- 1. Let $y_1(t)$ and $y_2(t)$ are two fundamental solutions $y'' + y' + \frac{\sin t}{t}y = 0$ with initial conditions $y_1(0) = 1, y_1'(0) = 0$ and $y_2(0) = 0, y_2'(0) = 1$. Then the Wronskian $W(t) = [y_1(t)y_2'(t) y_1'(t)y_2(t)]$ is equal to
 - (a) $\frac{\sin t}{t}$. (b) e^t . (c) $\frac{1}{t}$. (d) e^{-t} . (e) $\sin t$.

- 2. Let $Y(t) = A_0 t^2 + A_1 t + A_2$ be a solution to $y'' + 4y = 4t^2$ where $\{A_0, A_1, A_2\}$ are constant numbers. Then A_2 is equal to
 - (a) -1

- (b) 4 (c) 1 (d) 0 (e) $-\frac{1}{2}$

- 3. The linear system $\begin{pmatrix} 1 & 5 & -3 \\ 1 & 4 & -1 \\ 2 & 7 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \\ h \end{pmatrix}$ has a solution if and only if $h = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$
 - (a) 2
- (b) 1
- (c) 5
- (d) 3
- (e) -5

- 4. Suppose that $Y(t) = At^s e^{-t} + B$ is a solution to $y'' 3y' 4y = -5e^{-t} 4$, where $\{A, B, s\}$ are constant numbers. Then A is equal to
 - (a) $-\frac{2}{5}$ (b) 4 (c) 1 (d) -4

- (e) 1

- 5. Find the adjoint adj(A) of $A = \begin{pmatrix} 1 & 4 \\ 2 & 7 \end{pmatrix}$.

 - (a) $\begin{pmatrix} 7 & 4 \\ 2 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} -7 & -4 \\ -2 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 7 & -4 \\ -2 & 1 \end{pmatrix}$
 - $(d) \begin{pmatrix} 7 & -2 \\ -4 & 1 \end{pmatrix}$ $(e) \begin{pmatrix} -7 & 4 \\ 2 & -1 \end{pmatrix}$

- 6. The reduced row echelon form of $\begin{pmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{pmatrix}$ is equal to

 - (a) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
 - (d) $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 7. Find the integrating factor μ for $dx + (\frac{x}{y} \sin y + y^2)dy = 0$.
 - (a) *y*
- (b) $\sin y$ (c) 1 (d) y^2
- (e) x

- 8. Let $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = proj_V \vec{u}$ where $\vec{u} = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 7 \end{pmatrix}$ and $V = Span\{\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}\}$. Then x_1 is
 - (a) 2
- (b) 4
- (c) 1
- (d) 0
- (e) 3

- 9. Which of the following sets is an orthonormal basis of \mathbb{R}^2 ?
 - (a) $\left\{ \begin{pmatrix} 3\\4 \end{pmatrix}, \begin{pmatrix} -4\\3 \end{pmatrix} \right\}$

- (b) $\left\{\frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix}, \frac{1}{5} \begin{pmatrix} -4\\3 \end{pmatrix}\right\}$
- (c) $\left\{\frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix}, \frac{1}{5} \begin{pmatrix} -4\\3 \end{pmatrix}, 0\right\}$
- (d) $\left\{\frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix}\right\}$
- (e) $\left\{\frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix}, \frac{1}{5} \begin{pmatrix} -4\\3 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}\right\}$

- 10. Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{pmatrix}$ and $A^{-1} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$. Then b_{11} is equal to
 - (a) 1
- (b) -2
- (c) 10
- (d) -6
- (e) 5

11. Let $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be a solution to $\begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 4 & -5 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \\ 9 \end{pmatrix}$. Then x_1 is equal to (e) 29 (a) 3 (b) 16 (d) 9

- 12. Use the method of reduction of order to find a second solution $y_2 = v(t)y_1(t)$ of the given differential equation $t^2y'' + 2ty' 2y = 0$ where $y_1(t) = t$. Then v(t) is equal
 - (a) $\frac{4}{t}$

- (b) t (c) t^{-3} (d) 1 (e) t^{-2}

- 13. Let r_1 and r_2 be two roots of the characteristic equation for y'' + 100y = 0. Then r_1 and r_2 are
 - (a) $\pm 10\sqrt{-1}$
- (b) 0, 10

(c) -100, 0

(d) ± 10

(e) $-10 \pm 10\sqrt{-1}$

- 14. If det A = 2 where A is a 4×4 matrix, then det(-2A) is
 - (a) 32
- (b) -4
- (c) -32
- (d) 16
- (e) -16

- 15. The following two solutions form a fundamental set of solutions of linear homogeneous differential equation $2t^2y'' + 3ty' y = 0$.
 - (a) $t^{\frac{3}{2}}, t$

- (b) t, t^{-1} (c) t, 1 (d) $t^{\frac{1}{2}}, t^{-1}$ (e) $t^{\frac{1}{2}}, 0$

- 16. If $\mathbf{B} = \{(1 \ 0), (1 \ 2)\}$ and $\vec{x} = (1 \ 6)$, then $[\vec{x}]_{\mathbf{B}}$ is equal to

- (a) $(1 \ 6)$ (b) $(1 \ 0)$ (c) $(3 \ 2)$ (d) $(-2 \ 3)$ (e) $(1 \ 2)$

- 17. The eigenvalues of $A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$ are
 - (a) -3, -5, -3 (b) 1, -5, 0 (c) 1, 3, 3

- (d) 1, 3, 5 (e) 1, -2, -2

- 18. Let y(t) be the unique solution to the initial value problem y'' y = 0, y(0) = 2, y'(0) = 00. Then y(1) is equal to
 - (a) 2e
- (b) 2
- (c) $2e^{-1}$ (d) $e + e^{-1}$ (e) 2e 2

- 19. Let y(t) be the unique solution to $y' + \frac{2}{t}y = 4t$ with initial condition y(1) = 3. Then y(2)
 - (a) 8

- (b) $\ln 2 + 2$ (c) $4 + \frac{1}{2}$ (d) $e^4 + 2$ (e) $8 + \frac{1}{4}$

- 20. Let $Y(t) = v_1(t)\cos 3t + v_2(t)\sin 3t$ be a solution to $y'' + 9y = \frac{1}{\sin 3t}$. Then $v_2(t)$ is equal
 - (a) $\frac{1}{\sin 3t}$
- (b) $\frac{t}{3}$

(c) $\cos 3t$

- (d) $\frac{1}{9} \ln|\sin 3t|$
- (e) $\frac{1}{3} \ln |\sin 3t|$

- 21. If $y' = 2y^{100}(3-y)$ and y(0) = 5, then find $\lim_{t \to \infty} y(t)$. (Hint: This is an autonomous equation. You can find the answer by studying graphs of the solution).
 - (a) 2
- (b) 3
- (c) 1
- (d) 0
- (e) 5

- 22. Let y(t) be the unique solution to the initial value problem y'' + 2y' + y = 0, y(0) = 1, y'(0) = 0. Then y(1) is equal to
 - (a) 2e
- (b) $2e^{-1}$ (c) $e + e^{-1}$ (d) 1 (e) 0

- 23. Let y(t) be the unique solution to the equation $y' = y^2$ with y(0) = -1. Then y(1) is equal to
 - (a) 0
- (b) $\frac{-1}{2}$ (c) -4 (d) -1 (e) -3

- 24. The determinant of $\begin{pmatrix} 1 & 5 & 0 \\ 2 & 4 & 1 \\ 0 & -2 & 0 \end{pmatrix}$ is equal to
 - (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e) 5