, though, to eliminate the
dependence on ¢ from the righthand side.

Proof. As in the last lemma, we write 1 — ||©¢|| as

[ ol = 1001 > iy g}f; (/meg—’;f)—/)(%g—’;&)

=i§f%</Xﬁ*¢|g—$—/Xﬁx>¢4>-
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Now let 1 be the form guaranteed by Theorem 1.2 and F' be the meromorphic
function defined by 3.1.

Jomoiiais = fom ()

> /X O(F Ty o ) dA)‘

> /X Ot tF(0x o) /\n)‘

=¢!

/X@(F(Xow) dA)‘

=¢!

/X (OF)x dA‘

:t—l/ x dA,
X

which is what we need to finish the proof. [

4. MORE PRELIMINARIES

In order to derive more explicit bounds for ||©||, we need some detailed results
concerning the geometry of a hyperbolic Riemann surface X.

Local Coordinates. Recall that the injectivity radius of X at p is the largest
number I(p) such that {g € X : d(p,q) < I(p)} is a topological disk. By standard
coordinates about p, we will mean a uniformization map m, : A — X that maps 0
to p. m, will be a local isometry in the Poincaré metric, and it will map the sub-disk
{|z| < tanh(I(p)/2)} injectively onto the disk of radius I(p) about p. Consequently,
7p defines local coordinates in the usual sense on this disk.

Suppose that v is a shortest path between two points p1,ps € X. The notion
of injectivity radius can also be used to give local coordinates about . If I, =
min{/(p) : p € v}, then we have

Lemma 4.1. Let nx : H — X be a uniformization map and v be any lift of ~.
Then mx maps the set

Uy ={z e H:dist(z,7) < I,/3}.

injectively onto the corresponding neighborhood U., of .

Proof. Suppose that mx is not injective on Uy—i.e. that there are points 21, 29 € Uj
such that mx (21) = mx(22). Let w; € ¥ be chosen as close as possible to z;, j =1, 2.
Note that

d(wy, wz) = d(mx (w1), 7x (ws)) < d(mx (w1), mx (21)) + d(mx (wa), 7x(22)) < 21,/3
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since z1; and z9 have the same image. On the other hand
d(wl, 22) < d(wl, wz) + d(wQ, Zz) < 2[7/3 + 1,7/3 = I,y.

But now we have a contradiction, because both z; and 2, lie within I, of w;, whereas
we know that 7x is injective on the disk of radius I, about wy [J

We will also be concerned with coordinate neighborhoods of punctures and of
simple, closed geodesics. Given either a puncture p or a simple closed geodesic v, let
T be the corresponding deck transformation on the universal cover A of X. Then
there is a natural covering of X by the A/{T™}. In the case of a puncture, we
obtain a holomorphic cover

Tt A" = X

which one can extend holomorphically past the origin by setting m,(0) = p. We
define the cusp C = C, about p to be the image under m, of the set

{0<|z] <e™ ™}
In the case of a simple closed geodesic, we obtain a holomorphic cover
Ty - AR — X,

where R = 72/ Length(v), and 7., maps {|z| = 1} onto ~ bijectively. We define the
collar C = C,, about « to be the image under ., of the set Ar where
TR’ 1

4.1). b =
(4.1) 2R T sinh(L Length(y))

This is equivalent to setting

1
C, = {pe X :dist(p,~) = sinh~* '
) {p ist(p,y) = sin sinh(% Length(v)) }

We refer to the covering map associated with a closed geodesic (or a puncture) as
standard coordinates about the geodesic (or the puncture, respectively) We will gen-
erally use standard coordinates for computations performed on cusps and collars—a
practice justified by the next theorem. By a short geodesic, we mean a closed geo-
desic of length less than 2sinh™'1. Let I' denote the set of all short geodesics on
X.

Collar Theorem. (see [Bu/ sections 4.1 and 4.4 or [Ke]) The following statements
hold for X.

(1) If~ is a simple closed geodesic on X, then 7, is injective on Ag:. Similarly,
if p is a puncture, then m, is injective on {|z| < e~ "}.
(2) |T'| <3g—3+|P|, and all geodesics in T' are simple.
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(3) Cusps and collars about short geodesics are mutually disjoint from one an-
other.
(4) Let C be a collar of a short geodesic or a cusp. Then

I(p) > sinh ™! ¢~ dist(p,bC)

for every p € C.
(5) Any point p that does not lie in a cusp or in the collar of a short geodesic
satisfies I(p) > sinh ' 1.

For reference purposes, we designate several important subsets of X.

Xcov“e:X\ U Cp

pEP
XCOT@(S) - {p €X: diSt(p, Xcore) < S}

Xthick — Xcov“e \ U C'y
€T

Xinick(s) = {p € X : dist(p, X¢nicr) < s}

We refer to Xcore as the core of X and Xyp;er as the thick part of X. One can
derive useful diameter estimates for the core and thick part of X in terms of £ and
topology.

Lemma 4.2. There exists a topological constant C1 such that any two points in
the same connected component of Xinicr are joined by a path in Xipicr of length
less than Cv. There exist topological constants Cy, C3 such that any two points in
Xecore are joined by a path v in X.ore satisfying

1
Length(y) < Cs + Cslog 7

The first statement in this Lemma follows from Lemma 4.1, the absolute lower
bound on injectivity radius among points in X;;.x, and the fact that the area of a
component of Xyp;.x depends only on topology (see [Di] for a full proof of a similar
result). The second statement follows quickly from the first statement and the
Collar Theorem.

Harnack’s inequality and change in the size of a quadratic differential. By
restating the classical Harnack inequality for harmonic functions in an invariant
form, we are able to obtain useful pointwise estimates for the size of a quadratic
differential in the Poincaré metric.

Lemma 4.3. Let X be a hyperbolic Riemann surface, W C X a domain, and
h: W — RY a positive harmonic function. Then

1
Ao hp)) < T dst(p, W)
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Proof. In standard coordinates about p, we have that h is positive and harmonic on
the disk {|z| < tanh(3 dist(p,bW))}. After rotating coordinates, we may suppose

that 4he”)

o is maximal when # = 0. Then

r=0
1 dlogh(r)
2 dr

1 h(r

= 5 02 0y

(dlog h(p)) =

1
tanh(3 dist(p, bW))

We have used the classical Harnack inequality in the transition between the second
and third lines. [

Theorem 4.4. Suppose that 1) is a holomorphic quadratic differential on X with
zero set Z. Suppose that W C X \ Z is a domain such that

(W(p) <M

for allp € W. Set p(p) = min{d(p,bW),1}. Then if v C W is a parametrized path
connecting p1 and po, we have

o)y T
W) _ (W))\
W (p2)) 2( CM ) |

C is a universal constant.

This theorem is especially useful when py can be chosen so that (¢ (p2)) is close
to M.

Proof. Fix p € W. In standard coordinates about p, we have ¢ = f(z)dz?, and
() = |f(2)/(1 —|2|?)?/4, where f is defined on {|z| < tanh(p(p)/2)}. If we take
C = (1—tanh?(1/2))2, then log(4M/C|f|) is a positive harmonic function on {|z| <
tanh(p(p)/2)}. We apply Harnack’s inequality and obtain

1
log log(M = (dloglog(4M g < —— .
(d10glo5(M/C(1))) = (d10g 10g(4M/Cf]))|sm0 < frrs
After integrating this becomes

ds

| loglog(M/C (4 (p1))) — loglog(M/C (4 (p2)))| < / tanh(p/2)’

The theorem follows after we exponentiate and rearrange. [
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Maxima of quadratic differentials. We now prove two results about the maxi-
mum value (¢) of a non-zero element ¢ € Q(X) and about the location in X where
the maximum occurs. As before, let Z be the zeroes of .

Lemma 4.5. (¢) realizes its supremum at a point pmar € Xcore- There exist
absolute constants Cv,Cy such that

]| Cill¥]]
(4-2) W(X) < <7vb(pmam)> < 2
and
(4.3) dist(pmaz, Z) > Cs.

Proof. Let C be a cusp in X, and in standard coordinates on C write ¢ = f(z) dz?/z2.
Since v is integrable, it has at worst a simple pole at any puncture. So f extends
holomorphically across z = 0. Let M = max|, <.~ |f(z)]. By the maximum
principle, this maximum is realized at some point in the boundary of the cusp. We
have then that

() = |2f(2)(log|2])?| < M|z|(log |2])*

for all |z] < e™™ with equality achieved at some point where |z| = e~". One can
check by hand that r(logr)? is increasing on the interval 0 < r < e~". Hence the
maximum of (1)) on C occurs on bC. It follows that the maximum of (1)) on X
occurs in X . re.

The left estimate in 4.2 is immediate. To get the right estimate, we work in
standard coordinates about ppqz, writing ¢» = f(2)dz? for some holomorphic

function f, and () = [f|C=E00 In particular [£(0)] = 4(4(Pmaz)). The disk
{|z] < tanh(I(pmaz)/2)} injects into X, so we have

27 tanh(I(pmaz)/2) »
w||=/<w>dAz/ / e r dr do
X 0 0

tanh(I(pmaz)/2)
/ r / @ dz
|z|=r Z

tanh(I(Pmaz)/2) )
= 27| f(0)| /0 rdr = 47 (Y (Pmaz)) tanh” (I (pmaz)/2)-

> 27 dr

0

Since pmaz € Xeore; We have I(pmaz) > £/2. Thus we have

|9 Cy[]|
W (Pmaz)) < Irtank®(0/1) = 2

for / < 1 and some absolute constant C.
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To get 4.3, note that
(4.4) (Y(Pmaz)) < dist(Pmaz, Z) - m)?x<d<¢>>

Moreover, working in standard coordinates about any point in X, we estimate
/(o)) _ 1 f(z)dz
(d(y)) < = 5
lz|l=1/2 %
< C(Y(Pmas))-

8 167
4.3 follows after we use this estimate in 4.4. O

Lemma 4.6. Let M(s) = max{(¢(p)) : p € Xinick(s)}. Then there exists a
topological constant Cy such that

M(0) > Cillpl[¢

Secondly, if 0 < s <t, we have
M(s) > e TM(t).
Finally, if pmaz(8) € Xthick(8) is a point where M (s) is achieved, then
dist (pmaz(s), Z) > Cy

for some absolute constant Cs.

Proof. Suppose first that at least half of the mass of ¢ is concentrated outside
collars of short geodesics. It follows that (¢) > ||¢||/2 Area(X) at some point in
Xihick Or in a cusp. Arguing as in the previous lemma, we see that in fact this
occurs in Xgpick. Since Area(X) depends only on the topology of X, the estimate
on M(0) holds.

Now suppose that at least half the mass of ¢ is concentrated inside collars of short
geodesics. By (2) of the Collar Theorem, there exists a collar C = C, containing
a definite fraction of the mass of . In standard coordinates on C, we write ¢ =
f(2)d2?/2* and let M = maxg|f| = maxyc |f|. Then for R’ < R = n?/ Length(y)

satisfying 4.1, we have
2
/ / —drdf = 4n MR’
-R' T

cwir< = [ [V

Using 2.3 to express () in standard coordinates on bC gives

AM R? TR’
> = 2
M(0) > rré%x<¢> 08" oo
2 L h
> A 2 B . 61 Length ()

> C1|9y||£
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To prove the inequality relating M (s) and M(t), we again use standard coor-
dinates on C and write ¢ = f(2)dz?/2?. The inequality then follows from the
maximum principle, equation 2.3, and a straightforward computation. One conse-
quence of the inequality between M (s) and M (t) is that for dist(p, pmaz(s)) < 1/2,
we have (¢(p)) < C{¢(Pmaz(5))) since p € Xipick(s + 1/2). The lower bound on
dist(pmaz (), Z) is then established just as it was in the previous lemma. O

5. EXPLICIT BOUNDS FOR ||O||

In this section we return to the proof of Theorem 1.1. Our goal is to obtain an
expression for the constant k in the theorem which is explicit in terms of the length
¢ of the shortest closed geodesic on X and the constant ¢ that arises in Theorem 1.2.
In order to accomplish our goal, we will apply the results from the previous section
to the bound 3.3 appearing in the conclusion of Lemma 3.2. As in Section 2, we
let ¢ € Q(Y) satisfy ||¢|| = 1, and we consider 1) = ©¢. Without loss of generality
we can assume that |[¢|| > 1/2. Unless, otherwise stated, we will assume implicitly
that constants in this section depend only the topology of X. We will also assume
for ease of stating results that £ < 1 and ¢ > 1.

In order to apply Lemma 3.2, we must first choose a compact set K C X. Our
choice here will differ from the one we made in the proof given in Section 2 for
Theorem 1.1.

Lemma 5.1. There are constants C1,...,Cs such that if s = logCit and U s
any connected component of Xipick(s), we have
(1) Area(U) — t Length(bU) > Cy;
(2) I(p) > Cs/t for allp € U;
(3) Given any p1,p2 € U, there exists a parametrized path v C U connecting py
and ps such that Length(y) < C4 + Cslogt.

Proof. We will find a constant s that guarantees (1) and then show that (2) and (3)
follow. Call the genus of U, gy. Let Aq,..., A, C X denote the embedded annuli
bounded by short closed geodesics on one side and components of bU on the other
side. We allow for the possibility that for some values of j, A; is actually part of a
cusp—in this case, we have a puncture rather than a short closed geodesic bounding
one side of A;. In what follows, it makes sense to treat the puncture as a geodesic
of length 0.
By the Gauss-Bonnet Theorem,

Area(U) = 27(2gy +n — 2) — ZArea(Aj).

If n =0, U is all of X, which gives (1) automatically. Otherwise, either gy > 1 and
n>1,or gy =0and n > 3. Thus

Area(U) > 2m(n/3) — ) _ Area(4;).
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Let /; denote the length of the geodesic component of bA;, and let L; denote the
length of the other component. Then

Area(U) — t Length(bU) > 2m(n/3) + Z((t — 1) Area(A;) — t(Area(A;) + L;)).
By differentiating, one shows that

—sy
et

Area(Aj) + Lj = 7tanh£j/4

is an increasing function of £;. It will be greatest when the two boundary com-
ponents of A; coincide, £; = L;, and Area(A;) = 0. In this case, s measures the
distance from the geodesic to the edge of the collar containing A;. Therefore

sinh(¢;/2) = 1/ sinh s.

and
T A |
_ > L _
Area(U) — t Length(bU) > 2n <3 t sinh sinhs)
s
> -
-3
if ]
>sinh ™' ———— .
%= s sinh (7 /6t)

Since t > 1, the quantity on the right side is bounded above by log(C1t).

(2) is a direct consequence of item (4) of the Collar Theorem above. (3) follows
from the diameter estimate for X ... given by Lemma 4.2, and from the definitions
of s and Xypier(s). O

We now fix U to be the component of Xyp;ck($) containing the point ppqq($),
where s is given by the previous lemma, and pp,.. () is given in Lemma 4.6. We
set K’ = X \ U, we let Z be the set of zeroes of 1), and we define K = K' U Z. As
usual, K'(r), Z(r), K (r) denote the closed sets of points within distance r of each of
K',Z, K, respectively. Recall that the cardinality |Z| is controlled by the genus and
number of punctures of X. Since bU is contained entirely in cusps and collars of

short geodesics on X, one can show by direct computation that there are constants
C1, (5 such that

Length(bK (r)) < Length(bU) + Cyr
Area(X \ K(r)) > Area(U) — Car

for all » < 1. Hence,
Area(X \ K(r)) — t Length(bK (r)) > Area(U) — t Length(bU) — Ctr

is positive on an interval of length comparable to ¢!,
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Lemma 5.2. There are positive constants C,Cy such that if r < Cy/t, then any
two points in X \ K(r) can be joined by a path in X \ K(Car).

Proof. We first claim that for Cy small enough, any connected component of K (Car)
which intersects K'(Car) must actually lie in K'(r). Hence, such components do
not separate components of X \ K (r). Indeed if V' is a component of K (Cyr) which
intersects K'(Car), and p € V' \ K'(Car), then p is joined to K'(Cyr) by a chain of
disks of radius Cyr about points in Z. Hence, dist(p, K'(Car)) < 2C3|Z|r. Choosing
Cy smaller than (2|Z] + 1)~! proves the claim.

So now we point out that if the Lemma is false for small 3, we can assume
that some curve « in bZ(Cyr) separates components of X \ K(r). If we assume
that » < Cy/t < CyI, where I is the minimum injectivity radius among points
in U, and (' is small enough, we have that «, and hence some component W of
X \ K(r) lies entirely inside a hyperbolic disk of radius C3C5r. But this forces W
to lie within distance Cyr + C35Csr of some point in Z. Since dist(W,Z) > r, we
have a contradiction for C5 small enough. [

Lemma 5.3. Let r < Cy/t be as in the previous Lemma. Any two points in in

X \ K(r) are joined by a path v C X \ K(Car) with the following properties.
(1) ~ consists of length minimizing geodesic segments and at most one connected
segment of each connected component of bK (Car).
(2) Length(y) < C3 + Cylogt.
(3) Length(yn Z(s)) < Css for all s > 0.

Proof. Given any two points pj,ps in X \ K(r), first choose v to be a length
minimizing geodesic connecting p; to ps. By (3) of Lemma 5.1, we know that
Length(y) < C1 + Calogt. If v intersects a component V' of K(Car), let ¢1,q2 €
bK (Cyr) be the first and last points of that intersection. By the previous lemma,we
know that there is a segment in bV connecting q; to g2. We replace y NV with this
segment of bV, possibly increasing the length of v, but by no more than a constant
times r. After carrying out this modification of vy on each component of K(Csyr), we
obtain a new path connecting p; and ps satisfying item (1). Item (2) of the lemma
follows since after modification the length of 4 has increased by at most a constant
times t~1. Tt is not difficult to verify item (3) by considering geodesic segments of
v and segments of v in bK (Cyr) separately. [

Recall that in Section 3, we defined

m(r) = min ().

We are now in a position to estimate m(r). Fix a point p; € bK(r) and let ~
be a path from p; t0 ppaes(s) = pa satisfying the conclusions of Lemma 5.3. We
can apply Lemma 4.4, taking the set W in the statement of that lemma to be
Xitnick(s+1)\ Z. By Theorem 4.6 we can assume that the number M in Theorem
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4.4 satisfies M < C{¢)(pmaz(5))). We have for all p €  that
dist(p, bW) > min{1, dist(p, Z)}.

Hence,

(5.1) (¥(p1)) = (¥ (Pmaz(s))) exp (Cl/ min{l,(i(iiZt(p7 Z)}> .

To estimate the integral, we split the domain of integration into those points where
dist(p, Z) > 1 and those points where dist(p, Z) < 1. We have

/ ds < Length(vy) < Cy 4+ Cylogt
Y\Z(1)

in the first case. In the second case, we have by Lemma 5.3

(p, Z

1/027‘ 1
:/ _Cdu201+0210g_
1 U r

ds 1/Car
—_— = Length(y N Z(1/u)) du
/7 e T / (v Z(1/u))

Altogether, the integral in equation 5.1 is dominated by
1
Cl + 02 10gt + 03 log—.
r

We apply Lemma 4.6 and the assumption that |[¢|| > 1/2 to estimate (¢)(pmaz(5))),
concluding by Theorem 4.4 that

m(r) > Lexp(—AtBr=¢)

for positive constants A, B,C. Inserting this estimate (valid for » < D/t) into
equation 3.3 gives

/ D/t
1— ||| > 2/ (E — Ftr) exp(—AtPr=%) dr
0
>t AtP
2 t_zeXp(_ t”)

for positive constants A and B. Since the right side does not depend on 1), we have
proved
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Theorem 5.4. Let X be a Riemann surface of finite type. Let Y be a Riemann
surface of infinite type with finitely generated fundamental group. Suppose that m :
Y — X is a holomorphic covering map and © : Q(Y) — Q(X) is the corresponding
pushforward operator. Then

el <1 -k,

for a positive constant k. We can take

!

— t_2)\—tO,

k

where X and C are positive constants depending only on the topology of X, t is the
number associated with Y by Theorem 1.2, and £ is the length of the shortest closed
geodesic on X.

Theorem 1.4 is an immediate consequence of Theorem 5.4. In particular, we have

Corollary 5.5. Suppose that 7 :' Y — X is a holomorphic cover of a surface of
finite type by a disk or an annulus. Then the norm of the corresponding Poincaré
series operator satisfies

el <1-Ct

for some constant C depending only on the topology of X.

This corollary holds because we can take t = 1 if Y is a disk or an annulus (see
[Di]). On the other hand, by Theorem 1.2 one can take t = C/¢2 where C, D are
constants depending only the topology of Y and /y is the length of the shortest
closed geodesic on Y. Since holomorphic covers are local isometries we have £y > /£.
Theorem 1.3 follows.

We close this paper with an example that demonstrates that Corollary 5.6 is
sharp. The example appears in [Mcl]

Let v C X be the shortest closed geodesic on a surface X of finite type. Let
7y : Ar — X be the covering map giving standard coordinates on the collar about
v. We consider ©¢ where ¢ = dz?/2% € Q(ARg). Since ., is injective on Ag: (R’ as

in equation 4.1, we have
lost> [ - [ ol
A AR\Apg

R

An easy computation now shows that

o> 9%y ¢y

¢l

for some absolute constant C.
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6. CONCLUDING REMARKS

We stress again that the covering surface Y enters into the proof of Theorem 1.1
only through Theorem 1.2. If one is unconcerned with tying the bound on 1 — ||©||
to the geometry of X, then one can replace the assumption that Y has finitely
generated fundamental group with the assumption that there exists a bounded
solution of dn = w4 on Y. The proof of the existence of 7 given in [Di] relies chiefly
on the existence of a Green’s function on Y that admits adequate uniform upper
bounds.

On the other hand, McMullen [Mc1]| showed that ||©]] < 1 whenever the cover
m : Y — X is non-amenable. It would be interesting to know whether one can
demonstrate the existence and appropriate boundedness of a Green’s function on
Y from the assumption that there exists a non-amenable cover of some finite type
surface X by Y.

APPENDIX: EXTENDING THEOREM 1.2 TO
INFINITE TYPE SURFACES WITH PUNCTURES.

In [Di] we proved Theorem 1.2 for infinite type Riemann surfaces Y without
punctures. It is not difficult to extend the proof in that paper to handle infinite
type surfaces with punctures. Let Y be a Riemann surface of infinite type and
finitely generated fundamental group, and let Y be the compact bordered Riemann
surface obtained by adjoining the ideal boundary of Y to Y. Note that bY consists
of a non-empty, disjoint union of simple closed curves. The proof in [Di] consists of
the following main steps:

(1) Given any connected component 7 of bY’, there is a simple closed geodesic
v C Y homotopic to 7. One can write down a (1,0) form 7, such that
Ony, = wa and (n) < 1 on the annulus between 7 and ~.

(2) After choosing appropriate cutoff functions on each such annulus, finding a
global bounded solution to Oy = w4 on Y reduces to solving the equation
with w4 replaced by a form wy with compact support. Because Y is of
infinite type, there exists a Green’s function G(p,q) with pole at ¢ on Y.
We set

Then if g = Oh/4, we have Ong = Ah = wy.
(3) It is not hard to show that (ng) is controlled by estimates involving wy and
G(z,w). We then relate the size of G to the geometry of Y via the estimate

G(z,w) < log™ dist(z, w) + ggk

where £ is the length of the shortest closed geodesic on Y.
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The estimate on G depends in turn on a sort of inradius estimate for the core
Y.ore C Y that one obtains by removing all boundary annuli. In particular,
we show

1
d(p: bYcore) S C’1 + C2 log Z

for all p € Yeore-

To handle the case where Y has punctures, one needs to make the following
modifications to the proof of Theorem 1.2

(1)

(2)

[BaDi]

[Bu]
[Di]

[Ga]
[Ho]
[Ke]
[Me1]

[Mc2]

As on boundary annuli, one can write down an explict bounded solution of
0n = w4 on the cusp about a puncture in Y \ Y. After choosing further
appropriate cutoff functions on the cusps, one again reduces the differential
equation to one with compactly supported data.

We use the same method to obtain the global form 79. The geometric
estimates on GG and the inradius of Y., are the same as before. However,
one must also remove cusps from Y to obtain Y,yc.

The proof of the inradius estimate for Y,,.. becomes slighly more elaborate
in the presence of cusps. It proceeds roughly as follows: Any p € Yiore,
is joined to bYiere by a path v C Yiore that decomposes into (i) length
minimizing geodesic segments lying in components of Yipick N Yeore, (i)
length minimizing geodesic segments lying in collars of short geodesics, and
(iii) connected arcs in the boundaries of cusps or collars of short geodesics.
The number of pieces in the decomposition is bounded above in terms of
topology. The Gauss-Bonnet Theorem gives a topological upper bound on
the area of a component of Yipick N Yeore. Combined with a slight variant
of Lemma 4.1, this implies a topological upper bound for the length of a
type (i) piece of 7. Direct computation shows that pieces of type (ii) have
length no greater than C’log% where L is the length of the core geodesic of
the collar. Likewise, another computation shows that the length of pieces
of type (iii) admits an absolute upper bound.
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