Homework 3

(due Friday, September 20)

Warmup problem from Hubbard $\times 2$: 1.5.15, 1.5.21
Problems from Hubbard $\times 2$: 1.5.4cd, 1.5.14.

Problem 1. Use the definition of convergenge to prove the following statements about sequences $\left(x_{j}\right),\left(y_{j}\right) \subset \mathbf{R}$ of real numbers.

- $\lim x_{j}+y_{j}=\lim x_{j}+\lim y_{j}($ provided both limits on the right exist);
- $\lim (-1)^{j}$ does not exist. I.e the sequence $\left((-1)^{j}\right)$ diverges.
- $\lim \frac{1}{x_{j}}=\frac{1}{\lim x_{j}}$ (provided $\lim x_{j}$ exists and is not zero.

For the first and third limits, the material in Apostol volume I on limits of functions might provide you with a helpful model.

Problem 2. Prove that a subset $X \subset \mathbf{R}^{n}$ is closed if and only if every convergent sequence $\left(x_{j}\right) \subset X$ satisfies $\lim x_{j} \in X$.

Problem 3. Prove that the function $f:[0, \infty) \rightarrow \mathbf{R}$ given by $f(x)=\sqrt{x}$ is continuous. Note that you probably have to handle continuity at 0 separately.

Problem 4. Prove that the function $\angle:\left(\mathbf{R}^{n}-\{\mathbf{0}\}\right) \times\left(\mathbf{R}^{n}-\{\mathbf{0}\}\right) \rightarrow \mathbf{R}$ that takes two non-zero vectors $\mathbf{w}, \mathbf{v} \in \mathbf{R}^{n}$ and returns the angle $\angle(\mathbf{v}, \mathbf{w})$ between them is continuous. You can assume that $\cos ^{-1}$ is continuous here.

Problem 5. Prove that a composition of two continuous functions is continuous (wherever it is defined).

