
The Gram-Schmidt Algorithm.

Suppose that V is an inner product space and that H is a finite dimensional non-trivial
subspace. Note that if H has an orthogonal basis B = {v1, . . . ,vk}, then we may compute
the coordinates of any v ∈ H relative to H as follows: writing v = c1v1 + · · · + ckvk, we
take the inner product of both sides with vj and discover that 〈v,vj〉 = cj 〈vj ,vj〉. Hence

the jth coordinate of [vj ]B is cj = 〈v,vj〉 / ‖vj‖
2. Thus

v = ProjH(v) :=

k∑

j=1

〈v,vj〉

‖vj‖
2
vj

for all v ∈ H . Now if v ∈ V is a vector outside H , the righthand expression still defines
a vector ProjH(v) ∈ H , but this cannot possibly equal v. Instead ProjH : V → H is a
linear (why? Think about it.) transformation known as the ‘orthogonal projection’ of V
onto H . As the word ‘the’ implies, the transformation turns out the same no matter which
orthogonal basis we use to define it.

Proposition 0.1. Let ProjH : V → H be as above. Given v ∈ V , let vH = ProjH(v) and

v⊥ = v − vH . Then vH and v⊥ are the unique vectors satisfying vH ∈ H, v⊥ ∈ H⊥ and

v = vH + v⊥. Moreover, vH is the unique vector in H minimizing the distance ‖v − vH‖.

Proof. By linearity and the definition of ProjH , we have

〈v⊥,vj〉 = 〈v,vj〉 −

K∑

ℓ=1

〈v,vℓ〉 〈vℓ,vj〉

‖vℓ‖
2

= 〈v,vj〉 −
〈v,vj〉 〈vj ,vj〉

‖vj‖
2

= 0.

So v⊥ is orthogonal to each vector vj ∈ B, and it follows that v⊥ ∈ H⊥. Clearly v = vH+v⊥.
If wH ∈ H and w̃⊥ ∈ H⊥ also satisfy v = wH + v⊥, then wH +w⊥ = vH + v⊥ implies that
wH − vH = v⊥ −w⊥ ∈ H ∩H⊥. On the other hand, non-degeneracy of the inner product
says that 0 is the only vector orthogonal to itself. I conclude that wH −vH = v⊥−w⊥ = 0.
That is, vH and v⊥ give the unique decomposition of v into vectors in and orthogonal to H .

For the final assertion, I let w ∈ H be any vector and estimate

‖v −w‖2 = ‖v⊥ − (w − vH)‖
2 = 〈v⊥ − (w− vH),v⊥ − (w − vH)〉 .

But w− vH ∈ H is orthogonal to v⊥, so when I expand the last expression, two of the four
terms vanish leaving me with.

‖v −w‖2 = 〈v⊥,v⊥〉+ 〈w − vH ,w− vH〉 = ‖v⊥‖
2 + ‖w − vH‖

2 ≥ ‖v⊥‖
2 ,

with equality only if w = vH . �

Of course, the definition of orthogonal projection required that H have at least one or-
thogonal basis. Our final result guarantees us that this will always be the case when H is
finite dimensional.

Theorem 0.2. Let H be a non-trivial finite dimensional subspace of an inner product space

V . Then H has an orthogonal basis.

Note that the proof doesn’t just show that an orthogonal basis exists; it actually gives a
recursive method for constructing it. This is known as the ‘Gram-Schmidt algorithm.’
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Proof. I work by induction on dimH . In the case dimH = 1, any basis {v1} for H consists
of a single non-zero vector and is therefore also an orthogonal set.

Supposing the theorem is true when dimH ≤ k, I consider the case dimH = k + 1.
Let B = {v1, . . . ,vk+1} be a basis for H and let W = span{v1, . . . ,vk} be the smaller
subspace generated by the first k basis vectors. Then by my inductive hypothesis, there is an
orthogonal basis {w1, . . . ,wk} forW . By the Proposition, I have vk+1 = ProjW (vk+1)+wk+1

where wk+1 ∈ W⊥ ∩H .
I claim wk+1 6= 0. If not, then vk+1 = ProjW (vk+1) ∈ W must be a linear combination of

v1, . . . ,vk, which contradicts independence of B. On the other hand, since w1, . . . ,wk ∈ W
and wk+1 ∈ W⊥, I have 〈wk+1,wj〉 = 0 for all j ≤ k. Hence C := {w1, . . . ,wk+1} is
an orthogonal set of non-zero vectors and therefore independent. Since all wj ∈ H and
dimH = k + 1, it follows that C is an orthogonal basis for H . This completes the inductive
step and the proof. �


