Homework 6

(due Friday, October 13)

Warmup problems from Hubbard \times 2: 1.2.2, 1.2.7, 1.3.12, 1.3.13
Problems from Hubbard $\times 2$: 1.3.20, 1.8.4
Problems from Jones: 2-7, 2-27, 2-36, 2-51, 2-55, 2-56, 2-60, 2-61, 2-83, 2-84
Problem 1. Recall from class the differentiable function $F(A)=A^{2}$, where A is an $n \times n$ matrix. In class, we derived the (unintentionally punny) formula $D F(A, H)=A H+H A$. Note that since $F(A)$ is also an $n \times n$ matrix, we can compose F with itself: $F(F(A))=A^{4}$, $F(F(F(A)))=A^{8}$ as many times as we like. Let F^{n} denote F composed with itself n times.
(a) Use the chain rule to write down a formula for $D F^{2}(A, H)$.
(b) Use induction and the chain rule to show that

$$
D F^{n}(I, H)=2^{n} H
$$

for all $n \in \mathbf{N}$.
The moral? Things are nicer near the identity matrix.

