## Homework 3

(due Friday, September 19)

## Warmup problems (Do not turn in)

- 1.4: 1


## Turn in answers only:

- 1.4: 13, 16 (in part c, assume the plane contains the top edge of the tetrahedron), 17, 18 (don't worry about the conjecture).
- 2.1: 1, 9, 11


## Turn in full solutions.

- 1.4: 8abc, 11 (give the proofs-see me in office hours if you don't know how to do an induction proof), 20, 21
- 2.1: 2, 3 (assume the radius $a=1$ ), 4 (assume $b=a=1$ ), 12ab
- Given a point $\mathbf{a} \in \mathbf{R}^{n}$ and a real number $r>0$, Shifrin uses $B(\mathbf{a}, r):=\left\{\mathbf{x} \in \mathbf{R}^{n}\right.$ : $\|\mathbf{x}-\mathbf{a}\|<r\}$ to denote the open ball of radius $r$ about $\mathbf{a}$. For two such balls $B(\mathbf{a}, r)$ and $B(\mathbf{b}, s)$, one has the following tricotomy.
(a) If $\|\mathbf{a}-\mathbf{b}\|+r \leq s$ then $B(\mathbf{a}, r) \subset B(\mathbf{b}, s)$.
(b) If $\|\mathbf{a}-\mathbf{b}\| \geq s+r$ then $B(\mathbf{a}, r) \cap B(\mathbf{b}, s)=\emptyset$.
(c) Otherwise $B(\mathbf{a}, r)$ intersects both $B(\mathbf{b}, s)$ and the complement of $B(\mathbf{b}, s)$.

Prove the first two of these statements.
Remember in both parts that your argument should begin 'Given $\mathbf{x} \in B(\mathbf{a}, r) \ldots$ ', and that the triangle inequality is your friend.

Remark Up to three extra points for generating mathematica plots that verify your answers to problems 2, 4 and 9 in section 2.1.

