Homework 11

(due Friday 12/6)

PLEASE NOTE: Problems 6 and 7 are new as of Monday 12/2.

Problem 1. Hubbard and Hubbard: 2.10.1, 2.10.5, 2.10.8

Problem 2. In coming to grips with a theorem about functions $f : \mathbf{R}^n \to \mathbf{R}^m$, it's almost always a good idea to consider the special case m = n = 1.

- (a) What does the inverse theorem say for functions $f : \mathbf{R} \to \mathbf{R}$?
- (b) Why is the proof of the inverse function theorem *much* less complicated in this case?
- (c) Give an example of an invertible C^1 function $f : \mathbf{R} \to \mathbf{R}$ whose inverse is not C^1 .

Problem 3. The function $f : \mathbf{C} \to \mathbf{C}$ given by $f(z) = e^z$ can be regarded as a function $f : \mathbf{R}^2 \to \mathbf{R}^2$ —i.e. $f(x, y) = (f_1(x, y), f_2(x, y))$ where x and y are the real and imaginary parts of f and f_1 and f_2 are the real and imaginary parts of f.

- (a) Write down formulas for f_1 and f_2 .
- (b) Compute the Jacobian matrix Jf(x, y), and show it is invertible at every $(x, y) \in \mathbf{R}^2$. Hence by the inverse function theorem, f is 'locally invertible' with C^1 inverse near any $(x, y) \in \mathbf{R}^2$.
- (c) Show that nevertheless, f is not globally invertible: i.e. there is no function $g : \mathbf{C} \to \mathbf{C}$ satisfying $g \circ f(x, y) = (x, y)$ and $f \circ g(s, t) = (s, t)$ for all $(x, y), (s, t) \in \mathbf{R}^2$.
- (d) Consider instead the function $f : \mathbf{C} \to \mathbf{C}$ given by $f(z) = z^2$. Again, rewrite f in real terms as a function from \mathbf{R}^2 and use this to determine all points in \mathbf{C} at which f is locally invertible with C^1 inverse.

Problem 4. Consider the curve $(x^2 + y^2)^2 = x^2 - y^2$ from Problem 2-6 in Jones notes. Use the implicit function theorem to determine all points on the curve can where one (in principle) can express y locally as a C^1 function of x? Near which points can one express x locally as a C^1 function of y? Near which points can we do neither? How do your answers accord with what you see when you look at a plot of the curve?

Problem 5. Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y, z) = x^2 + y^2 + z^2 + xyz$.

- (a) Use the implicit function theorem to determine the values of $c \in \mathbf{R}$ for which the level set $\{f(x, y, z) = c\}$ is a hypersurface. The remaining values of c are called *critical values* of f.
- (b) Use Mathematica (check out the command 'ContourPlot3D') or whatever to plot the level surfaces of f for critical values of c and also for values of c that are a little above and below the critical values. In fact, I'd encourage you to plot some level surfaces

of f before you complete the first part of this problem, and try to spot the critical values visually.

(c) Summarize what you see in a coherent narrative about how the level surfaces of f change as c goes from $-\infty$ to ∞ . Subplots involving love, betrayal and/or absolutely adorable pets are welcome.

Problem 6. Jones notes: 5-7 (explain why one should expect to get the same answer for both functions), 5-17, 5-27 (there are a *lot* of critical points for this last one)

Problem 7. There are a lot of cool uses of the Lagrange multiplier method, but this has *got* to be one of the best. Let a, b, c, d > 0 be given numbers. Your goal is to find a plane quadrilateral $Q \subset \mathbf{R}^2$

- whose sides have (in order) exactly lengths a, b, c, d, and
- whose area is maximal.

Proceed as follows, drawing and labeling a picture of your quadrilateral Q in order to help make sense of things.

- (a) What further necessary conditions must a, b, c, d satisfy so that this problem has a solution?
- (b) Let α be the angle between the sides of length a and d and β be the angle between the sides of length b and c.
- (c) Find a constraint equation $f(\alpha, \beta) = 0$ that must be satisfied by α and β .
- (d) Explain why we must have $0 \le \alpha, \beta \le \pi$.
- (e) Express the area $A(\alpha, \beta)$ of Q in terms of α and β .
- (f) Use the method of Lagrange multipliers to find a (very simple) condition satisfied by α and β when the area A is maximal. Be careful here to account for any critical points of f.
- (g) Dust off a theorem from Euclidean geometry to interpret this condition geometrically.