Homework 7

(due Friday, October 17)

Warmup (don't turn in). 3.3: 1
Answers only: 3.3: 2, 3
Turn in full solutions.

- 3.2: 5, 10, 14a (Make sure to verify that the function $T(\mathbf{h})=A \mathbf{a} \cdot \mathbf{h}+A \mathbf{h} \cdot \mathbf{a}$ is actually linear), 15
- In this problem, we find the derivative of the function $F: \mathbf{R}^{n^{2}} \rightarrow \mathbf{R}^{n^{2}}$ given by $F(A)=A^{2}$, where $A \in \mathbf{R}^{n^{2}}$ is an $n \times n$ matrix.
(a) Recall that for any $m \times n$ matrix A and any vector $\mathbf{v} \in \mathbf{R}^{n}$, we have $\|A \mathbf{v}\| \leq$ $\|A\|\|\mathbf{v}\|$, where $\|A\|=\sqrt{\sum a_{i j}^{2}}$ is the magnitude that I defined in class. Extend this fact to matrices by showing that $\|A B\| \leq\|A\|\|B\|$ for any $n \times p$ matrix B. It helps to think of $B=\left[\mathbf{b}_{1} \ldots \mathbf{b}_{p}\right]$ in terms of its columns, remembering that $\|B\|^{2}=\sum\left\|\mathbf{b}_{j}\right\|^{2}$.
(b) Show that $T: \mathbf{R}^{n^{2}} \rightarrow \mathbf{R}^{n^{2}}$ given by $T(H)=A H+H A$ is a linear transformation.
(c) Show that F is differentiable at each 'point' $A \in \mathbf{R}^{n^{2}}$ with derivative $D F(A)=T$.
- 3.3: 4a (do this two ways: once by using the chain rule and once by reducing the problem to finding the derivative of a function of a single variable), 8 .
- Consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ (which I considered in class). Let $f^{n}=f \circ \cdots \circ f$ denote the n-fold composition of f with itself. Use the chain rule to find the following:
(a) The standard matrix of $D f^{n}(1,1)$ for $n=1,2,3$;
(b) Find the standard matrix of $D f^{n}(1,0)$ for any positive integer n.

