Homework 4

(due Friday, September 27)

Warmup problem from Hubbard $\times 2$: 1.2.1, 1.2.4, 1.2.7, 1.3.7, 1.7.1, 1.6.3, 1.7.8
Problems from Hubbard $\times 2$: 1.3.4, 1.3.11, 1.3.12a, 1.6.1, 1.6.2, 1.6.4, 1.6.10, 1.7.6, 1.7.11, 1.7.12 (the last problem will reappear next week)

Problem 1. Let $\mathbf{w} \in \mathbf{R}^{n}$ be a vector and $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the mapping that sends a vector $\mathbf{v} \in \mathbf{R}^{n}$ to its orthogonal projection $T(\mathbf{v})=\mathbf{v}_{\|}$onto \mathbf{w}.
(a) Show that T is linear.
(b) Suppose $\mathbf{w}=(1,2,3)$. Find the matrix for T.
(c) Use your answer to the second part to compute the orthogonal projection of $\mathbf{v}=$ $(1,-1,1)$ onto $(1,2,3)$.
(d) Let $S: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the transformation that sends \mathbf{v} to its reflection through the line joining $(1,2,3)$ to to the origin $\mathbf{0}$. Assuming S is linear, find the matrix for S.

Problem 2. Let $U \subset \mathbf{R}^{n}$ be open and $f: U \rightarrow \mathbf{R}^{m}$ be a continuous function. Show that for any open $W \subset \mathbf{R}^{m}$, the set

$$
f^{-1}(W):=\{x \in U: f(x) \in W\}
$$

is also open.

