Homework 2

(due Friday, September 12)

Turn in answers only:

- Find the distance between the point $(3,1,2)$ to the line joining $(1,2,1)$ to $(-1,4,0)$. Note that this line does not pass through the origin.
- 1.3: 1 (identify only the imposters, giving specific counterexamples showing that each one fails one of the three criteria in the definition of subspace).
- 1.4: 5, 15

Turn in full solutions.

- 1.2: 12
- 1.3: $4,6,8,9$
- 1.4: 3,
- Let $\mathbf{y} \in \mathbf{R}^{n}$ be a fixed, non-zero vector. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be given by $T(\mathbf{x})=$ $\operatorname{proj}_{\mathbf{y}}(\mathbf{x})$.
(a) Show that T is linear.
(b) Find the matrix for T if $\mathbf{y}=\left[\begin{array}{c}2 \\ -1\end{array}\right] \in \mathbf{R}^{2}$ and then use it to compute the orthogonal projection of $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ onto \mathbf{y}.
(c) Find the matrix for the linear transformation $R: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, where $R(\mathbf{x})$ is the reflection of \mathbf{x} about joining $\mathbf{0}$ to $\left[\begin{array}{c}2 \\ -1\end{array}\right]$. You can take for granted that R is linear. This is simpler if you take advantage of the previous part of this problem. Use your matrix to compute $R\left(\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)$.
Extra Credit Use the vector operations we've developed in class to prove Heron's formula for the area of a triangle: if $a, b, c>0$ are the side lengths of a triangle, then it's area A is given by

$$
A^{2}=s(s-a)(s-b)(s-c)
$$

where $s:=\frac{1}{2}(a+b+c)$ is called the semi-perimeter of the triangle. Incidentally, 'base times height' is a fine definition of A here.

