Homework 2

(due Friday, September 13)

Warmup problem from Hubbard $\times 2$: 1.5.1 (not collected)
Problems from Hubbard $\times 2$: 1.5.3bc, 1.5.4ab (note that e.g. 1.5.4a can be rephrased more precisely as follows: Show that the interior \AA of A is open and if $U \subset A$ is another open set, then $U \subset \stackrel{\circ}{A}$), 1.5.5
Problems from Jones: 1-31, 1-34, 1-38

Problem 1. Recall: let $\mathbf{v}, \mathbf{w} \in \mathbf{R}^{n}$ be vectors such that $\mathbf{w} \neq \mathbf{0}$. The orthogonal projection of \mathbf{v} onto \mathbf{w} is the vector $\mathbf{v}_{\|}:=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$. We showed in class that this is the unique multiple of \mathbf{w} such that $\mathbf{v}_{\perp}:=\mathbf{v}-\mathbf{v}_{\|}$is orthogonal to \mathbf{w}.

Now suppose that $x, y, z \in \mathbf{R}^{n}$ are points such that $x \neq y$. Show that the following two properties are equivalent for a fourth point $w \in \mathbf{R}^{n}$.

- w is the closest point to z on the line determined by x and y.
- $w=x+(z-x)_{\|}$where $(z-x)_{\|}$is the orthogonal projection of $z-x$ onto $y-x$.

Finally, let $L \subset \mathbf{R}^{3}$ be the line determined by $(1,1,2)$ and $(0,-1,3)$. Compute the (minimal) distance from $(1,0,0)$ to L.

Problem 2. Show that distinct lines in \mathbf{R}^{n} intersect in at most one point. Use the definition of line from Jones (the one I gave in class).

Problem 3. Four of the following statements are false. Find them and give counterexamples. Note that in all cases, there are counterexamples in \mathbf{R} (i.e. you can take $n=1$).
(a) for all $X \subset \mathbf{R}^{n}$, one has $\overline{\bar{X}}=\bar{X}$.
(b) if $X \subset \mathbf{R}^{n}$ is open, then $\stackrel{\circ}{\bar{X}}=X$.
(c) if $X \subset \mathbf{R}^{n}$ is closed then $\stackrel{\circ}{X}=X$.
(d) if $X \subset \mathbf{R}^{n}$ has empty interior, then X is closed.
(e) the union of finitely many closed subsets of \mathbf{R}^{n} is closed.
(f) An arbitrary union of closed sets is closed.
(g) for all $X \subset \mathbf{R}^{n}$ one has $\partial X=\partial X^{c}$.

