1. LimiTs AND CONTINUITY

It is often the case that a non-linear function of n-variables x = (x1,...,x,) is not really

defined on all of R™. For instance f(z,xs) = :55122 is not defined when x; = +x5. However,
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I will adopt a convention from the vector calculus notes of Jones and write F' : R® — R™
regardless, meaning only that the source of F'is some subset of R”. While a bit imprecise,
this will not cause any big problems and will simplify many statements.

I will often distinguish between functions f : R — R that are scalar-valued and functions
F:R" — R™, m > 2that are vector-valued, using lower-case letters to denote the former and
upper case letters to denote the latter. Note that any vector-valued function F': R* — R™
may be written F' = (Fy, ..., F,,) where Fj : R® — R are scalar-valued functions called the
components of F'. For example, F' : R? — R? given by F(x1,15) = (2129, 1 +12) is a vector
valued function with components F(x, z2) = 129 and Fo(x1,22) = 21 + 2.

Definition 1.1. Let a € R" be a point and r > 0 be a positive real number. The open ball
of radius r about a is the set

B(a,r) :={xeR": ||x—a| <r}.
[ will also use B*(a,r) to denote the set of all x € B(a,r) except x = a.

Proposition 1.2. Let a,b € R" be points and r,s > 0 be real numbers. Then

e B(a,r) C B(b,s) if and only if |Jla—Db| < s —r.
e B(a,7) N B(b,s) =0 if and only if |]a—b|| > s+r.

Proof. Exercise. Both parts depend on the triangle inequality. U

Extending my above convention, I will say that a function F' : R® — R™ is defined near
a point a € R™ if there exists r > 0 such that F(x) is defined for all points x € B(a,r),
except possibly the center x = a.

Below I will need the following inequality relating the magnitude of a vector to the sizes
of its coordinates.

U1
Proposition 1.3. For any vector v = : € R" we have for each 1 < j <n that

Un
| < < )
ol < IVl < Vi ax [yl

Proof. Suppose that v; is the coordinate of v with largest absolute value. Then for any

index j, we have
n

v?- < v? < nv’.
i=1
Taking square roots throughout gives the inequalities in the statement of the lemma. 0

Now we come to the main point. The idea of a ‘limit’ is one of the most important in
all of mathematics. In differential calculus, it is the key to relating non-linear (i.e. hard)

functions to linear (i.e. easier) functions.
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Definition 1.4. Suppose that F': R — R™ is a function defined near a point a € R". We
say that F(x) has limit b € R™ as x approaches a, i.e.

lim F(x) =b e R"™,

xX—a

if for each € > 0 there exists § > 0 such that 0 < ||x — a|| < ¢ implies | F(x) — b|| < e.

Notice that the final phrase in this definition can be written in terms of balls instead of
magnitudes: for any € > 0 there exists 6 > 0 such that x € B*(a, ) implies F\(x) € B(b,€).

A function might or might not have a limit as x approaches some given point a, but it
never has more than one.

Proposition 1.5 (uniqueness of limits). If F' : R — R™ is defined near a € R™, then there
is at most one point b € R™ such that limy_,, F'(x) = b.

Proof. Suppose, in order to reach a contradiction, that F(x) converges to two different
points b, b e R™ as x approaches a. Then the quantity € := % Hf) — bH is positive. So by

the definition of limit, there exists a number ; > 0 such that 0 < ||x —a|| < J; implies
|F(x) — b|| <e. Likewise, there exists a number d > 0 such that 0 < ||x — a|| < d2 implies

HF(X) — BH < €. Soif I'let 6 = min{d;,d>} be the smaller bound, then 0 < |[|x —a|| < ¢
implies that

[b=b|| = |[(Fx) = b) = (F(x) = B) | < 11F(x) = b]| + |[F(x) = B[ < e+e< [b-b].

Note that the ‘<’ in this estimate follows from the triangle inequality, and the ‘<’ follows
from my choice of €. At any rate, no real number is smaller than itself, so I have reached a
contradiction and conclude that F' cannot have two different limits at a. U

Definition 1.6. We say that a function F : R™ — R™ is continuous at a € R" if F' 1is
defined near and at a and

lim F(x) = F(a).
X—a
If F' is continuous at all points in its domain, we say simply that F is continuous.
Now let us verify that many familiar scalar-valued functions are continuous.

Proposition 1.7. The following are continuous functions.
(a) The constant function f : R™ — R, given by f(x) = ¢ for some fized ¢ € R and all
x € R".
(b) The magnitude function f: R™ — R given by f(x) = ||x]||.
(c) The addition function f:R?* — R given by f(x1,x9) = 21 + To.
(d) The multiplication function f:R?* — R given by f(x1,32) = x125.
(e) The reciprocal function f: R — R given by f(z) = 1/x.

Proof. (a) Fix a point a € R™. Given € > 0, let § > 0 be any positive number, e.g. § = 1
(it won’t matter). Then if ||x — a|| < ¢ it follows that

If(x)— fla)]=]c—¢c/=0<e

So the constant function f(x) = c¢ is continuous at any point a € R".



(b) Fix a point a € R". Given € > 0, let 6 = e. Then if ||x — a|| < 4, it follows that
[f(x) = f@)] = [lx]| = [lall | < flx —al| <d =

The ‘<’ here follows from Problem 1.2.17 (on Homework 1) in Shifrin. Hence f(x) =
||x|| is continuous at any point a € R™.

(c) Fix a point a = (aj,a;) € R% Given € > 0, let § = ¢/2. Then if ||x —al| < 4, it
follows that

Ilf(x) = f(a)| = |z1+ 22 —a1 —ag| < |x1 —ay]| +|re —as| <d+d=e

Hence f(x1,22) = o1 + x5 is continuous at any point (a;,as) € R2.

(d) Fix a point a = (ay,az) € R Given € > 0, let § = min{1, e(1+ |a;| +|az|)'}. Then
if |x —a|| < 4, it follows that

f(x) = fla)] = [z1z2 — a1as| = [(z122 — T102) + (T102 — @102)|
< rxe — x1ag| + |v1as — aras| = |z1||we — ag| + |ag||T1 — a4
< 0(Jz1| + ]az]) < 0(Jar]| + 1+ Jag|) < e
Notice that the final ‘<’ follows from the fact that |z;—a;| < § < 1. Hence f(x,23) =

T1Z9 is continuous at any point a = (ay, as) € R?.

(e) Homework exercise.

Theorem 1.8. Linear transformations T : R™ — R™ are continuous.

This one requires a little warm-up. If A is an m X n matrix, let us define the magnitude
of A to be the quantity

[A]] =

That is, we are measuring the size of A as if it were a vector in R™". Be aware that elsewhere
in mathematics (including Shifrin), there are other notions of the magnitude of a matrix.

Lemma 1.9. Given any matric A € My, and any vector x € R", we have ||Ax|| <

LA {|]-
Proof. Let row; denote the ith row of A. Then on the one hand, we have
m n m
2 2
1A =) ag =) llrows|*.
=1 j=1 =1

But on the other hand, the ith entry of Ax is row; - x. Hence from the Cauchy-Schwartz
inequality, we obtain

m m m
2 2 2 2 2 2 2
1Ax|* =Y (row, - x)* < ) flrows|* [x]* = [|Ix]|* Y row|* = [|A]* |Ix||*.
i=1 i=1 i=1
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Proof of Theorem 1.8. Let A € M,,«, be the standard matrix of the linear transformation
T:R" — R™and a € R" be any point. Given € > 0, I choose § = <. Then if |x — al| < 0,

Al *
it follows that
|T(x) = T(a)|| = T(x—a)|| = [A(x—a)|| < [|A]| |x —al <[[Al|d =

Hence T is continuous at any point a € R" O

Questions about limits of vector-valued functions can always be reduced to questions about
scalar-valued functions.

Proposition 1.10. Suppose that F' : R* — R™ is a vector-valued function F' = (F, ..., Fy)
defined near a € R". Then the following are equivalent.

(a) limy,, Fi(x) =b e R™ .

(b) limya || F(x) = b = 0.

(¢) limy_ya Fj(x) = b; for 1 < j <m.

Proof of Proposition 1.10.

(a) = (b) Suppose that limy_,, F'(x) = b and set f(x) := |[|[F(x) — b||. Given € > 0, the
definition of limit gives me ¢ > 0 such that 0 < ||x — al| < ¢ implies that ||F'(x) —b|| < e.
But this last inequality can be rewritten |f(x) — 0] < e. Thus limy,, f(x) = 0, i.e. (b)
holds.

(b) = (a) Similar.

(a) = (c) Suppose again that limy ,, F'(x) = b. Fix an index j between 1 and m and let
e > 0 be given. Since limy_,, F(x) = b, there exists 6 > 0 such that 0 < ||x — a|| < ¢ implies
that ||F(x) — b|| < e. Then by Proposition 1.3, I also have that

[Fj(x) = bj| < [|[F(x) = b <e
So limy_,, F;(x) = b;.

(c) = (a) Suppose that limy_,, F;(x) = b; for each 1 < j < m. Then given any ¢ > 0, there
exist real numbers 6; > 0 such that 0 < ||x — a|| < §; implies that |Fj(x) —b;| < - Taking
d = min{dy,...,dn}, I infer that 0 < ||x — a|| < d implies |F}(x) — b;| < —= for all indices
7. Thus by the lemma,

= €.

€
F(x) — -
P60~ bl < Vi
So limy,, F/(x) = b. O

The following theorem is sometimes paraphrased by saying that limits commute with
continuous functions.

Theorem 1.11 (composite limits). Let F': R™ — R™ and G : R™ — RP be functions and
ac€ R"™, b e R™ be points such that limy_,, F'(x) =b and G is continuous at b. Then

lim G o F(x) = G(lim F(x)) = G(b).
X—a X—a
Proof. Let € > 0 be given. By continuity of G at b, there exists a number ¢ > 0 such

that ||y —b|| < € implies ||G(y) — G(b)|| < e. Likewise, since limy_,, F'(x) = b, there
exists 6 > 0 such that 0 < ||x —a|| < § implies that ||F'(x) —b|| < €. Putting these two
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things together, I see that 0 < ||x — a|| < d further implies that [|G(F(x)) — G(b)|| < €. So
limya G(F(x)) = G(b). O

Corollary 1.12. Let F: R* — R™ and G : R™ — RP be continuous functions. Then Go F
18 CONLINUOUS.

Proof. Note that Go F is defined at a € R" precisely when F is defined at a and G is defined
at F'(a). Then Since both functions are continuous wherever they are defined, we have

lim G(F(x)) = G(Jim F(x)) = G(F(a))

Hence G o F' is continuous at any point a € R" where it is defined. 0

Corollary 1.13. Let f, g : R" — R be functions with limits lim,_,, f(z) = b and lim,_,, g(z) =
c at some point a € R"™. Then

(a) lim,—q [f(z)] = [0].

(b) limgq f(2) + g(z ) = b+ ¢,

(c) limg_q f(x)g(z )

(d) lim,_,, f(l ;= pmmded b#0.

Hence a sum or pmduct of continuous functions is continuous, as is the reciprocal of a
continuous function.

Actually, the corollary extends to dot products, magnitudes and sums of vector-valued
functions F, G : R" — R™, too. I'll let you write down the statements of these facts.

Proof. 1 prove (c). The other parts are similar. Let F' : R — R? be given by F(z) :=
(f(z),g(z)) and m : R*> — R be the multiplication function m(yi,y2) := y1y2. Recall that
m is continuous (Proposition 1.7). Moreover, Proposition 1.10 and our hypotheses about f
and ¢ imply that lim,_,, F'(z) = (b,c). Hence I infer from Theorem 1.11 that

lim f(w)g(z) = lim m(F(x)) = m(lim F(x)) = m(b.c) = be.
U

When used with the fact that functions can’t have more than one limit at a given point,
Theorem 1.11 leads to a useful criterion for establishing that a limit doesn’t exist.

Definition 1.14. A parametrized curve is a continuous function v : R — R™.

Corollary 1.15. Given a function F': R" — R™ defined near a point a € R", suppose that
7,72 1 R — R™ are parametrized curves such that v1(t) = v2(t) = a if and only if t = 0.
If the limits limy o F o v1(t) and lim;_,o F' o vo(t) are not equal, then limy_,, F(x) does not
erist.

Proof. T will prove the contrapositive statement: suppose that limy ,, F'(x) = b exists and
7,7 : R — R" are parametrized curves with initial points v,(0) = a but v;(¢t) # a for
t # a. Then the limits limy_,, F'(x) and lim,_,o " 0 7;(t) do not concern the value of F' at a.
So I may assume with no loss of generality that F'(a) = b, i.e. that F is actually continuous
at a.

Theorem 1.11 then tells me that

lim F o7 (t) = F(lim (1)) = F(3(0) = F(a) = b.
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The second equality holds because 7, is continuous. Likewise, lim; o F' o 7(t) = b. In
particular, the two limits are the same. O

I remark that if v : R — R" is a continuous curve and F': R — R is a function, then
the composite function F' oy : R — R™ is sometimes called the restriction of F' to 7.
One last fact about limits that will prove useful for us is the following.

Theorem 1.16 (The Squeeze Theorem). Suppose that F : R* — R™ and g : R" — R are
functions defined near a € R". Suppose there exists r > 0 such that

o |[F)[ <lg(x)| for allx € B*(a,r);

o lim, ,,g(x) =0.
Then limy_,, F(x) = 0.

Proof. Exercise. O



