Homework 5

(due Friday, October 3)

Warmup (don't turn in). 3.1: 1ac, 2ab, 3a
Turn in answers only. 3.1: 1bdef, 2cd, 3bc (in part c, you might find that the Cauchy Schwarz Inequality is useful for maximizing the directional derivative you get).

Turn in full solutions.

- Use the definition of limit to show that the function $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}-3 x_{2}+x_{3}-17$ is continuous at the point $(-1,0,3)$.
- (stronger version of 2.3.5) Suppose that $U \subset \mathbf{R}^{n}$ is open and $f: U \rightarrow \mathbf{R}$ is continuous. Given that $a \in U$ and $f(a)>0$, show that there exists $\delta>0$ such that for any $x \in B(a, \delta)$, one has $f(x)>f(a) / 2$.
- 2.3: 8adfghj (use properties of limits, step by step, to find the given limit, or show that the limit does not exist by exhibiting two paths through $\mathbf{0}$ along which the function has different/no limits)
- 2.3: 12, 15a
- Prove the following version of the Squeeze Theorem, which we will use frequently later. Let $\mathbf{a} \in \mathbf{R}^{n}$ be a point and $U \subset \mathbf{R}^{n}$ be a neighborhood of \mathbf{a}. Suppose that $f: U \rightarrow \mathbf{R}^{n}, g: U \rightarrow \mathbf{R}$ are functions such that
- $\|f(\mathbf{x})\| \leq|g(\mathbf{x})|$ for each $x \in U$; and
$-\lim _{\mathbf{x} \rightarrow \mathbf{a}} g(x)=0$.
Then $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=\mathbf{0}$.
- 3.1: 8,10 , 11 (in 10 and 11 use the limit definition of directional derivative-it's easier)

