Homework 11

(due Friday 12/6)

PLEASE NOTE: Problems 6 and 7 are new as of Monday $12 / 2$.
Problem 1. Hubbard and Hubbard: 2.10.1, 2.10.5, 2.10.8

Problem 2. In coming to grips with a theorem about functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, it's almost always a good idea to consider the special case $m=n=1$.
(a) What does the inverse theorem say for functions $f: \mathbf{R} \rightarrow \mathbf{R}$?
(b) Why is the proof of the inverse function theorem much less complicated in this case?
(c) Give an example of an invertible C^{1} function $f: \mathbf{R} \rightarrow \mathbf{R}$ whose inverse is not C^{1}.

Problem 3. The function $f: \mathbf{C} \rightarrow \mathbf{C}$ given by $f(z)=e^{z}$ can be regarded as a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$-i.e. $f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$ where x and y are the real and imaginary parts of f and f_{1} and f_{2} are the real and imaginary parts of f.
(a) Write down formulas for f_{1} and f_{2}.
(b) Compute the Jacobian matrix $J f(x, y)$, and show it is invertible at every $(x, y) \in \mathbf{R}^{2}$. Hence by the inverse function theorem, f is 'locally invertible' with C^{1} inverse near any $(x, y) \in \mathbf{R}^{2}$.
(c) Show that nevertheless, f is not globally invertible: i.e. there is no function $g: \mathbf{C} \rightarrow \mathbf{C}$ satisfying $g \circ f(x, y)=(x, y)$ and $f \circ g(s, t)=(s, t)$ for all $(x, y),(s, t) \in \mathbf{R}^{2}$.
(d) Consider instead the function $f: \mathbf{C} \rightarrow \mathbf{C}$ given by $f(z)=z^{2}$. Again, rewrite f in real terms as a function from \mathbf{R}^{2} and use this to determine all points in \mathbf{C} at which f is locally invertible with C^{1} inverse.

Problem 4. Consider the curve $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ from Problem 2-6 in Jones notes. Use the implicit function theorem to determine all points on the curve can where one (in principle) can express y locally as a C^{1} function of x ? Near which points can one express x locally as a C^{1} function of y ? Near which points can we do neither? How do your answers accord with what you see when you look at a plot of the curve?

Problem 5. Consider the function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$.
(a) Use the implicit function theorem to determine the values of $c \in \mathbf{R}$ for which the level set $\{f(x, y, z)=c\}$ is a hypersurface. The remaining values of c are called critical values of f.
(b) Use Mathematica (check out the command 'ContourPlot3D') or whatever to plot the level surfaces of f for critical values of c and also for values of c that are a little above and below the critical values. In fact, I'd encourage you to plot some level surfaces
of f before you complete the first part of this problem, and try to spot the critical values visually.
(c) Summarize what you see in a coherent narrative about how the level surfaces of f change as c goes from $-\infty$ to ∞. Subplots involving love, betrayal and/or absolutely adorable pets are welcome.

Problem 6. Jones notes: 5-7 (explain why one should expect to get the same answer for both functions), 5-17, 5-27 (there are a lot of critical points for this last one)

Problem 7. There are a lot of cool uses of the Lagrange multiplier method, but this has got to be one of the best. Let $a, b, c, d>0$ be given numbers. Your goal is to find a plane quadrilateral $Q \subset \mathbf{R}^{2}$

- whose sides have (in order) exactly lengths a, b, c, d, and
- whose area is maximal.

Proceed as follows, drawing and labeling a picture of your quadrilateral Q in order to help make sense of things.
(a) What further necessary conditions must a, b, c, d satisfy so that this problem has a solution?
(b) Let α be the angle between the sides of length a and d and β be the angle between the sides of length b and c.
(c) Find a constraint equation $f(\alpha, \beta)=0$ that must be satisfied by α and β.
(d) Explain why we must have $0 \leq \alpha, \beta \leq \pi$.
(e) Express the area $A(\alpha, \beta)$ of Q in terms of α and β.
(f) Use the method of Lagrange multipliers to find a (very simple) condition satisfied by α and β when the area A is maximal. Be careful here to account for any critical points of f.
(g) Dust off a theorem from Euclidean geometry to interpret this condition geometrically.

