1. Continuous functions and open sets

Definition 1.1. Let $f: U \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a function and $S \subset \mathbf{R}^{m}$ a set. The preimage of S by f is the set

$$
f^{-1}(S)=\{x \in U: f(x) \in S\}
$$

So for instance, if $f: \mathbf{R} \rightarrow \mathbf{R}$ is given by $f(x)=x^{2}$, then $f^{-1}([0,1])=[-1,1], f^{-1}([1,4])=$ $[-2,-1] \cup[2,1]$, and $f^{-1}([-4,-1])=\emptyset$. The following result characterizes continuity in terms of preimages of open sets.

Theorem 1.2. Let $U \subset \mathbf{R}^{n}$ be open. A function $f: U \rightarrow \mathbf{R}^{m}$ is continuous (at all points in U) if and only if for each open $V \subset \mathbf{R}^{m}$, the preimage $f^{-1}(V)$ is also open.
Proof. Suppose that f is continuous on U and that $V \subset \mathbf{R}^{m}$ is open. Given a point $a \in$ $f^{-1}(V)$, we have (by definition of $f^{-1}(V)$) that $f(a) \in V$. Since V is open, there exists $\epsilon>0$ such that $B(f(a), \epsilon) \subset V$. And since f is continuous at a, there exists $\delta>0$ such that $\|x-a\|<\delta$ implies that $\|f(x)-f(a)\|<\epsilon$. That is, $x \in B(a, \delta)$ implies $f(x) \in B(f(a), \epsilon)$. In particular $f(x) \in V$. Thus $B(a, \delta) \subset f^{-1}(V)$, which means that $f^{-1}(V)$ is open. This proves the 'only if' part of the theorem.

For the 'if' part of the theorem, let us suppose that $f^{-1}(V)$ is open whenever $V \subset \mathbf{R}^{m}$ is open and aim to prove that f is continuous at each point in U : given $a \in U$ and $\epsilon>0$, we know that the ball $B(f(a), \epsilon)$ is open in \mathbf{R}^{m}. By assumption then, so is $f^{-1}(B(f(a), \epsilon)$. As $a \in f^{-1}(B(f(a)), \epsilon)$, it follows that there exists $\delta>0$ such that $B(a, \delta) \subset f^{-1}(B(f(a), \epsilon))$. In other words $\|x-a\|<\delta$ implies that $\|f(x)-f(a)\|<\epsilon$. This proves that f is continous at a.

Corollary 1.3. Let $U \subset \mathbf{R}^{n}$ be open and $f: U \rightarrow \mathbf{R}$ be a continuous, scalar-valued function. Then the sets $\{x \in U: f(x)<0\},\{x \in U: f(x)>0\}$ and $\{x \in U: f(x) \neq 0\}$ are all open subsets of \mathbf{R}^{n}. If the domain U of f is all of \mathbf{R}^{m}, then $\left\{x \in \mathbf{R}^{n}: f(x)=0\right\}$ is closed.

Proof. By definition, we have $\{x \in U: f(x)<0\}=f^{-1}((-\infty, 0))$ and $\{x \in U: f(x)>0\}=$ $f^{-1}((0, \infty))$, so the fact that these sets are open follows immediately from the assumption that f is continous and the previous theorem. Since finite unions of open sets are open, it follows that

$$
\{x \in U: f(x) \neq 0\}=\{x \in U: f(x)<0\} \cup\{x \in U: f(x)>0\} .
$$

is open. Finally, when $U=\mathbf{R}^{n}$, we have that

$$
\left\{x \in \mathbf{R}^{n}: f(x) \neq 0\right\}=\mathbf{R}^{n} \backslash\left\{x \in \mathbf{R}^{n}: f(x) \neq 0\right\}
$$

is the complement of an open set and therefore closed.

