
Cyclic subspaces for linear operators

Let V be a finite dimensional vector space and T : V → V be a linear operator. One way
to create T -invariant subspaces is as follows. Choose a non-zero vector v ∈ V , and let k ∈ N
be the smallest integer such that {v, Tv, T 2v, . . . , T kv} is a dependent set. Let

Hv = span{v, Tv, . . . , T k−1v}.

Then Hv is called the cyclic subspace generated by v. By our choice of k, we have a non-
trivial linear combination of v, Tv, . . . , T kv that vanishes. Moreover, the coefficient of T kv
in this combination must be non-zero, because the vectors v, . . . , T k−1v are independent.
Hence after dividing the combination by the coefficient of T kv, we arrive at

T kv + ck−1T
k−1v + · · ·+ c0v = 0,

for some scalars c0, . . . , ck−1. We associate to the linear combination on the right a polynomial

pv(x) := xk + ck−1x
k−1 + · · ·+ c0.

Theorem 0.1. Hv is the smallest T -invariant subspaces that contains T `v for every ` ∈ N.
Relative to the basis {v, Tv, . . . , T k−1v}, the restricited transformation T : Hv → Hv has
matrix

A =


0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2

. . .
...

0 0 . . . 1 ck−1

 .
Hence the characteristic polynomial of T |H is pv.

Proof. First I show by induction that T `v ∈ Hv for every ` ∈ N. When ` = 0, this is true
by definition of Hv. Suppose it’s true for ` = m− 1. That is,

Tm−1v = a0v + · · ·+ ak−1T
k−1v ∈ Hv.

Then

Tmv = T (Tm−1v) = a0Tv + · · ·+ ak−2T
k−1v + ak−1T

kv.

All terms on the right, except the last one, belong to Hv by definition. The final term belongs
to Hv, because as we saw above, T kv is a equal to a linear combination of v, . . . , T k−1v.
Hence Tmv ∈ Hv, which completes the induction step and the proof that T `v ∈ Hv for
every ` ∈ N.

Note that this fact implies that T maps each of the basis vectors v, . . . , T k−1 for Hv

back into Hv. Hence Hv is T -invariant. Note further that if H is any subspace (let alone
an invariant one) containing T `(v) for every `, then in particular, H contains the basis
{v, . . . , T k−1v} for Hv. Therefore H contains Hv. That is, Hv is the smallest subspace of
V that contains T `v for all ` ∈ N.
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Now the matrix of T relative to B = {v, . . . , T k−1v} is

A = [[T (v)]B [T (Tv)]B . . . [T (T k−1v)]B] = [[Tv]B [T 2v]B . . . [T kv]B]

=


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2

. . .
...

0 0 . . . 1 −ck−1

 ,
where, in the last column, I have used the formula for T k(v) that precedes the statement of
the theorem.

Thus I evaluate the characteristic polynomial of T by cofactor expansion about the last
column in

det(λI−A) =

∣∣∣∣∣∣∣∣∣∣

λ 0 . . . 0 c0
−1 λ . . . 0 c1
0 −1 . . . 0 c2

. . .
...

0 0 . . . −1 λ+ ck−1

∣∣∣∣∣∣∣∣∣∣
= (−1)2k(λ+ck−1) detAkk+

k−1∑
j=1

(−1)j+k(cj−1) detAjk.

Here Ajk is the jk-minor of λI − A. It has block diagonal form

Ajk =

[
Bj 0
0 Cj

]
,

where the (j − 1)× (j − 1) matrix Bj and the (k − j)× (k − j) matrix Cj are given by

Bj =


λ 0 . . . 0 0
−1 λ . . . 0 0
0 −1 . . . 0 0

. . .
...

0 0 . . . −1 λ

 , Cj =


−1 λ 0 . . . 0
0 −1 λ . . . 0

. . .
...

0 0 0 . . . λ
0 0 0 . . . −1

 ,
Thus detAjk = (detBj)(detCj) = (λ)j−1(−1)k−j. Plugging back into the cofactor formula,
we find that the characteristic polynomial of T is

(−1)2k(λ+ ck−1)λ
k−1 +

k−1∑
j=1

(−1)2kcj−1λ
j−1 = λk + ck−1λ

k−1 + ck−2λ
k−2 + · · ·+ c0

as asserted. �


