Homework 10

(due Friday, Nov 22)

Problem 1. Solve the following ODEs and initial value problems left over from last week's homework.
(a) $y^{\prime \prime}+2 y^{\prime}+5 y=12 e^{-t}$
(b) $y^{\prime \prime}+y^{\prime}+4 y=\cos 3 t$ (note that this one has changed from last week).
(c) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{-2 t}, y(0)=0, y^{\prime}(0)=-1$
(d) $y^{\prime \prime}-2 y^{\prime}-3 y=3 e^{2 t}$.
(e) $y^{\prime \prime}+2 y^{\prime}=3+4 \sin 2 t$.

Problem 2. (Another remnant of last week) Find the correct form for a particular solution y_{p} of $y^{\prime \prime}+y=t(1+\sin t)$. That is, you don't need to actually determine the constants that appear in your solution.

Problem 3. Use Newton's method with initial guess $p_{0}=(1,-1)$ to approximate a solution of

$$
\begin{aligned}
y^{2} e^{x} & =3 \\
2 y e^{x}+10 y^{4} & =0
\end{aligned}
$$

to 6 decimal places.

Problem 4. Use Newton's method to find the unique point of intersection (to 6 decimal places) between the ellipses

$$
\begin{aligned}
& 3 x^{2}+y^{2}=7 \\
& x^{2}+4 y^{2}=8
\end{aligned}
$$

that lies in the first quadrant. Choose your initial guess by graphing the two ellipses by hand and then staring at the picture.

Problem 5. Note that the point $(1,2)$ satisfies the equation

$$
x^{4}-3 x y+y_{1}^{3}-3=0 .
$$

Use the idea behind Newton's method (replacing a function by its linearization) to find x (to six decimal places) so that $(x, 2.15)$ that satisfies the same equation.

Problem 6. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function and $a \in \mathbf{R}$ be a fixed point of f; i.e. $f(a)=a$. Suppose that f is differentiable at a and in fact $\left|f^{\prime}(a)\right|<1$. Show that there exists $\epsilon>0$ such that if $|x-a|<\epsilon$ then the sequence $x, f(x), f^{2}(x), \ldots$ converges to a.

Problem 7. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function and a is a root of f; i.e. $f(a)=0$. Let $N(x)=x-f(x) / f^{\prime}(x)$ be the 'Newton improvement function'. Show that if f is twice differentiable at a, then there exists $\epsilon>0$ such that if $|x-a|<\epsilon$, then the sequence $x, N(x), N^{2}(x), \ldots$ converges to a. (Hint: what is $N^{\prime}(a)$?)

Problem 8. Consider the equation $\cos x=x$ (where the 'angle' x is as usual in calculus, given in radians).
(a) Show that the equation has a unique solution $x \in \mathbf{R}$.
(b) Show that \cos is a contraction mapping on $[0,1]$. Hence the sequence $0, \cos 0, \cos (\cos 0), \ldots$ converges to the solution of $\cos x=x$.
(c) How does the equation change if one uses degrees as units? Explain why the same conclusions hold in parts (a) and (b), only better.
(d) (Extra credit) Can you find a system of units for the angle x where the first conclusion holds but the second fails?

