Homework 5

(due Friday, October 3)

Warmup (don't turn in). 3.1: 1ac, 2ab, 3a

Turn in answers only. 3.1: 1bdef, 2cd, 3bc (in part c, you might find that the Cauchy Schwarz Inequality is useful for maximizing the directional derivative you get).

Turn in full solutions.

- Use the definition of limit to show that the function $f(x_1, x_2, x_3) = 2x_1 3x_2 + x_3 17$ is continuous at the point (-1, 0, 3).
- (stronger version of 2.3.5) Suppose that $U \subset \mathbf{R}^n$ is open and $f: U \to \mathbf{R}$ is continuous. Given that $a \in U$ and f(a) > 0, show that there exists $\delta > 0$ such that for any $x \in B(a, \delta)$, one has f(x) > f(a)/2.
- 2.3: 8adfghj (use properties of limits, step by step, to find the given limit, or show that the limit does not exist by exhibiting two paths through **0** along which the function has different/no limits)
- 2.3: 12, 15a
- Prove the following version of the Squeeze Theorem, which we will use frequently later. Let $\mathbf{a} \in \mathbf{R}^n$ be a point and $U \subset \mathbf{R}^n$ be a neighborhood of \mathbf{a} . Suppose that $f: U \to \mathbf{R}^n, g: U \to \mathbf{R}$ are functions such that $- \|f(\mathbf{x})\| \le |g(\mathbf{x})|$ for each $x \in U$; and $- \lim_{\mathbf{x} \to \mathbf{a}} g(x) = 0$. Then $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{0}$.
- 3.1: 8, 10, 11 (in 10 and 11 use the limit definition of directional derivative-it's easier)