Homework 13

(due Thursday, Dec 11)

Turn in answers only

Exam 1: 2 (aim for countere.g.s that are as simple as possible)
Exam 2: 2 (same advice), 5c
4.5: 3ab
6.1: 11ac (do two steps of Newton's method in each case, but ignore the part about finding a ball that contains the root).
6.2: 1ae

Full solutions

Exam 2: 7a. Find all points $(x, y) \in \mathbf{R}^{2}$ where the curve $\gamma(t)=\left(t^{2}-1, t^{3}+t\right)$ is tangent to a level set of $f(x, y)=x y$.

Problem 1. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ be given by $f(x, y, z)=x y^{3}+z^{2}-2 z y+x^{5}$. Note that $f(1,1,1)=1$.
(a) What fairly straightforward computation shows that we can solve the equation $f(x, y, z)=$ 2 for $x=h(y, z)$ in terms of y and z near the point $(1,1,1)$?
(b) Do two steps of Newton's method to find a good approximation of the solution x (near $x=1$) of $f(x, 1.2, .9)=1$. That is, find a good approximation of $h(1.2, .9)$.
(c) Is it clear that one could solve for y in terms of x and z near (1,1,1)? For z in terms of x and y ?

