Homework 3

(due Friday, September 19)

Warmup problems (Do not turn in)

• 1.4: 1

Turn in answers only:

- 1.4: 13, 16 (in part c, assume the plane contains the *top* edge of the tetrahedron), 17, 18 (don't worry about the conjecture).
- 2.1: 1, 9, 11

Turn in full solutions.

- 1.4: 8abc, 11 (give the proofs–see me in office hours if you don't know how to do an induction proof), 20, 21
- 2.1: 2, 3 (assume the radius a = 1), 4 (assume b = a = 1), 12ab
- Given a point $\mathbf{a} \in \mathbf{R}^n$ and a real number r > 0, Shifrin uses $B(\mathbf{a}, r) := {\mathbf{x} \in \mathbf{R}^n : ||\mathbf{x} \mathbf{a}|| < r}$ to denote the *open ball* of radius r about \mathbf{a} . For two such balls $B(\mathbf{a}, r)$ and $B(\mathbf{b}, s)$, one has the following tricotomy.
 - (a) If $\|\mathbf{a} \mathbf{b}\| + r \leq s$ then $B(\mathbf{a}, r) \subset B(\mathbf{b}, s)$.
 - (b) If $\|\mathbf{a} \mathbf{b}\| \ge s + r$ then $B(\mathbf{a}, r) \cap B(\mathbf{b}, s) = \emptyset$.
 - (c) Otherwise $B(\mathbf{a}, r)$ intersects both $B(\mathbf{b}, s)$ and the complement of $B(\mathbf{b}, s)$.

Prove the first two of these statements.

Remember in both parts that your argument should begin 'Given $\mathbf{x} \in B(\mathbf{a}, r) \ldots$ ', and that the triangle inequality is your friend.

Remark Up to three extra points for generating mathematica plots that verify your answers to problems 2, 4 and 9 in section 2.1.