The Gram-Schmidt Algorithm.

Suppose that V is an inner product space and that H is a finite dimensional non-trivial subspace. Note that if H has an orthogonal basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$, then we may compute the coordinates of any $\mathbf{v} \in H$ relative to H as follows: writing $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}$, we take the inner product of both sides with \mathbf{v}_{j} and discover that $\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle=c_{j}\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle$. Hence the j th coordinate of $\left[\mathbf{v}_{j}\right]_{\mathcal{B}}$ is $c_{j}=\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle /\left\|\mathbf{v}_{j}\right\|^{2}$. Thus

$$
\mathbf{v}=\operatorname{Proj}_{H}(\mathbf{v}):=\sum_{j=1}^{k} \frac{\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle}{\left\|\mathbf{v}_{j}\right\|^{2}} \mathbf{v}_{j}
$$

for all $\mathbf{v} \in H$. Now if $\mathbf{v} \in V$ is a vector outside H, the righthand expression still defines a vector $\operatorname{Proj}_{H}(\mathbf{v}) \in H$, but this cannot possibly equal \mathbf{v}. Instead $\operatorname{Proj}_{H}: V \rightarrow H$ is a linear (why? Think about it.) transformation known as the 'orthogonal projection' of V onto H. As the word 'the' implies, the transformation turns out the same no matter which orthogonal basis we use to define it.

Proposition 0.1. Let $\operatorname{Proj}_{H}: V \rightarrow H$ be as above. Given $\mathbf{v} \in V$, let $\mathbf{v}_{H}=\operatorname{Proj}_{H}(\mathbf{v})$ and $\mathbf{v}_{\perp}=\mathbf{v}-\mathbf{v}_{H}$. Then \mathbf{v}_{H} and \mathbf{v}_{\perp} are the unique vectors satisfying $\mathbf{v}_{H} \in H, \mathbf{v}_{\perp} \in H^{\perp}$ and $\mathbf{v}=\mathbf{v}_{H}+\mathbf{v}_{\perp}$. Moreover, \mathbf{v}_{H} is the unique vector in H minimizing the distance $\left\|\mathbf{v}-\mathbf{v}_{H}\right\|$.
Proof. By linearity and the definition of Proj_{H}, we have

$$
\left\langle\mathbf{v}_{\perp}, \mathbf{v}_{j}\right\rangle=\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle-\sum_{\ell=1}^{K} \frac{\left\langle\mathbf{v}, \mathbf{v}_{\ell}\right\rangle\left\langle\mathbf{v}_{\ell}, \mathbf{v}_{j}\right\rangle}{\left\|\mathbf{v}_{\ell}\right\|^{2}}=\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle-\frac{\left\langle\mathbf{v}, \mathbf{v}_{j}\right\rangle\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle}{\left\|\mathbf{v}_{j}\right\|^{2}}=0
$$

So \mathbf{v}_{\perp} is orthogonal to each vector $\mathbf{v}_{j} \in \mathcal{B}$, and it follows that $\mathbf{v}_{\perp} \in H^{\perp}$. Clearly $\mathbf{v}=\mathbf{v}_{H}+\mathbf{v}_{\perp}$. If $\mathbf{w}_{H} \in H$ and $\tilde{\mathbf{w}}_{\perp} \in H^{\perp}$ also satisfy $\mathbf{v}=\mathbf{w}_{H}+\mathbf{v}_{\perp}$, then $\mathbf{w}_{H}+\mathbf{w}_{\perp}=\mathbf{v}_{H}+\mathbf{v}_{\perp}$ implies that $\mathbf{w}_{H}-\mathbf{v}_{H}=\mathbf{v}_{\perp}-\mathbf{w}_{\perp} \in H \cap H^{\perp}$. On the other hand, non-degeneracy of the inner product says that $\mathbf{0}$ is the only vector orthogonal to itself. I conclude that $\mathbf{w}_{H}-\mathbf{v}_{H}=\mathbf{v}_{\perp}-\mathbf{w}_{\perp}=\mathbf{0}$. That is, \mathbf{v}_{H} and \mathbf{v}_{\perp} give the unique decomposition of \mathbf{v} into vectors in and orthogonal to H.

For the final assertion, I let $\mathbf{w} \in H$ be any vector and estimate

$$
\|\mathbf{v}-\mathbf{w}\|^{2}=\left\|\mathbf{v}_{\perp}-\left(\mathbf{w}-\mathbf{v}_{H}\right)\right\|^{2}=\left\langle\mathbf{v}_{\perp}-\left(\mathbf{w}-\mathbf{v}_{H}\right), \mathbf{v}_{\perp}-\left(\mathbf{w}-\mathbf{v}_{H}\right)\right\rangle
$$

But $\mathbf{w}-\mathbf{v}_{H} \in H$ is orthogonal to \mathbf{v}_{\perp}, so when I expand the last expression, two of the four terms vanish leaving me with.

$$
\|\mathbf{v}-\mathbf{w}\|^{2}=\left\langle\mathbf{v}_{\perp}, \mathbf{v}_{\perp}\right\rangle+\left\langle\mathbf{w}-\mathbf{v}_{H}, \mathbf{w}-\mathbf{v}_{H}\right\rangle=\left\|\mathbf{v}_{\perp}\right\|^{2}+\left\|\mathbf{w}-\mathbf{v}_{H}\right\|^{2} \geq\left\|\mathbf{v}_{\perp}\right\|^{2},
$$

with equality only if $\mathbf{w}=\mathbf{v}_{H}$.
Of course, the definition of orthogonal projection required that H have at least one orthogonal basis. Our final result guarantees us that this will always be the case when H is finite dimensional.

Theorem 0.2. Let H be a non-trivial finite dimensional subspace of an inner product space V. Then H has an orthogonal basis.

Note that the proof doesn't just show that an orthogonal basis exists; it actually gives a recursive method for constructing it. This is known as the 'Gram-Schmidt algorithm.'

Proof. I work by induction on $\operatorname{dim} H$. In the case $\operatorname{dim} H=1$, any basis $\left\{\mathbf{v}_{1}\right\}$ for H consists of a single non-zero vector and is therefore also an orthogonal set.

Supposing the theorem is true when $\operatorname{dim} H \leq k$, I consider the case $\operatorname{dim} H=k+1$. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k+1}\right\}$ be a basis for H and let $W=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be the smaller subspace generated by the first k basis vectors. Then by my inductive hypothesis, there is an orthogonal basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ for W. By the Proposition, I have $\mathbf{v}_{k+1}=\operatorname{Proj}{ }_{W}\left(\mathbf{v}_{k+1}\right)+\mathbf{w}_{k+1}$ where $\mathbf{w}_{k+1} \in W^{\perp} \cap H$.
I claim $\mathbf{w}_{k+1} \neq \mathbf{0}$. If not, then $\mathbf{v}_{k+1}=\operatorname{Proj}_{W}\left(\mathbf{v}_{k+1}\right) \in W$ must be a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, which contradicts independence of \mathcal{B}. On the other hand, since $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k} \in W$ and $\mathbf{w}_{k+1} \in W^{\perp}$, I have $\left\langle\mathbf{w}_{k+1}, \mathbf{w}_{j}\right\rangle=0$ for all $j \leq k$. Hence $\mathcal{C}:=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k+1}\right\}$ is an orthogonal set of non-zero vectors and therefore independent. Since all $\mathbf{w}_{j} \in H$ and $\operatorname{dim} H=k+1$, it follows that \mathcal{C} is an orthogonal basis for H. This completes the inductive step and the proof.

