Homework 8

(due Friday, October 31)

Warmup (don't turn in).

3.4: $1 \mathrm{a}, 2 \mathrm{~b}, 3$ (this is a rather nice test of your understanding of gradients), 4 3.5: 7ac, 8ab
3.6: 2ad, 3b

Turn in answers only.

3.4: 1bc, 2ac
3.5: 7bd, 8c

Turn in full solutions.

3.4: 8 (take the focus to be $(0,1)$ and the directrix to be $x_{2}=-1$), 12
3.5: $1,2,6$, (you may take for granted the product rule $(f \cdot g)^{\prime}=f^{\prime} \cdot g+g^{\prime} \cdot f$ for C^{1} curves $\left.f, g:(a, b) \rightarrow \mathbf{R}^{n}\right), 10$.
pre 3.6/7: Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $g: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ are differentiable functions, and let $F=f \circ g$. Show that

$$
\frac{\partial F}{\partial x_{j}}(a)=\sum_{i=1}^{n} \frac{\partial f}{\partial y_{i}}(g(a)) \frac{\partial g_{i}}{\partial x_{j}}(a)
$$

where $y_{i}=g_{i}(x)$ is the i th component of g. This could be useful in 3.6/7
3.6: $2 \mathrm{~b}, 3 \mathrm{a}, 7$

Extra Credit: 3.5.15

