
Review Sheet for Final Exam

Standard disclaimer: The following represents a sincere effort to help you prepare for our
exam. It is not guaranteed to be perfect. There might well be minor errors or (especially)
omissions. These will not, however, absolve you of the responsibility to be fully prepared for
the exam. If you suspect a problem with this review sheet, please bring it to my attention.

Time and place: the exam will take place Tuesday, December 17 from 4:15-6:15 in DBRT
117 (our MWF classroom). I’ll hold a review session on Monday, December 16 from 7-9 PM
in Hayes-Healy 125 (across from my office).

Format of the exam The format will be similar to that of the midterm, except that there
will be no problem to complete ahead of time. Content-wise, the exam will be comprehensive
with a strong tilt toward material covered since the midterm. New material includes the
following.

• Definitions and Statements Here is a brief glossary of definitions and statements
since the midterm that I will expect you to know.

– Definition Let F : X → X be a mapping on some subset X ⊂ Rn. Then F is
a contraction mapping if there exists C < 1 such that

‖f(x)− f(y)‖ ≤ C ‖x− y‖

for all x, y ∈ X.

– Contraction Mapping Theorem Given a contraction mapping F : X → X
on a closed subset X ⊂ Rn, there exists a unique point x0 ∈ X such that
F (x0) = x0. If, moreover, x ∈ X is any other point, then limn→∞ F

n(x) = x0.

– Existence and Uniqueness Theorem. Let U ⊂ R2 be open and F : U → R
be a continuous function such that ∂F

∂y
(t, y) exists and is continuous on U . Then

for any (t0, y0) ∈ U , there exists an open interval I ⊂ R about t0 and a unique
differentiable function y : I → R satisfying
∗ y(t0) = y0, and
∗ y′(t) = F (t, y(t)) for all t ∈ I.

– Inverse Function Theorem. Let U ⊂ Rn be open and F : U → Rn be a C1

mapping. Suppose that a ∈ U is a point such that the derivative map DF (a)
is invertible. Then there exists neighborhoods V of a and W of f(a) such that
f : V → W is invertible and the inverse function f−1 : W → V is C1.

– Implicit Function Theorem. Let U ⊂ Rn be open and f : U → R be a C1

function. Suppose that a ∈ U is a point at which the partial derivative Djf(a)
is non-zero. Then there exist neighborhoods V ⊂ Rn of a, V ′ ⊂ Rn−1 of a′j and

a C1 function g : V ′ → R such that for any x ∈ V we have f(x) = 0 if and only
if xj = g(x′j).

• Definition. Given a set X ⊂ Rn and a point a ∈ X, we say that X is a hypersurface
near a if there exists j ∈ {1, . . . , n}, neighborhoods U of a and U ′ of a′j, and a C1

function g : U ′ → Rn such that x ∈ X ∩ U if and only if xj = g(x′j).
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• ODE skills Finding solutions of 1st order linear and/or separable ODEs/initial
value problems. Determining stable and unstable equilibrium solutions for 1st or-
der autonomous ODEs. Determining asymptotic behavior of solutions to 1st order
autonomous ODEs.
• Other skills Using Newton’s method to approximate solutions of non-linear sys-

tems. Determining applicability of inverse/implicit function theorems. Determining
when/where a given level set is a hypersurface. Determining whether a given vector
is tangent/normal to a hypersurface at some point. Finding the intrinsic gradient of a
smooth function restricted to a hypersurface. Finding the intrinsic critical points and
determining maximum/minimum values of a smooth function along a hypersurface
(method of Lagrange multipliers).

1. Hindsight: linear approximation

Broadly speaking, this course has been about differentiation and it’s applications in the
context of multivariable functions and mappings. The main idea behind differentiation is
that a mathematical object can often be understood better if, on a small scale, it resem-
bles something linear. We pursued this idea analytically (i.e. for functions/mappings),
algebraically (for systems of equations), and finally geometrically (for subsets of Rn).

1.1. The analytic point of view. A mapping f : U ⊂ Rn → Rm is differentiable at a point
a ∈ U if for x near a, the difference f(x)− f(a) is well-approximated by a linear function of
x− a. More precisely, f(x) = f(a) + Jf(a)(x− a) + E(x− a) where Jf(a) is the Jacobian
matrix of f at a and E(h) is ‘small enough’ in the sense that limh→0 ‖E(h)‖ / ‖h‖ = 0.

1.2. The algebraic point of view. One cannot usually solve a random system of m equa-
tions in n real variables. However, one can often approximate solutions to the system if,
on a small scale, the given system closely resembles some solveable linear system of equa-
tions. More precisely, one writes the given system in the form F (x) = b, for some mapping
F : U ⊂ Rn → Rm. Then if we have a solution f(x0) = b0 for some b0 close to b,
and if F is differentiable at b0, the given system is well-approximated by the linear system
JF (x0)(x− x0) = b− b0. If all goes well, then the solution x = x1 of this linear system will
be quite close to a solution of the given non-linear system. And the really great thing is that
one can then repeat this process, substituting x1 for x0 and F (x1) for b0 = F (x0) to further
improve the approximate solution. This algorithm is known as Newton’s method.

There are (at least) two important theoretical consequences of these ideas. The inverse
function theorem concerns systems with the same number of equations as unknowns and
deals with the prospect of solving the same system f(x) = b for various values of b. The
implicit function theorem concerns systems f(x) = b with more equations than unknowns
and deals, but rather than trying to solve the system for different values of b, one fixes b and
tries to ‘parametrize’ the set of solutions x by solving for some coordinates of x in terms of
others. In class, we only stated and discussed the implicit function for one equation of many
variables, and in this case one seeks to solve f(x) = b for one variable in terms of the others.



1.3. The geometric point of view. A subset X ⊂ Rn is a manifold of dimension k if,
when we look at X under a microscope near any point a ∈ X, then X − a (i.e. X shifted by
−a so that the point of interest becomes the origin in Rn) is nearly indistinguishable from a
k-dimensional linear subspace (which we call TaX) of Rn. We only pursued this idea in two
special cases: when k = dimX = 1, X is a curve; and more recently and at greater length,
when dimX = n− 1, X is a smooth hypersurface. As it turns out there are three different,
but ultimately equivalent, ways of describing smooth hypersurfaces (all three generalize to
other dimensions k.

• X is locally a smooth graph. We have a C1 function g : U ′ ⊂ Rn−1 → R and a
coordinate index j ∈ {1, . . . , n} such that points x near a belong to X if and only if
xj = g(x′j). In this case, the tangent space TaX is just the graph of the linearization
of g; i.e. v := x− a ∈ TaX if and only if xj = aj + Jg(a′j)(xj − aj).

Note that in order to make visual comparison easier, one usually translates TaX in
pictures so that it passes through a rather than 0. This translated version ‘a+ TaX’
of TaX is known as an affine subspace of Rn.
• X is locally a smooth level set. We have a C1 function ρ : V ⊂ Rn → R

such that x ∈ X ∩ V if and only if ρ(x) = 0. It is important to further impose
the ‘non-degeneracy condition’ ∇ρ(x) 6= 0 for x ∈ X ∩ V . The significance of this
condition becomes apparent when we use the defining function ρ to describe the
tangent space TaX of X at a: geometrically, a vector v := x − a belongs to TpX if
and only if 0 = ∇ρ(a) · v. In function-speak, v belongs to the kernel of the linear
transformation Df(a). In calculus-speak, v ∈ TaX means that x is is in the level set
0 = a+∇ρ(a) · (x− a) of the linear approximation of ρ.
• X is locally smoothly parametrizable. We have an open set V ⊂ X and an

injective C1 function Ψ : V ′ ⊂ Rn−1 → U whose image Ψ(V ′) is X ∩ V . If Ψ(x′) =
x ∈ X, then it is common to refer to x′ as the coordinates of x (relative to the
parametrization Ψ). Here again, there is an important and additional non-degeneracy
condition: the Jacobian matrix JΨ(x′) must have full rank at each point x′ ∈ V ′.
This is equivalent to saying that the n − 1 columns of JΨ(x′) are independent, or
that the linear transformation DΨ(x′) : Rn−1 → Rn is injective.

If a = Ψ(a′), then TaX is just the column space of JΨ(a) (i.e. the range of DΨ(a)).
Alternatively, the translate a + TaX is parametrized by the linear approximation
Ψ(a′) +DΨ(a′)(x′ − a) of Ψ.

Formally, one verifies that the analytic, algebraic and geometric points of view are consistent
with one another by judiciously applying the inverse/implicit function theorems and the chain
rule.

It takes some time to get used to all these equivalent formulations concerning hypersurfaces
and their tangent spaces and to move back and forth gracefully from one point of view to
the other. But all three points of view are valuable, and all become very intuitive with time,
patience, and effort.


