- 1. Find all solutions to $\begin{pmatrix} 1 & -1 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$
 - (a) $\binom{2}{0} + t \binom{1}{1}$ (b) $\binom{1}{1} + t \binom{2}{0}$ (c) $\binom{2}{0}$

- (d) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (e) $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$

- 2. The number of pivots in the reduced row echelon form of $A = \begin{pmatrix} 3 & -9 & 12 & -9 \\ 0 & 2 & -4 & 4 \\ 0 & 3 & -6 & 6 \end{pmatrix}$ is
 - (a) 2
- (b) 1
- (c) 3
- (d) 4
- (e) 0

- 3. The system $\begin{pmatrix} 0 & 1 & 2 \\ 0 & 3 & 6 \\ 1 & 4 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \\ 13 \end{pmatrix} \text{ has }$
 - (a) infinitely many solutions
- (b) exactly one solution

(c) no solution

(d) two solutions

(e) three solutions

4. Find the value of k such that

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \\ k \end{pmatrix}$$

has at least one solution.

- (a) 24
- (b) 18
- (c) 9
- (d) 7
- (e) 32

- 5. The matrix product $\begin{pmatrix} 2 & 2 & 2 \\ 3 & 3 & 9 \\ -1 & 7 & 8 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ is equal to
 - (a) does not make sense (b) $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$ (c) $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$

(d) $\begin{pmatrix} 2\\9\\7 \end{pmatrix}$

- (e) 0
- 6. Find a non-zero solution to $\begin{pmatrix} -6 & -2 \\ 21 & 7 \\ -9 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 - (a) $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ (c) $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (e) $\begin{pmatrix} -2 \\ 7 \\ -3 \end{pmatrix}$

- 7. Find all values of h for which the vectors $\left\{\begin{pmatrix}1\\-5\\-3\end{pmatrix},\begin{pmatrix}-2\\10\\6\end{pmatrix},\begin{pmatrix}2\\-7\\h\end{pmatrix}\right\}$ are linearly independent.
 - (a) none
- (b) 1
- (c) 2
- (d) 3
- (e) 0

- 8. The product (0,0,1) $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
 - (a) h
- (b) f
- (c) *b*
- (d) d
- (e) k

- 9. Let $A = \begin{pmatrix} 1 & 5 & 4 & 3 & 2 \\ 1 & 6 & 6 & 6 & 6 \\ 1 & 7 & 8 & 10 & 12 \\ 1 & 6 & 6 & 7 & 8 \end{pmatrix}$. The dimension of the column space Col(A) is equal to
 - (a) 3
- (b) 4
- (c) 2
- (d) 1
- (e) 5

- 10. Let $T(\vec{x}) = A\vec{x}$ be a rotation of $\frac{\pi}{4}$ in counter-clock-wise direction on the Euclidean plane \mathbb{R}^2 , where A is a 2×2 matrix. Then the matrix A is equal to
 - (a) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ (c) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- (d) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ (e) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$
- 11. The inverse of $\begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$ is
 - (a) $\begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & -2 \\ -7 & 5 \end{pmatrix}$ (c) $\begin{pmatrix} 5 & -7 \\ -2 & 3 \end{pmatrix}$

- $(d) \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix}$ $(e) \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}$
- 12. Let Nul(A) be the null space of A. Suppose that $A = \begin{pmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{pmatrix}$. Find the $\dim[Nul(A)]$.
 - (a) 2
- (b) 3
- (c) 1
- (d) 4
- (e) 0

13. Find the reduced echelon form of $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{pmatrix}$.

14. Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{pmatrix}$$
. Find the inverse of A .

15. Let $A = \begin{pmatrix} 3 & 1 \\ 9 & 3 \end{pmatrix}$. Construct a non-zero 2×2 matrix B such that AB is the zero matrix.