
Homework 11
(due Friday 12/6)

PLEASE NOTE: Problems 6 and 7 are new as of Monday 12/2.

Problem 1. Hubbard and Hubbard: 2.10.1, 2.10.5, 2.10.8

Problem 2. In coming to grips with a theorem about functions f : Rn → Rm, it’s almost
always a good idea to consider the special case m = n = 1.

(a) What does the inverse theorem say for functions f : R→ R?
(b) Why is the proof of the inverse function theorem much less complicated in this case?
(c) Give an example of an invertible C1 function f : R→ R whose inverse is not C1.

Problem 3. The function f : C → C given by f(z) = ez can be regarded as a function
f : R2 → R2—i.e. f(x, y) = (f1(x, y), f2(x, y)) where x and y are the real and imaginary
parts of f and f1 and f2 are the real and imaginary parts of f .

(a) Write down formulas for f1 and f2.
(b) Compute the Jacobian matrix Jf(x, y), and show it is invertible at every (x, y) ∈ R2.

Hence by the inverse function theorem, f is ‘locally invertible’ with C1 inverse near
any (x, y) ∈ R2.

(c) Show that nevertheless, f is not globally invertible: i.e. there is no function g : C→ C
satisfying g ◦ f(x, y) = (x, y) and f ◦ g(s, t) = (s, t) for all (x, y), (s, t) ∈ R2.

(d) Consider instead the function f : C → C given by f(z) = z2. Again, rewrite f in
real terms as a function from R2 and use this to determine all points in C at which
f is locally invertible with C1 inverse.

Problem 4. Consider the curve (x2 + y2)2 = x2 − y2 from Problem 2-6 in Jones notes.
Use the implicit function theorem to determine all points on the curve can where one (in
principle) can express y locally as a C1 function of x? Near which points can one express x
locally as a C1 function of y? Near which points can we do neither? How do your answers
accord with what you see when you look at a plot of the curve?

Problem 5. Consider the function f : R3 → R given by f(x, y, z) = x2 + y2 + z2 + xyz.

(a) Use the implicit function theorem to determine the values of c ∈ R for which the level
set {f(x, y, z) = c} is a hypersurface. The remaining values of c are called critical
values of f .

(b) Use Mathematica (check out the command ‘ContourPlot3D’) or whatever to plot the
level surfaces of f for critical values of c and also for values of c that are a little above
and below the critical values. In fact, I’d encourage you to plot some level surfaces
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of f before you complete the first part of this problem, and try to spot the critical
values visually.

(c) Summarize what you see in a coherent narrative about how the level surfaces of f
change as c goes from −∞ to∞. Subplots involving love, betrayal and/or absolutely
adorable pets are welcome.

Problem 6. Jones notes: 5-7 (explain why one should expect to get the same answer for
both functions), 5-17, 5-27 (there are a lot of critical points for this last one)

Problem 7. There are a lot of cool uses of the Lagrange multiplier method, but this has
got to be one of the best. Let a, b, c, d > 0 be given numbers. Your goal is to find a plane
quadrilateral Q ⊂ R2

• whose sides have (in order) exactly lengths a, b, c, d, and
• whose area is maximal.

Proceed as follows, drawing and labeling a picture of your quadrilateral Q in order to help
make sense of things.

(a) What further necessary conditions must a, b, c, d satisfy so that this problem has a
solution?

(b) Let α be the angle between the sides of length a and d and β be the angle between
the sides of length b and c.

(c) Find a constraint equation f(α, β) = 0 that must be satisfied by α and β.
(d) Explain why we must have 0 ≤ α, β ≤ π.
(e) Express the area A(α, β) of Q in terms of α and β.
(f) Use the method of Lagrange multipliers to find a (very simple) condition satisfied

by α and β when the area A is maximal. Be careful here to account for any critical
points of f .

(g) Dust off a theorem from Euclidean geometry to interpret this condition geometrically.
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