
1. Preliminaries: the contraction mapping theorem

When confronted with an equation that cannot be solved explicitly, one can often take
a reasonable guess at a solution and then improve this guess according to some algorithm
(e.g. Newton’s method) or other. That is, given an initial guess x0 at a solution, there is
a function T such that x1 = T (x0) is a better guess at a solution, and x2 = T (x1) is a still
better guess, etc. Repeating this proceedure one obtains an entire sequence (xj) of better
and better approximate solutions of the given equation, and if life is good one can show that
there is a limit x∞ = limxn that actually solves the given equation.

One of the most common features of ‘guess-improvement functions’ is that they tend to
shrink distances between points.

Definition 1.1. Let X ⊂ Rn be a closed set. A contraction mapping on X is a function T :
X → X with the following property: there exists a constant C < 1 such that ‖T (x)− T (y)‖ ≤
C ‖x− y‖ for all x, y ∈ X.

It should be pointed out that the definition implies rather directly that contraction map-
pings are continuous. That is, given x ∈ X and ε > 0, one can set δ = C−1ε and observe
that if ‖x− y‖ < δ, then

‖T (x)− T (y)‖ ≤ C ‖x− y‖ < Cδ < ε.

Hence limy→x T (y) = T (x), and T is continuous at x.
The condition that the source and target of a contraction mapping T be the same set

allows us to iterate, composing T with itself as often as we like. The most important fact
about contraction mappings concerns what happens when one does this.

Theorem 1.2 (Contraction Mapping Theorem). Suppose that T : X → X is a contraction
mapping. Then there is a unique xfix ∈ X such that T (xfix) = xfix. Moreover, if x0 ∈ X is
any point, and (xj) is the sequence with initial term x0 and other terms given inductively by
xj = T (xj−1) = T j(x0), then

limxj = xfix.

The point xfix is called a fixed point for T . So the theorem may be restated by saying that
each contraction mapping has a unique fixed point and that when we appy T repeatedly to
any other point x ∈ X, the images converges to xfix.

Proof. We prove the theorem for X ⊂ R (i.e. when the dimension n = 1) and leave the
case n > 1 as an exercise. Let x0 ∈ X be any point and xj = T j(x0) be as described in the
theorem. Note that we can think of xj as a partial sum for a telescoping series:

xj = x0 +

j−1∑
i=0

(xi+1 − xi).

Thus limxj = x0 +
∑∞

i=1(xi − xi−1) provided we can show that the infinite series converges.
Now since T is a contraction mapping, we have the following convenient upper bound for

the terms in the series:

|xi+1 − xi| = |T (xi)− T (xi−1| ≤ C|xi − xi−1| ≤ · · · ≤ Ci|x1 − x0|.
That is, since C < 1, the terms of our series are dominated by the terms of a convergent
geometric series. So by the comparison test for infinite series (see Apostol, volume 1), our
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series converges absolutely. In particular, the limit lim xj exists and we call it xfix. Since X
is closed, we have xfix ∈ X. That is, xfix belongs to the domain of T .

Since T is continuous, we further have that

T (xfix) = T (limxj) = limT (xj) = lim xj+1 = xfix.

That is, xfix is a fixed point of T .
Finally, if x ∈ X is some other fixed point of T , then we have

‖x− xfix‖ = ‖T (x)− T (xfix)‖ ≤ C ‖x− xfix‖ .
Since C < 1 and both sides are non-negative, both sides must be zero. That is, x = xfix, so
T has only one fixed point. �

In fact, the notion of a contraction mapping makes sense in much greater generality than
we have defined it above. Any time one has a notion of distance between points (a ‘metric’)
in a set X, one can define what it means for a mapping T : X → X to be a contraction. And
then the contraction mapping theorem holds as stated above with the additional hypothesis
that X is complete, a technical notion which we will not define here. In order to apply
the contraction mapping theorem to produce solutions to ODEs, we will state and prove
a version of the above the theorem to the situation where points in Rn are replaced by
continuous functions. Keep in mind, however, that both the versions of the contraction
mapping theorem given here are simply special cases of a single very general theorem.

For any sets A ⊂ Rn, B ⊂ Rm, we let C(A,B) denote the collection of all bounded,
continuous mappings f : A→ B. We can measure the ‘size’ of any such f according to

‖f‖ := sup
x∈A
‖f(x)‖ .

and then declare the distance between f, g ∈ C(A,B) to be ‖f − g‖. Observe that by
definition, ‖f − g‖ ≤ ε if and only if ‖f(x)− g(x)‖ ≤ ε for all x ∈ A. In particular,
‖f − g‖ = 0 if and only if f ≡ g are the same function. Finally, observe that if (fj) ⊂
C(A,B) is a sequence of functions, then fj → f ∈ C(A,B) uniformly on A if and only if
limj→∞ ‖fj − f‖ = 0.

Definition 1.3. A transformation T : C(A,B)→ C(A,B) is a contraction mapping if there
exists C > 0 such that ‖T (f)− T (g)‖ ≤ C ‖f − g‖ for all f, g ∈ C(A,B).

Theorem 1.4 (Contraction Mapping Theorem for continous mappings). Suppose that T :
C(A,B)→ C(A,B) is a contraction mapping. If B is closed, then there is a unique function
ffix ∈ C(A,B) such that T (ffix) = ffix. Moreover, if f0 ∈ C(A,B) is any function, then
the sequence of functions fj := T j(f) converges uniformly on A to ffix.

Proof. The proof is quite similar to the contraction mapping theorem for points. With
fj = T j(f) as in the statement of the theorem, we have

fj = f0 +

j−1∑
i=0

(fi+1 − fi).

Hence (fj) converges uniformly if and only if the infinite series f0 +
∑∞

i=0(fi+1 − fi) does.
The hypothesis that T is a contraction gives us as before that

‖fi+1 − fi‖ ≤ Ci ‖f1 − f0‖ .
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That is the terms of our series of functions are bounded above by the terms of a convergent
geometric series. So the Weierstrass M -test tells us that

∑
(fi+1 − fi) converges uniformly

and absolutely on A, and we conclude that

lim fj = ffix := f0 +
∞∑
i=0

(fi+1 − fi)

uniformly on A.
To see that T (ffix) = ffix, let ε be any positive number. Then there exists J ∈ N such

that j ≥ J implies ‖fj − ffix‖ < ε/2. Hence by the triangle inequality and fJ+1 = T (fJ),
we have

‖T (ffix)− ffix‖ = ‖T (ffix)− T (fJ) + fJ+1 − ffix‖
≤ ‖T (ffix)− T (fJ)‖ + ‖fJ+1 − ffix‖
≤ C ‖ffix − fJ‖ + ‖fJ+1 − ffix‖ < Cε/2 + ε/2 < ε.

As ε > 0 was arbitrary, we conclude ‖T (ffix)− ffix‖ = 0, i.e. T (ffix) = ffix. The argument
that ffix is the unique fixed point of T is the same as before. �

2. The existence and uniqueness theorem for first order ODEs

The fundamental fact about ordinary differential equations is that, under suitably nice
circumstances and subject to appropriate initial conditions, one gets unique solutions. Here
we will discuss this fact in the particular case of first order ODEs. The case of first order
systems of ODEs is quite similar and essentially contains all other possible cases.

Let us set up the problem before stating any results. We begin with an open set U ⊂ R2

and a function F : U → R. Given any point (t0, y0) ∈ U we seek solutions to the initial
value problem

(1) y′(t) = F (t, y(t)), y(t0) = y0.

The domain of the function y is not so important here, so we allow ourselves to consider any
differentiable function y : I → R defined on an open interval I containing t0. If such a y
satisfies (1), then we refer to y : I → R as a (local) solution of (1).

Theorem 2.1 (Existence and Uniqueness Theorem). Suppose that F = F (t, y) is continuous
on U and furthermore continuously differentiable with respect to the second variable y. Then
for any (t0, y0) ∈ U there is a solution y : I → R of the initial vale problem (1). This
solution is unique in the following sense: if ỹ : Ĩ → R is another solution, then ỹ(t) = y(t)
for all t ∈ I ∩ Ĩ.

The solution y will appear as the fixed point of a certain contraction mapping T . In order
to introduce T , we observe that if y : I → R solves (1), then y is differentiable and therefore
continous. By hypothesis, f is also continuous, so (1) says among other things that y′ is
equal to a composition of continous functions and therefore itself continuous. So for any
t ∈ I, we may apply the fundamental theorem of calculus to obtain

y(t)− y(t0) =

∫ t

t0

y′(s) ds =

∫ t

t0

f(s, y(s)) ds.
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That is y is a fixed point of the mapping T : C(I, [y0 −R, y0 +R])→ C(I,R) given by

(2) Ty(t) = y(t0) +

∫ t

t0

f(s, y(s)) ds.

Here we choose R > 0 so that I × [y0 − R, y0 + R] ⊂ U . Otherwise the integrand in the
definition of Ty(t) might fail to be defined. Note also that at this point, the source and
target of T are different, because it is not a priori clear that |Ty(t) − y0| ≤ R for all t.
Anyhow, by reversing the above computation, we find

Lemma 2.2. Let I be an open interval containing t0 and y : I → R be continuous. Then
y solves (1) if and only if Ty = y, where T : C(I, [y0 − R, y0 + R])→ C(I,R) is defined by
(2).

Proof. We have already seen that if y solves (1), then Ty = y. If, on the other hand,
y : I → J is any continuous function satisfying Ty = y, then we may employ the (other)
fundamental theorem of calculus to differentiate Ty(t), obtaining

y′(t) = (Ty)′(t) = f(t, y(t)).

Moreover, setting t = t0 in (2) gives y(t0) = Ty(t0) = y0 + 0. Hence y solves (1). �

For the remainder of the proof, we choose δ0, R > 0 so that I(δ0) × K ⊂ U , where
I(δ0) = (t0 − δ0, t0 + δ) and K = [y0 − R, y0 + R] . Note that for any δ < δ0, we have

I(δ)×K ⊂ U , too.

Lemma 2.3. There exists δ < δ0 such that Ty(t) ∈ K for all y ∈ C(I(δ), K) and t ∈ I(δ).
That is T maps C(I(δ), K) into itself.

Proof. The Extreme Value Theorem tells us that there exists A > 0 such that |f(t, y)| ≤ A

for all (t, y) in the compact set I(δ0) × K. Hence if δ < δ0, we have for any continous
y : I(δ)→ K and any t ∈ I(δ) that

|Ty(t)− y0|| =
∣∣∣∣∫ t

t0

f(s, y(s)) ds

∣∣∣∣ ≤ ∫ t

t0

|f(s, y(s))| ds ≤ A|t− t0| < Aδ.

So if we take δ < R/A, the conclusion of the lemma is satisfied. �

Lemma 2.4. There exists δ < δ0 such that T : C(I(δ), K) → C(I(δ), K) is a contraction
mapping.

Proof. Choose δ < δ0 so that the conclusion of the previous lemma holds. By hypothesis ∂f
∂y

is

continuous on U and therefore by the Extreme Value Theorem bounded on I(δ0)×K. That is,
there is a constant B such that ∂f

∂y
≤ B everywhere on the latter set. So if y, ỹ ∈ C(I(δ), K),

we can apply the mean value theorem to f (as a function of y only) to compute for any
t ∈ I(δ) that

Ty(t)− T ỹ(t) ≤
∫ t

t0

f(s, y(s))− f(s, ỹ(s)) ds ≤
∫ t

t0

∂f

∂y
(s, z(s)(y(s)− ỹ(s)) ds,

where z(s) lies between y(s) and ỹ(s). Thus we may estimate

|Ty(t)− T ỹ(t)| ≤
∫ t

t0

B|y(s)− ỹ(s)| ds ≤ Bδ ‖y − ỹ‖
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for all t ∈ I(δ). That is, ‖Ty − T ỹ‖ ≤ Bδ ‖y − ỹ‖. Choosing δ so that Bδ < 1, we obtain
that T is a contraction mapping on C(I(δ), K). �

Our final lemma is the main step in proving uniqueness of solutions to (1).

Lemma 2.5. Suppose that y1 : I(δ1)→ R, y2 : I(δ2)→ R both solve (1). Then there exists
δ > 0 such that y1(t) ≡ y2(t) for all t ∈ I(δ).

Proof. Since y1 and y2 both solve (1), both functions are differentiable and therefore con-
tinuous at t0. Thus there exists δ > 0 such that |t − t0| < δ implies that |yj(t) − y0| < R.
That is, yj ∈ C(I(δ), K). By Lemma 2.4 we may shrink δ if necessary and assume that
T : C(I(δ), K) → C(I(δ), K) is a contraction mapping. But Lemma 2.2 tells us that
T (y1) = y1 and T (y2) = y2. Since fixed points of contraction mappings are unique, we
conclude that y1 ≡ y2 on I(δ). �

Proof of Theorem 2.1. Choose 0 < δ < δ0 small enough that Lemmas 2.3 and 2.4 hold.
Then T : C(I(δ), K) is a contraction mapping, so Theorem 1.4 gives us y ∈ C(I(δ), K) such
that T (y) = y. By Lemma 2.2, this y solves (1), and we have proven the existence part of
Theorem 2.1.

For uniqueness, suppose that y : I → R and ỹ : Ĩ → R both solve (1). Let J ⊂ I ∩ Ĩ
denote the largest interval (open or closed) containing t0 on which y(t) = ỹ(t). Lemma 2.5
shows that J 6= ∅. Suppose, to get a contradiction, that J 6= I ∩ Ĩ. Then some endpoint t1 of
J belongs to I ∩ Ĩ. By continuity y(t1) = ỹ(t1) so that t1 ∈ J . Thus y and ỹ both solve the
same initial value problem at t1. But by Lemma 2.5 again, this implies that y(t) = ỹ(t) for
all t in some small interval (t1−ε, t1+ε) about t1. Thus y(t) ≡ ỹ(t) on all of J∪(t1−ε, t1+ε),
contradicting the fact that J is the largest open interval about t0 on which the two solutions
agree. Thus J = I ∩ Ĩ, and the proof of uniqueness is complete. �

Observe that the uniqueness part of Theorem 2.1 ensures us that there is a solution
y : I → R for which the interval I is as large as possible. To see that this is so, let

I =
⋃
{J ⊂ R : J is an open interval about t0 on which (1) admits a solution}

be the union of all solution intervals. Then certainly, I is an open interval about t0, and we
can define our ‘maximal’ solution y : I → R at any point t ∈ I by setting y(t) = ỹ(t) where
ỹ : J → R is a solution whose domain J contains t. Since any two solutions solutions agree
on the intersection of their domains, it will not matter which solution ỹ we use to define
y(t). We will have moreover that y ≡ ỹ on all of J , so that in particular y′ = F (t, y) holds
at t. That is, y satisfies (1) on all of I. We call y a global solution of the (1) and note that
in this paragraph we have just established a stronger version of Theorem 2.1

Theorem 2.6 (Existence and uniqueness of global solutions). Under the hypotheses of The-
orem 2.1, there exists a global solution y : I → R of (1) that is unique in the sense that if
ỹ : J → R is any solution of (1), then J ⊂ I and y ≡ ỹ on J .

An important feature of global solutions is that they persist until their graphs ‘exit’ the
domain of existence U for the righthand side F (t, y) of (1). More precisely, we have

Theorem 2.7. Let y : I → R be the global solutio of (1). If K ⊂ U is any compact (i.e.
closed and bounded) set, then there is a closed interval IK ⊂ I such that (t, y(t)) /∈ K for
any t /∈ IK.
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The conclusion of this theorem is often summarized by saying that the graph of y : I → R
is a curve that is ‘properly embedded’ in U . The proof of Theorem 2.7 depends on one aspect
of another fundamental theorem concerning solutions to ODEs.

Theorem 2.8 (Stability Theorem). Under the hypotheses of Theorem 2.1, we have that
solutions to (1) depend continuously on the initial condition (t0, y0). Specifically, if K ⊂ U
is a compact subset, then there exists ε > 0 such that for every (t0, y0) ∈ K, the global
solution y = yt0,y0 : I → R of (1) has domain I = It0,y0 containing (t0− ε, t0 + ε). Moreover,
if ϕ : K × (−ε, ε)→ R is defined by setting ϕ(t0, y0, t) = yt0,y0(t+ t0), then ϕ is continuous.

This theorem follows from a slightly more careful version of the proof of existence used for
Theorem 2.1. We omit the details here. For purposes of proving Theorem 2.7, the important
part of the stability theorem is that it gives a positive lower bound ε on the lifespan of any
solution that begins in K.
Proof of Theorem 2.7. Suppose that the theorem is false for some compact set K ⊂ U .
Let I = (a, b). Let ε > 0 be the constant associated to K in the Stability Theorem. Then
taking the closed interval J = [a+ ε, b− ε] ⊂ I, we may choose a point t1 ∈ I − J such that
(t1, y1) ∈ K, where y1 := y(t1). Thus y is a solution of y′ = f(t, y) subject to the initial
condition y(t1) = y1. The stability theorem guarantees us that there is another solution
ỹ : (t1 − ε, t1 + ε)→ R of the same initial value problem. By uniqueness, we therefore have
ỹ ≡ y on I ∩ (t0 − ε, t0 + ε). By setting,

ŷ(t) =

{
y(t) if t ∈ I

ỹ(t) if |t− t1| < ε,

we obtain that ŷ is a solves (1) on I ∪ (t1 − ε, t1 + ε). Since this last interval is bigger than
I, we have contradicted the fact that I is the domain of existence for the global solution of
(1). So the theorem holds. �

3. Asymptotic Behavior of Solutions to Autonomous 1st Order Equations

In this section we consider solutions of the initial value problem

(3) y′ = f(y), y(t0) = y0

where f : R→ R is a C1 function. Differential equations like the one here, in which the right
side does not depend explicitly on t, are called autonomous. Such ODEs are both common
in applications and important in theory1

The ODE in (3) is separable and therefore in principle solvable by integration. In practice,
however, the integration can be unmanageable and will only give an implicit and fairly
unenlightening formula for the solution. Here way take a more qualitative approach to
analyzing the problem, and in particular, understanding what happens to the global solution
as t tends toward the ends of the domain. This is, in pedestrian terms, somewhat akin to
plugging information about today’s weather into the equations of fluid mechanics to try and
infer whether one ought to plan picnics in the year 10,000. In this light, it is somewhat
remarkable that we will be able to say anything sensible at all.

If f(y0) = 0 then we call y0 an equilibrium point of the ODE. In this case, one checks
easily that y : R → R given by y(t) ≡ y0 is the global solution of (3). In particular, the

1In somewhat the same way we reduced solving higher order ODEs to solving first order systems, one can
always reduce a non-autonomous ODE to a first order autonomous system.
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domain of the global solution is all of R, and we have limt→∞ y(t) = y0. If f(y0) 6= 0, then
things are certainly more complicated. Nevertheless, we have

Theorem 3.1. Suppose that f(y0) > 0 and that y : I → R is the global solution of (1).
Then y is strictly increasing on all of I.

• If there is an equilibrium point of y′ = f(y) that is larger than y0, then the domain I
of y includes all t > t0, and we have that

lim
t→∞

y(t) = L

where L is the smallest equilibrium point of y′ = f(y) larger than y0.
• Otherwise limt→b y(t) =∞, where b ≤ ∞ is the right endpoint of I.

We leave it to the reader to puzzle out the statement of this theorem in the case f(y0) < 0
and to draw the appropriate conclusions about the asymptotic behavior of the global solution
y : I → R as t decreases toward the left endpoint of the domain I. In essence, Theorem
3.1 is telling us that solutions to first order autonomous ODEs will either drift off to infinity
or settle down and become asymptotically constant. If the reader finds this unsurprising,
then he or she should try to imagine what the analogous assertion should be for solutions
of autonomous systems of 2 or 3 ODEs (Hint: don’t even try when there are 3 or more
equations involved.)

Proof. To justify the first assertion, it is sufficient to show that y′(t) > 0 for all t ∈ I.
Suppose to the contrary that y′(t) ≤ 0 for some t ∈ I. Then there exists t1 between t
and t0 such that y′(t1) = f(y(t1)) = 0. Thus y(t1) is an equilibrium point of the ODE.
Since the graph of y passes through (t1, y(t1)), it follows by uniqueness of solutions to initial
value problems that y(t) ≡ y(t1) on I. However, y(t0) 6= y(t1) since f(y(t0)) > 0, whereas
f(y(t1)) < 0. This contradiction proves that y′ is positive on all of I.

Since y is increasing it follows that if b is the left endpoint of I, then limt→b y(t) ≤ ∞
exists and is equal to supt∈I y(t). If y0 < y1 for some equilibrium point y1, then we set

L = inf{y > y0 : f(y) = 0}.
By continuity, we must have f(L) = 0, and by definition f(y) > 0 for all y ∈ [y0, L).

We observe also that y(t) ∈ (y0, L) for all t > t0. That is, y(t) > y(t0) since y is strictly
increasing, and if y(t) ≥ L for some t, then y(t1) = L for some t1, and we again contradict
uniqueness of solutions to initial value problems. Hence limt→b y(t) ≤ L.

To see that b = ∞, we invoke Theorem 2.7. Indeed, given any M > 0, the theorem
guarentees the existence of a closed interval [c, d] ⊂ (a, b) such that (t, y(t)) /∈ [−M,M ] ×
[y0, L]. Since y0 ≤ y(t) ≤ L for all t ≥ t0, we see that this can happen only if d ≥ M . In
particular b > M . Since M was arbitrary, we conclude b =∞.

Finally, we suppose to get one last contradiction that limt→∞ y(t) = z < L. Then f(z) > 0
and we can choose M > 0 large enough that |f(y(t)) − f(z)| < f(z)/2 for all t > M—in
particular, y′(t) = f(y(t)) > f(z)/2. Hence y(t) ≥ (t −M)f(z)/2 + y(M), from which we
obtain that limt→∞ y(t) =∞. This contradicts y(t) < L for all t ≥ t0, and we conclude that
in fact limt→∞ y(t) = L. �
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