Homework 5

(due Friday, October 6)

Problems from Hubbard $\times 2$: 1.7.12
Problems from Jones: 2-6 (You can use Mathematica to do your 'sketching'), 2-17, 2-22, $2-23,2-66,2-79,2-80,2-83,2-84,2-87$ (will reassign these last probs later)

Problem 1. Let $(a, b) \subset \mathbf{R}$ be an open interval and $f, g:(a, b) \rightarrow \mathbf{R}^{n}$ be differentiable curves. Note that $f \cdot g:(a, b) \rightarrow \mathbf{R}$ is an ordinary real-valued function of one real variable. Show that

$$
(f \cdot g)^{\prime}(t)=f^{\prime}(t) \cdot g(t)+f(t) \cdot g^{\prime}(t)
$$

This fact might be useful in problem 2-22 above...

Problem 2. Do problem 2-36 in Jones using the 'directional derivative' formula

$$
D f(x ; \mathbf{h})=\lim _{t \rightarrow 0} \frac{f(x+t \mathbf{h})-f(x)}{t}
$$

Problem 3. Do 2-39 in Jones. Note that Jones uses $D f(0 ; h)$ to mean the directional derivative of f at $(0,0)$ in the direction h (see the previous problem), so his notation does not imply that f is actually differentiable at $(0,0)$. In fact, as you're asked to show, this function isn't even continuous at $(0,0)$.

Problem 4. Consider the complex polynomial $f(z)=z^{n}$ as a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. Show that f is differentiable at any $z=x+i y$ and that $D f(z, h)=n z^{n-1} h$, where you should interpret the product on the right side as multiplication of complex numbers. In particular, you should show that $D f(z): \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear transformation.

