Homework 2 (due Friday, September 13)

Warmup problem from Hubbard×2: 1.5.1 (not collected)

Problems from Hubbard×2: 1.5.3bc, 1.5.4ab (note that e.g. 1.5.4a can be rephrased more precisely as follows: Show that the interior $\stackrel{\circ}{A}$ of A is open and if $U \subset A$ is another open set, then $U \subset \stackrel{\circ}{A}$), 1.5.5

Problems from Jones: 1-31, 1-34, 1-38

Problem 1. Recall: let $\mathbf{v}, \mathbf{w} \in \mathbf{R}^n$ be vectors such that $\mathbf{w} \neq \mathbf{0}$. The orthogonal projection of \mathbf{v} onto \mathbf{w} is the vector $\mathbf{v}_{\parallel} := \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$. We showed in class that this is the unique multiple of \mathbf{w} such that $\mathbf{v}_{\perp} := \mathbf{v} - \mathbf{v}_{\parallel}$ is orthogonal to \mathbf{w} .

Now suppose that $x, y, z \in \mathbf{R}^n$ are points such that $x \neq y$. Show that the following two properties are equivalent for a fourth point $w \in \mathbf{R}^n$.

• w is the closest point to z on the line determined by x and y.

• $w = x + (z - x)_{\parallel}$ where $(z - x)_{\parallel}$ is the orthogonal projection of z - x onto y - x.

Finally, let $L \subset \mathbf{R}^3$ be the line determined by (1, 1, 2) and (0, -1, 3). Compute the (minimal) distance from (1, 0, 0) to L.

Problem 2. Show that distinct lines in \mathbb{R}^n intersect in at most one point. Use the definition of line from Jones (the one I gave in class).

Problem 3. Four of the following statements are false. Find them and give counterexamples. Note that in all cases, there are counterexamples in \mathbf{R} (i.e. you can take n = 1).

- (a) for all $X \subset \mathbf{R}^n$, one has $\overline{\overline{X}} = \overline{X}$.
- (b) if $X \subset \mathbf{R}^n$ is open, then $\overset{\circ}{\overline{X}} = X$.
- (c) if $X \subset \mathbf{R}^n$ is closed then X = X.
- (d) if $X \subset \mathbf{R}^n$ has empty interior, then X is closed.
- (e) the union of finitely many closed subsets of \mathbf{R}^n is closed.
- (f) An arbitrary union of closed sets is closed.
- (g) for all $X \subset \mathbf{R}^n$ one has $\partial X = \partial X^c$.