
1. Equality of mixed partial derivatives

First a cautionary tale.

Example 1.1. Let f(x1, x2) =
x2
1−x

2
2

x2
1+x

2
2

. Observe that

lim
x1→0

lim
x2→0

f(x1, x2) = lim
x1→0

x21
x21

= 1.

However,

lim
x2→0

lim
x1→0

f(x1, x2) = lim
x1→0

−x22
x22

= −1.

The moral? One cannot generally switch the order in which one takes limits and expect to get the same
answer.

My real aim here is to prove the following theorem which tells us that order is irrelevant when we take
multiple partial derivatives of a ‘decent’ function of several variables.

Theorem 1.2. Suppose that f : Rn → R is C2. Then for any 1 ≤ i, j ≤ n and any a ∈ Rn in the domain
of f , one has

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a).

My proof is quite similar to Shifrin’s, but (in my humble opinion) mine ends better. In any case, the
main thing is to show that one can reverse the order of the two limits involved in taking a second partial
derivative.

Proof. To start with, note that since we are only considering derivatives of f with respect to xi and xj , we
might as well assume that these are the only variables on which f depends. That is, it suffices to assume
that n = 2 in the statement of the theorem, fix a point a = (a1, a2) in the domain of f and show that

∂2f

∂x1∂x2
(a) =

∂2f

∂x2∂x1
(a).

To this end, I go back to the definition of derivative, applying it to both partial derivatives:

∂2f

∂x1∂x2
(a) = lim

h1→0

∂f
∂x1

(a1 + h1, a2)− ∂f
∂x1

(a1, a2)

h1

= lim
h1→0

limh2→0

(
f(a1+h1,a2+h2)−f(a1+h1,a2)

h2

)
− limh2→0

(
f(a1,a2+h2)−f(a1,a2)

h2

)
h1

= lim
h1→0

lim
h2→0

f(a1 + h1, a2 + h2)− f(a1 + h1, a2)− f(a1, a2 + h2) + f(a1, a2)

h1h2

Let me (for brevity’s sake) call the quantity inside the last limit Q(h1, h2).
Unnecessary motivational digression: Similarly, when the partial derivatives are reversed, one finds:

∂2f

∂x2∂x1
(a) = lim

h2→0
lim
h1→0

Q(h1, h2)

That is, we get the same thing as before, except that the order of the limits is reversed. If we could switch
the limits, we’d be home-free. But without justification, we can’t. Instead we take a less direct but more
justifiable approach that relies on the mean value theorem.

Lemma 1.3. For each h = (h1, h2) ∈ R2, there exists h̃ = (h̃1, h̃2) inside the rectangle determined by h and
0 such that

Q(h) =
∂2f

∂x2∂x1
(a+ h̃)
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Proof. Note (i.e. really—check it!) that we can rewrite

Q(h1, h2) =
1

h2

g(a1 + h1)− g(a1)

h1

where g : R→ R is given by g(t) := f(t, a2 +h2)− f(t, a2). In particular g is a differentiable function of one

variable with derivative given by g′(t) = ∂f
∂x1

(t, a2 +h2)− ∂f
∂x1

(t, a2). So I can apply the mean value theorem,

obtaining a number h̃1 between 0 and h1 such that

Q(h1, h2) =
1

h2

(
g(a1 + h1)− g(a1)

h1

)
=

1

h2
g′(a1 + h̃1) =

1

h2

(
∂f

∂x1
(a1 + h̃1, a2 + h2)− ∂f

∂x1
(a1 + h̃1, a2)

)
.

Applying the Mean Value Theorem a second time, to this last expression, gives me a number h̃2 between 0
and h2 such that

Q(h1, h2) =
∂2f

∂x2∂x1
(a1 + h̃1, a2 + h̃2)

�

To finish the proof of the theorem, I will use the convenient notation A ≈ε B to mean that A,B ∈ R
satisfy |A−B| < ε. Note that (by the triangle inequality) we have ‘approximate transitivity’—i.e. A ≈ε1 B
and B ≈ε2 C implies A ≈ε1+ε2 C.

It will suffice to show that
∂2f

∂x1∂x2
(a) ≈ε

∂2f

∂x2∂x1
(a)

for every ε > 0. So let ε > 0 be given. By continuity of second partial derivatives, there exists δ > 0 such
that ‖h‖ < δ implies that ∣∣∣∣ ∂2f

∂x2∂x1
(a+ h)− ∂2f

∂x2∂x1
(a)

∣∣∣∣ < 1

3
ε.

Using the definition of limit twice and then the above lemma, I therefore obtain that when h1 and then h2
are small enough,

∂2f

∂x1∂x2
(a) = lim

h1→0
lim
h2→0

Q(h1, h2) ≈ε/3 lim
h2→0

Q(h1, h2) ≈ε/3 Q(h1, h2) =
∂2f

∂x2∂x1
(a+ h̃) ≈ε/3

∂2f

∂x2∂x1
(a).

In short,
∂2f

∂x1∂x2
(a) ≈ε

∂2f

∂x2∂x1
(a),

which is what I sought to show. �
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