Homework 10

(due Friday, Nov 22)

Problem 1. Solve the following ODEs and initial value problems left over from last week's homework.

(a) $y'' + 2y' + 5y = 12e^{-t}$ (b) $y'' + y' + 4y = \cos 3t$ (note that this one has changed from last week). (c) $y'' - 4y' - 5y = 4e^{-2t}$, y(0) = 0, y'(0) = -1(d) $y'' - 2y' - 3y = 3e^{2t}$. (e) $y'' + 2y' = 3 + 4\sin 2t$.

Problem 2. (Another remnant of last week) Find the correct *form* for a particular solution y_p of $y'' + y = t(1 + \sin t)$. That is, you don't need to actually determine the constants that appear in your solution.

Problem 3. Use Newton's method with initial guess $p_0 = (1, -1)$ to approximate a solution of

$$y^2 e^x = 3$$

$$2y e^x + 10y^4 = 0.$$

to 6 decimal places.

Problem 4. Use Newton's method to find the unique point of intersection (to 6 decimal places) between the ellipses

$$3x^2 + y^2 = 7$$
$$x^2 + 4y^2 = 8$$

that lies in the first quadrant. Choose your initial guess by graphing the two ellipses by hand and then staring at the picture.

Problem 5. Note that the point (1, 2) satisfies the equation

$$x^4 - 3xy + y^3 - 3 = 0.$$

Use the idea behind Newton's method (replacing a function by its linearization) to find x (to six decimal places) so that (x, 2.15) that satisfies the same equation.

Problem 6. Let $f : \mathbf{R} \to \mathbf{R}$ be a function and $a \in \mathbf{R}$ be a fixed point of f; i.e. f(a) = a. Suppose that f is differentiable at a and in fact |f'(a)| < 1. Show that there exists $\epsilon > 0$ such that if $|x - a| < \epsilon$ then the sequence $x, f(x), f^2(x), \ldots$ converges to a.

Problem 7. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is a function and a is a root of f; i.e. f(a) = 0. Let N(x) = x - f(x)/f'(x) be the 'Newton improvement function'. Show that if f is twice differentiable at a, then there exists $\epsilon > 0$ such that if $|x - a| < \epsilon$, then the sequence $x, N(x), N^2(x), \ldots$ converges to a. (Hint: what is N'(a)?)

Problem 8. Consider the equation $\cos x = x$ (where the 'angle' x is as usual in calculus, given in radians).

- (a) Show that the equation has a unique solution $x \in \mathbf{R}$.
- (b) Show that $\cos is a \text{ contraction mapping on } [0, 1]$. Hence the sequence $0, \cos 0, \cos(\cos 0), \ldots$ converges to the solution of $\cos x = x$.
- (c) How does the equation change if one uses degrees as units? Explain why the same conclusions hold in parts (a) and (b), only better.
- (d) (Extra credit) Can you find a system of units for the angle x where the first conclusion holds but the second fails?