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1. Introduction: linear operators, invariant subspaces, and polynomials

Throughout these notes V will denote a vector space with finite dimension n over a field
F, and T : V → V will be a linear operator. In many ways, T is easiest to understand if
it is ‘diagonalizable’—that is, if there exists a basis for V relative to which the matrix for
T is diagonal. Diagonalization is not always possible, however. Our main concerns in these
notes will be to find ways of presenting operators as nicely as possible and to understand
thoroughly why they cannot be presented better.

Recall that there are essentially two obstacles to diagonalization. The first is that the
characteristic polynomial for a given operator might not have sufficiently many roots (or at
least roots belonging to the scalar field). For instance, if V is a vector space over R and
T : V → V has characteristic polynomial λ2 +1, then T has no real eigenvalues. The second
and more subtle obstacle to diagonalization occurs when the characteristic polynomial has a
root λ that occurs with multiplicity k > 1, but the eigenspace associated to λ has dimension
smaller than k. The standard example of this latter problem is the linear transformation
T : R2 → R2 whose matrix relative to the standard basis is

[
1 1
0 1

]
.

The only eigenvalue for T is λ = 1, which occurs twice as a root of the characteristic
polynomial. However the eigenspace for this eigenvalue is one dimensional, generated by the
vector (1, 0).

1.1. Invariant subspaces. Confronted with either of these obstacles, we need something to
replace the missing eigenvectors. It turns out that it is better to think in terms of subspaces
than eigenvectors.

Definition 1.1. A subspace H ⊂ V is T -invariant if T (H) ⊂ H.

Invariant subspaces have the following basic properties, whose verification we leave as an
exercise.

Proposition 1.2. If H1, H2 ⊂ V are T -invariant subspaces, then so are H1+H2 and H1∩H2.
If S : V → V is another linear operator and H ⊂ V is invariant with respect to both S and
T , then H is also invariant with respect to S ◦ T and with respect to any linear combination
of S and T .

If v ∈ V is an eigenvector for T , then one has that H = span{v} is a one dimensional
T -invariant subspace. In fact, a one dimensional subspace of V is T -invariant only if it
is spanned by an eigenvector of T . However, one can create invariant subspaces from any
vector, eigen or not.
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Definition 1.3. Given v ∈ V , we call the set

orbT (v) = {v, Tv, T 2v, . . .}

the T -orbit of v. We call
HT,v := span orbT (v)

the T -cyclic subspace generated by v.

Proposition 1.4. For any v ∈ V , the subspace HT,v is T -invariant. If, moreover, H ⊂ V
is any other T -invariant subspace containing v, then HT,v ⊂ H.

Proof. If w ∈ HT,v, then we can write

w = c0v + · · · + ckT
kv

as a linear combination of vectors in orbT,v. Thus

T (w) = c0T (v) + · · ·+ ckT
k+1(v) ∈ HT,v,

too. Hence HT,v is T -invariant. Now if H ⊂ V is a T -invariant subspace containing v,
it follows inductively that Tv, T 2v, · · · ∈ H , too. Since H is closed with respect to linear
combinations, it follows that HT,v ⊂ H . �

Some examples might help here. Both V and {0} are always T -invariant. A one di-
mensional subspace H ⊂ V is T -invariant if and only if H = HT,v for some eigenvector
v ∈ V .

We saw in class last semester that if F = R and λ = a + bi ∈ C is a non-real root of
the characteristic polynomial, then there are vectors u,v ∈ V such T (u) = au − bv and
T (v) = bu + av. In this case HT,u = HT,v = span(v,u) is a two dimensional T -invariant
subspace. In this last case, one can show that in fact HT,v is ‘irreducible’ in the sense that
it contains no smaller non-trivial T -invariant subspaces.

Finally, if T : R3 → R3 is the diagonal transformation T (x1, x2, x3) = (x1, x2, 2x3), then
the vector v = (0, 1, 1) generates a two dimensional cyclic subspace HT,v = {(0, x2, x3) ∈
R3}. It is, however, ‘reducible’ in the sense that it contains the smaller T -cyclic subspace
spanned by the eigenvector (0, 0, 1).

If H is a T -invariant subspace, then it turns out that T ‘induces’ a linear transformation
on the quotient space V/H .

Theorem 1.5. Given a T -invariant subspace H ⊂ V , let Ṽ = V/H and for any v ∈ V ,
let ṽ ∈ Ṽ denote the equivalence class of v. Then there is a well-defined linear operator
T̃ : Ṽ → Ṽ given by

T̃ (ṽ) = (̃Tv).

If, moreover, B = {b1, . . . ,bn} is a basis for V obtained by extending a basis B{b1, . . . ,bk}
for H, then the matrix for T relative to B has block upper triangular form

A =

[
AH ∗
0 Ã

]
,

where AH ∈ Mk×k(F) is the matrix of the restricted operator T |H : H → H relative to BH ,

and Ã ∈ M(n−k)×(n−k)(F) is the matrix of T̃ : Ṽ → Ṽ relative to the basis B̃ = {b̃k+1, . . . , b̃n}.
In particular, the characteristic polynomial of T : V → V is the product of those of T |H and
T̃ .
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Note that in what follows, we will sometimes write T/H instead of T̃ in order to emphasize
the role of H .

Proof. To check that T̃ is well-defined, we suppose that v1,v2 ∈ V satisfy ṽ1 = ṽ2. Then
v1 −v2 ∈ H . Hence T (v1)−T (v2) = T (v1 −v2) ∈ H , too, because H is T -invariant. Hence

T̃v1 = T̃v2, so that our definition of T̃ (ṽ) does not depend on which vector v is chosen to
represent the equivalence class ṽ.

That T̃ is linear follows more or less immediately from linearity of T ; e.g.

T̃ (ṽ1 + ṽ2) = ˜T (v1 + v2) = ˜Tv1 + Tv2 = T̃v1 + T̃v2 = T̃ (ṽ1) + T̃ (ṽ2),

so T̃ respects vector addition. A similar computation shows that T̃ respects scalar multipli-
cation.

Now we turn to the assertion relating the matrices for T , T |H and T̃ . Letting A denote
the matrix for T : V → V relative to B, we recall that the jth column of M is equal to
[Tbj ]B, the coordinates of Tbj relative to the basis B. Now if 1 ≤ j ≤ k, then bj ∈ BH is a
vector in H . So by invariance of H , we have Tbj ∈ H too. Thus the last n − k coordinates
of [Tbj]B vanish and the first k coordinates are equal to [Tbj ]BH

. In short, each of the first
k columns of A have the form

[Tbj ]B =

(
[Tbj]BH

0

)
,

so that taken altogether, the first k columns of A comprise a matrix of block form

(
AH

0

)
.

Turning to the remaining columns k + 1 ≤ j ≤ n of A, we note that if

Tbj = c1b1 + . . . cnbn,

then because each vector in H is equivalent to 0 modulo H ,

T̃ b̃j = ck+1bk+1 + · · ·+ cnbn.

So the last n−k coordinates of Tbj relative to B are equal to the coordinates of T̃ b̃j relative

to B̃. That is, [Tbj]B =

(
∗[

T̃ b̃j

]
B̃

)
. This means that taken together, the last n − k

columns of A comprise a matrix of the form

(
∗
Ã

)
. So A has the block form asserted in

the theorem.
The assertion concerning characteristic polynomials now follows immediately from the fact

that

λI − M =

[
λI − A −B

0 −C

]

also has block upper triangular form, and therefore det(λI −M) = det(λI −A) det(λI −C).
�
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1.2. Polynomials. Having seen that the notion of eigenvector of T can be generalized to
that of an invariant subspace, we now indicate how that of an eigenvalue can by similarly
generalized by considering certain special (i.e T -singular) polynomials associated to T .

We will use F[x] to denote the set of all polynomials p(x) = ckx
k + · · · + c1x + c0, with

coefficients ck, . . . , c0 ∈ F. The degree of p is the largest index k for which the coefficient ck

is non-zero. If p = 0, then we adopt the convention that deg p = −∞. We call a non-zero
p ∈ F[x] monic if it’s leading coefficient ck = 1. Finally, if a, b, q ∈ F[x] are polynomials
such that a = bq, then we will say that a is divisible by b or, more commonly, that b divides
a, signifying the relationship by writing b|a. We will often take advantage of the fact that
b|a implies deg b ≤ deg a. Hence, for instance, the final assertion in Theorem 1.5 may be
restated in slightly weaker form by saying that the characteristic polynomials of T |H and
T/H both divide that of T .

Given a polynomial p(x) ∈ F[x] as above, one can replace the independent variable x by
things other than just elements of F. In our case, we will substitute the linear operator T ,
defining:

p(T ) = ckT
k + · · ·+ c1T + c0id

Here the power T j should be understand as the j-fold composition T ◦ T ◦ · · · ◦ T of T with
itself. One can readily verify the basic features of this kind of substitution, which we now
summarize.

Proposition 1.6. If p, q ∈ F[x] are polynomials, and H ⊂ V is a T -invariant subspace,
then

• H is a p(T ) invariant subspace;
• p(T ) ◦ q(T ) = q(T ) ◦ p(T ) = (pq)(T );
• ker p(T ) is a T -invariant subspace.

The second assertion in Proposition 1.6 says among other things that for any p, q ∈ F[x],
the operators p(T ) and q(T ) commute. Typically in what follows, we will write p(T )q(T )
instead of p(T )◦q(T ). Besides emphasizing the connection between composition of operators
and multiplication of polynomials, this abbreviation accords well with our tendency to write
Tv instead of T (v) when the parentheses start to pile up.

The third assertion in Proposition 1.6 gives the connection between eigenvalues and poly-
nomials: in the case of a linear polynomial p(x) = x−λ, we have that ker p(T ) = ker(λid−T )
is the eigenspace for λ, and in particular λ is an eigenvalue if and only if ker p(T ) is non-
trivial. Let us more generally call a polynomial (of any degree) T -singular if ker p(T ) is
non-trivial.

There is a close, albeit not perfectly complementary, connection between T -singular poly-
nomials and T -cyclic subspaces. Fixing v ∈ V , we observe first that any element w ∈ HT,v

can be written
w = ckT

kv + ck−1T
k−1v + · · ·+ c0v = p(T )v

for some polynomial p(x) = ckx
k + · · · + c0 ∈ F[x]. Hence the T -cyclic subspace generated

by v may be alternatively presented

HT,v = {p(T )v ∈ V : p ∈ F[x]}.

Moreover, since dim HT,v ≤ dim V is finite, there is a smallest non-negative integer k ∈ N

such that {v, Tv, . . . , T kv} is dependent; i.e.

0 = pT,v(T )v
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for some polynomial pT,v ∈ F[x] of minimal degree k. Dividing pT,v by its leading (non-
zero) coefficient ck, we may assume that pT,v is monic. We summarize this discussion in a
definition.

Definition 1.7. The T -minimal polynomial1 of v ∈ V is the monic polynomial pT,v of
smallest non-negative degree such that pT,v(T )v = 0.

There might a priori be many linear combinations of v, . . . , T kv that vanish, so we need
to know first that this definition is not ambiguous.

Proposition 1.8. The polynomial pT,v is well-defined, and HT,v ⊂ ker pT,v(T ). Moreover,
dim HT,v = deg pT,v and more precisely,

HT,v = span{v, Tv, . . . , T k−1v}.

Later we will use a general fact about polynomials to deduce the stronger statement that
if v ∈ ker q(T ), then q is actually a multiple of p. Note that it is not true in general that
HT,v = ker pT,v(T ). If for instance, v ∈ V is an eigenvector for the eigenvalue λ, then HT,v is
always one dimensional, generated by v, whereas pT,v = x− λ, and therefore the eigenspace
ker pT,v(T ) is the full (and possibly higher dimensional) eigenspace for λ.

Proof. To see that pT,v is well-defined, suppose that p ∈ F[x] is a second monic polynomial
of degree k such that p(T )v = 0, then deg(p − pT,v) < k since leading terms cancel, and

(p − pT,v)(T )v = 0.

Because pT,v was chosen to have minimal non-negative degree, it follows that p − pT,v = 0.
Since ker pT,v(T ) is a T -invariant subspace containing v, Proposition 1.4 tells us that

HT,v ⊂ ker pT,v(T ).
Finally, we have by definition of k = deg pT,v that {v, . . . , T k−1v} is an independent set.

Hence dim HT,v ≥ k. Suppose (in order to get a contradiction) that the inequality is actually
strict. That is, there is an element w = p(T )v ∈ H that is not a linear combination of the
vectors v, . . . , T k−1v. We can assume that ℓ := deg p ≥ k is as small as possible, and after
dividing through by the leading coefficient, that p is monic. Then

w = w − 0 = w − pT,v(T )T ℓ−kv = (p − xℓ−kpT,v)(T )v.

However, deg(p − xℓ−kpT,v) < deg p, contradicting the fact that p was supposed to have
minimal degree. Hence {v, . . . , T k−1v} is actually a basis for HT,v. �

1.3. The Cayley-Hamilton Theorem. As a first application of the ideas we have been
discussing, we now prove a very important fact about linear operators. Recall that the
characteristic polynomial of T is

pchar(x) := det(x id − T ) ∈ F[x].

In particular pchar(x) is a monic polynomial with degree equal to the dimension of V .
As it turns out, ker pchar(T ) is all of V . To prove this we need a preliminary result.

Lemma 1.9. If v ∈ V is a non-zero vector, then the T -minimal polynomial pT,v of v is also
the characteristic polynomial of the restricted operator T : HT,v → HT,v.

1In Hoffman and Kunze’s book pT,v is called the T -annihilating polynomial of v
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Proof. The degree k of pT,v is chosen so that B := {v, . . . , T k−1v} is a basis for HT,v, and
the coefficients of pT,v(x) = xk + ck−1x

k−1 + · · ·+ c0 are chosen so that T kv = −ck−1T
k−1v−

· · · − c0v. Thus relative to B, the restricted operator T : HT,v → HT,v has matrix

M :=




0 0 0 . . . 0 −c0

1 0 0 . . . 0 −c1

0 1 0 . . . 0 −c2

0 0 1 . . . 0 −c3
...

0 0 0 . . . 1 −ck−1




Using cofactor expansion about the last column and working from the bottom entry up, we
obtain the characteristic polynomial for T |HT,v

:

det(λI − M) = (λ + ck−1 det Mkk − ck−2 det Mk−1,k + · · ·+ (−1)k+1c0 det M1k

where Mjk are the jk minors of M . On closer inspection, one finds that these have block
diagonal form

Mjk =

[
Aj 0
0 Bj

]

where Aj is a (j − 1)× (j − 1) lower triangular matrix with all entries on the main diagonal
equal to λ and Bj is a (k − j) × (k − j) upper triangular matrix with all entries on the
main diagonal equal to −1. Hence we may finish computing the characteristic polynomial
for T |HT,v

:

det(λI − M) = (λ + ck−1) det Ak det Bk − ck−2 det Ak−1 det Bk + · · · + (−1)k+1c0 det A1 det B1

= λk−1(λ + ck−1) + ck−2λ
k−2 + · · ·+ c0

= pT,v.

�

Theorem 1.10 (Cayley-Hamilton). If V is a finite dimensional vector space, and T : V → V
is a linear operator, then pchar(T ) = 0.

Proof. Given v ∈ V , we may apply Theorem 1.5 to HT,v and then Lemma 1.9 to deduce
that pchar = pT,vq for some q ∈ F[x]. Thus

pchar(T )v = q(T )pT,v(T )v = q(T )0 = 0.

This proves for any non-zero v ∈ V that pchar(T )v = 0. We conclude that pchar(T ) is the
zero operator. �

2. Direct sum decompositions and linear transformations

Here we return to a topic that we touched on at the beginning of last semester. As above,
we let V be a finite dimensional vector space over a field F. Recall that the sum of subspaces
H1, . . . , Hk ⊂ V is the subspace

H1 + · · ·+ Hk := {v1 + · · · + vk ∈ V : vj ∈ Hj}.
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Definition 2.1. We say that H1, . . . , Hk ⊂ V are independent if the only vectors v1 ∈
H1, . . . ,vk ∈ Hk satisfying

v1 + · · ·+ vk = 0

are v1 = · · · = vk = 0.

When H1, . . . , Hk are independent, we say that their sum is direct and denote it by H1 ⊕
· · · ⊕ Hk. It will be useful to us below to be able to verify independence of a collection of
subspaces inductively. To this end we prove

Proposition 2.2. Suppose that H1, . . . , Hk−1 ⊂ V are independent subspaces and that
Hk ⊂ V is another subspace that intersects H1 ⊕ · · · ⊕ Hk−1 trivially. Then H1, . . . , Hk

are independent subspaces.

Proof. Suppose that vj ∈ Hj, 1 ≤ j ≤ k are given and

v1 + · · ·+ vk = 0.

Then

v1 + · · ·+ vk−1 = −vk

is a vector in (H1 ⊕ · · · ⊕ Hk−1) ∩Hk. But this intersection is trivial by hypothesis, so both
sides of the last equation must be zero. In particular, independence of H1, . . . , Hk−1 and the
vanishing of the left side imply that v1 = · · · = vk−1 = 0. Hence H1, . . . , Hk are independent
subspaces. �

As the next proposition indicates, a collection of subspaces whose direct sum is V is
analogous to a basis for V .

Proposition 2.3. Suppose that V = H1 ⊕ · · · ⊕ Hk. Then for any v ∈ V , there are unique
vectors v1 ∈ H1, . . .vk ∈ Hk such that

v = v1 + · · ·+ vk.

The vectors vj in the statement of this proposition are in a sense the ‘coordinates’ of v

relative to the decomposition V = H1 ⊕ · · · ⊕ Hr.

Proof. Given v ∈ V , we have (since V is the sum of H1, . . . , Hk) v1 ∈ H1, . . . ,vk ∈ Hk such
that v = v1 + · · ·+ vk.

In order to establish uniqueness, suppose that we have some other vectors v′
1 ∈ H1, . . . ,v

′
k ∈

Hk satisfying v = v′
1 + . . .v′

k. Then

0 = v − v = (v1 − v′

1) + · · ·+ (vk − v′

k).

Since vj −v′
j ∈ Hj it follows from independence of H1, . . . , Hk that vj = v′

j for each j. That
is, the vectors vj are unique. �

To amplify the analogy between direct sums and bases, we offer

Proposition 2.4. Suppose that V = H1 ⊕ · · · ⊕ Hk and that for each 1 ≤ j ≤ k, we are
given a basis Bj for Hj. Then B := B1 ∪ · · · ∪ Bk is a basis for V .

Let us say that a basis B := B1 ∪ · · · ∪ Bk as in the statement of this proposition is
compatible with the decomposition V = H1 ⊕ · · · ⊕ Hk.
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Proof. Clearly B spans each of the subspaces Hj, and since any vector in V can be written
as a sum of vectors in H1, . . . , Hk, it follows that B spans V .

To see that B is independent, suppose that some linear combination of vectors in B van-
ishes. Taking advantage of the fact that B =

⋃
Bj , we may express this assumption as

follows:
k∑

j=1

∑

b∈Bj

cbb = 0.

Since
∑

b∈Bj
cbb ∈ Vj, it follows from independence of the subspaces Vj that

∑
b∈Bj

cbb = 0

for each j separately. Since Bj is independent, it then follows further that cb = 0 for each
b ∈ Bj. Thus all coefficients in the linear combination vanish, and we conclude that B is
independent. �

Corollary 2.5. If V = H1 ⊕ · · · ⊕ Hk, then dim V = dim H1 + · · ·+ dim Hk.

Proof. For each j ∈ {1, . . . , k}, let Bj be a basis for Hj . Because the Hj are independent,
we have Bj ∩ Bi = ∅ for i 6= j. Thus by the previous proposition, we have

dim V = # ∪ Bj =
∑

#Bj =
∑

dim Hj .

�

Fixing a decomposition V = H1 ⊕ · · · ⊕ Hk and a compatible basis B = B1 ∪ · · · ∪ Bk, we
return to the linear transformation T : V → V introduced at the beginning of these notes.
We will say that the decomposition V = H1⊕· · ·⊕Hk is T -invariant if each of the subspaces
Hj involved is T -invariant.

Theorem 2.6 (Block diagonalization). Let V = H1⊕· · ·⊕Hk be a T -invariant decomposition
of V , and let B = B1 ∪ · · · ∪Bk be a compatible basis for V . For each j, let Ajj be the matrix
relative to Bj of the restricted transformation T : Hj → Hj, and let pj be its characteristic
polynomial. Then the matrix of T relative to B has block diagonal form




A11 0 . . . 0
0 A22 . . . 0

...
0 0 . . . Akk


 .

In particular the characteristic polynomial of T : V → V is p1 . . . pk.

Proof. This is most easily done by induction on the number k of subspaces in the decom-
position. If k = 1 there is nothing to prove. We treat the case k = 2 separately because
the induction step relies on it implicitly. In this case we have B = {v1, . . . ,vn} where
B1 = {v1, . . . ,vk} and B2 = {vk+1, . . . ,vn}. Since H1 = spanB1 and H2 = spanB2 are
T -invariant, it follows as in the proof of Theorem 1.5 that the jth column of [T ]B is given by

[Tvj ]B =

(
[Tvj]B1

0

)
if 1 ≤ j ≤ k, and [Tvj ]B =

(
0

[Tvj]B2

)
if k + 1 ≤ j ≤ n.

Putting all the columns together gives

[T ]B =

[
A1 0
0 A2

]
,
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so the assertion is proved when k = 2.
Supposing now that the assertion is proved when k = K − 1, I consider the case k = K. I

have V = H1 ⊕ H ′ where H ′ = H2 ⊕ · · · ⊕ HK is also an invariant subspace. So by the case
k = 2,

[T ]B =

[
A1 0
0 A′

]
,

where A′ is the matrix for T : H ′ → H ′ relative to the basis B′ = B2 ∪ · · · ∪ BK . And by the
induction hypothesis we further have

A′ =




A22 0 . . . 0
0 A33 . . . 0

...
0 0 . . . Akk


 ,

so the assertion for k = K follows immediately. �

With this theorem we can now better state the goal of these notes: find a T -invariant
direct sum decomposition V = H1 ⊕ · · · ⊕ Hk in which the dimensions of the subspaces
Hj are as small as possible. As the theorem indicates, this will allow us to find a matrix
representing T that is as ‘diagonal’ as possible. Our goal requires us to take a closer look at
the characteristic polynomial of T , and indeed at polynomials generally.

3. Background concerning polynomials

In this section, we present and discuss some useful facts concerning the set F[x] of poly-
nomials with coefficients in the field F. Polynomials in F[x] can be added, subtracted and
multiplied in the usual way, and all the relevant axioms for arithmetic hold. In contrast with
F itself, however, there is no operation of division2 on F[x]. There is, however, ‘division with
remainder’ and this is arguably the most fundamental fact concerning polynomials with field
coefficients.

Theorem 3.1 (Division algorithm). For any polynomials a(x), b(x) ∈ F[x], there are unique
q(x), r(x) ∈ F[x] such that deg r < deg b and

a = bq + r.

Proof. Let S ⊂ F[x] be the set of all polynomials of the form a − bp for some p ∈ F[x]. Let
r = a − bq ∈ S be a polynomial (possibly zero) of minimal degree. Suppose deg r(x) = k
with leading coefficient ck 6= 0 and that deg b(x) = ℓ with leading coefficient c′ℓ. If k ≥ ℓ,
then

r(x) −
ck

c′ℓ
xk−ℓb = a − (q +

ck

cℓ

xk−ℓ)b ∈ S

is a polynomial with degree strictly smaller than k, because the leading terms in the difference
on the left cancel each other. This contradicts the minimality of deg r, so it must be instead
that k < ℓ. We conclude that a = bq + r where deg r < deg b, as the theorem asserts.

To prove that r, q ∈ F[x] are unique, suppose that r̃, q̃ ∈ F[x] also satisfy the conclusion
of the theorem. Then bq + r = bq̃ + r̃. Rearranging, we find that

b(q − q̃) = r − r̃.

2in mathematical parlance, this state of affairs is summarized by saying that F[x] is not a field, but rather
a commutative ring.
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Comparing degrees then gives

deg b + deg(q − q̃) = deg(r − r̃) < deg b,

which implies that deg(q − q̃) < 0; i.e. q = q̃, and therefore r = r̃. So the polynomials
q, r ∈ F[x] are unique. �

All the other results in this section, whether we prove them or not, depend ultimately
on the division algorithm. The reader might note in all this that there is a very compelling
analogy between polynomials and integers, with the notion of ‘degree’ for polynomials playing
the role of ‘absolute value’ for integers. In particular, the notion of ‘prime number’ is replaced
by that of ‘irreducible polynomial’.

Definition 3.2. A non-constant polynomial p ∈ F[x] is called irreducible if the only the
polynomials in F[x] that divide p are constants and constant multiples of p.

Any polynomial of degree one is irreducible. The fundamental theorem of algebra (‘every
complex polynomial of degree at least one has a complex root’) implies that when F = C,
the converse statement holds: any irreducible polynomial in C[x] has degree one.

For arbitrary fields, it is a tricky thing to determine whether a given polynomial of degree
two or higher is irreducible. For instance x2 + 1 is irreducible as a polynomial in R[x] but
not as a polynomial in C[x]. Likewise x2 − 2 is irreducible as a polynomial in Q[x] but not
as a polynomial in R[x]. Keeping this in mind might make the next two theorems seem a
little less ‘obvious’. The hard part of each theorem is the uniqueness.

Theorem 3.3. Given any two polynomials a, b ∈ F[x], not both equal to zero, there is a

unique monic d ∈ F[x] such that d|a, d|b and deg d ≥ deg d̃ for every other d̃ ∈ F[x] that

divides both a and b. In fact if d̃ ∈ F[x] divides both a and b, then d̃|d, too.

The polynomial d is called the greatest common divisor of a and b and denoted gcd(a, b).
If gcd(a, b) = 1, then a and b are said to be relatively prime. It turns out, for reasons we
discuss below, that gcd(a, b) is not very sensitive to the underlying field. For instance

gcd(x4 − 1, 3x3 + 3x) = x2 + 1

regardless of whether x4 − 1 and x3 + x are though of as polynomials in Q[x], in R[x], or
in C[x]. This makes the concept of ‘relatively prime polynomials’ more straightforward in
many cases than that of ‘irreducible polynomial’.

Theorem 3.4. Every non-constant polynomial p(x) ∈ F[x] can be factored

p = q1 . . . qk

into irreducible polynomials qj ∈ F[x]. The factorization is unique except for the order and
leading coefficients of the polynomials qj.

The decomposition of p into irreducible polynomials is called the prime factorization of p.
Often the ambiguity concerning leading coefficients in prime factorizations is addressed by
requiring p and all the factors qj to be monic. Moreover, it is common to acknowledge re-
peated factors explicitly in prime factorizations by writing the factorization in the alternative
form

p = qm1

1 . . . qmℓ

ℓ ,

and implicitly assuming that all the qj are distinct (i.e. i 6= j implies qi 6= cqj for any c ∈ F).
Here is the concept that links the division algorithm to the previous two results.
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Definition 3.5. A non-empty set of polynomials S ⊂ F[x] is called an ideal if for any
a, b ∈ S and p ∈ F[x], we have that a + b ∈ S and ap ∈ S.

The resemblance between the notion of an ‘ideal’ of F[x] and that of a ‘subspace’ of a
vector space is not a coincidence. The main fact concerning ideals of F[x] is that they are
all ‘one dimensional.’

Theorem 3.6. Suppose that S ⊂ F[x] is an ideal containing at least one non-zero polyno-
mial. Then S contains a unique (up to constant multiple) non-zero polynomial of smallest
possible degree, and in fact

S = pF[x] := {pq : q ∈ F[x]}

is the set of all polynomial multiples of p.

The polynomial p in the statement of this theorem is called the generator of S. We can
(and usually do) assume with no loss of generality that p is monic.

Proof. Given p as in the theorem, we have by definition of ideal that S contains every poly-
nomial multiple pq, q ∈ F[x] of p; i.e. that pF[x] ⊂ S. Suppose now (to get a contradiction)
that S contains something that is not a multiple of p. That is, suppose there exists p̃ ∈ S
such that p does not divide p̃. Then by the division algorithm, we have r, q ∈ F[x] such that
deg r < deg p and p̃ = pq + r. Since p does not divide p̃, it follows that r 6= 0. Moreover,
since r = pq − p̃ we have from the definition of ideal that r ∈ S. That is, there is a non-zero
element of S whose degree is smaller than that of p—a contradiction. We conclude that p̃
does not exist and that S is precisely equal to pF[x].

To see that p is unique, suppose that p̃ ∈ S is another non-zero polynomial of smallest
degree. Then, as we have just shown, p̃ = pq for some q ∈ F[x]. Since deg p = deg p̃ =
deg p + deg q, it follows that deg q = 0. That is, q = c0 ∈ F is a constant. �

We illustrate the power of the ‘ideal’ concept as follows.
Proof of Theorem 3.3. Given a, b ∈ F[x] as in the theorem, we let

S = {ap + bq : p, q ∈ F[x]}

be the set of all polynomial combinations of a and b. The reader will (on pain of lightening
strike for failing to comply) verify that S is an ideal of F[x] and that S contains a non-zero
element. Hence S = dF[x], where d ∈ S is the unique non-zero and monic element of smallest
degree.

Then on the one hand, we have d|a and d|b, since a, b ∈ S. And on the other hand d
belongs to S, so we have by definition of S that

d = ap + bq

for some p, q ∈ F[x]. From this, one may (i.e. you will now pull out pencil and paper in

order to) deduce that any other common factor d̃ of a and b also divides d. In particular, if

deg d̃ ≤ deg d, and if deg d̃ = deg d, then d̃ and d are just constant multiples of one another.
Hence d = gcd(a, b) is unique. �

Incidentally, the same idea leads to a very efficient method for actually computing greatest
common divisors called the Euclidean algorithm. I’ll be happy to provide further details in
person. Beyond showing the usefulness of ideals, our discussion contains some facts that we
will need later. These I summarize as follows.
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Theorem 3.7. For any non-zero polynomials a, b ∈ F[x], there are p, q ∈ F[x] such that

ap + bq = gcd(a, b).

In particular, if a and b are relatively prime, then there are p, q ∈ F[x] such that ap+ bq = 1.

Returning to larger context of these notes, we define two more relevant ideals. Recall that
V is a finite dimensional vector space over F and T : V → V is a linear operator. Then one
may consider the set

AT = {p ∈ F[x] : p(T ) = 0}

of polynomials that ‘annihilate’ T , and given v ∈ V the set

AT,v = {p ∈ F[x] : p(T )v = 0}

of polynomials p such that p(T ) annihilates v. Clearly, AT ⊂ AT,v. The reader will verify
(or suffer greatly premature and total hair loss) that AT and AT,v are both ideals of F[x].

In terms of this new notation, the generator pmin of AT is called the minimal polynomial
of T , and in light of Theorem 3.7 the Cayley-Hamilton Theorem may be restated by saying
that ‘the minimal polynomial of T divides the characteristic polynomial of T ’.

The minimal degree, non-zero element of AT,v is (by definition) pT,v. Hence Theorem 3.6
implies that pT,v divides pmin ∈ AT ⊂ AT,v.

4. Primary decomposition of linear operators

A first application of our results concerning polynomials will be a kind of ‘course’ decom-
position of the vector space V into T -invariant subspaces based on the primary factorization
of the characteristic polynomial pmin for T .

Lemma 4.1. Suppose that p, q ∈ F[x] are relatively prime polynomials. Then

ker p(T )q(T ) = ker p(T ) ⊕ ker q(T ).

Proof. The hypothesis implies that there exist a, b ∈ F[x] such that ap + bq = 1. Hence if
v ∈ ker p(T ) ∩ ker q(T ), then

v = id(v) = (a(T )p(T ) + b(T )q(T ))v = a(T )p(T )v + b(T )q(T )v = a(T )0 + b(T )0 = 0.

This proves that ker p(T ) ∩ ker q(T ) = 0, i.e. that ker p(T ) and ker q(T ) are independent
subspaces.

If, moreover, v = u + w where u ∈ ker p(T ) and w ∈ ker q(T ), then

p(T )q(T )v = q(T )p(T )v + p(T )q(T )u = q(T )0 + p(T )0 = 0.

Hence ker p(T ) ⊕ ker q(T ) ⊂ ker p(T )q(T ).
Finally, suppose v ∈ ker p(T )q(T ). From the first paragraph, we have

v = id(v) = (a(T )p(T ) + b(T )q(T ))v = w + u

where w = a(T )p(T )v and u = b(T )q(T )v. Thus

q(T )w = q(T )a(T )p(T )v = a(T )p(T )q(T )v = a(T )0 = 0,

so w ∈ ker q(T ). Similarly, u ∈ ker p(T ). Hence v = w + u ∈ ker p(T ) ⊕ ker q(T ). We
conclude that ker p(T )q(T ) = ker p(T ) ⊕ ker q(T ), as desired. �
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If q ∈ F[x] is any irreducible polynomial, then we will call the set

{v ∈ V : q(T )mv = 0 for some m ∈ N}

the primary subspace associated to q (and T ).

Proposition 4.2. For any irreducible polynomial q ∈ F[x], the associated primary subspace
is a T -invariant subspace of V . It is non-trivial only if q divides the minimal polynomial pmin

of T . More specifically, if the multiplicity of q as a factor of pmin is mq, then the primary
subspace associated to q is just ker q(T )mq .

The last assertion amounts to noting that in the definition of primary subspace for q, one
need not consider ker q(T )m for arbitrary m but instead only m = mq.

Proof. We leave this as a homework exercise, pointing out only that it is similar to the proof
of Lemma 4.1 above. �

Theorem 4.3 (Primary decomposition theorem–version I). Suppose that T is a non-zero
operator whose minimal polynomial pmin has distinct prime factors q1, . . . , qℓ ∈ F[x] and
associated primary subspaces H1, . . . , Hℓ ⊂ V . Then

V = H1 ⊕ · · · ⊕ Hℓ.

In addition, for each factor qj, the minimal polynomial of the restriciton T : Hj → Hj is q
mj

j

where mj is multiplicity of qj as a factor of pmin.

Proof. We claim that for each j = 1, . . . , ℓ that

ker q1(T )m1 . . . qj(T )mj = H1 ⊕ · · · ⊕ Hj.

When j = 1, there is nothing to show. Assuming inductively that the claim is valid for all
j < J , we consider the case j = J . Since qmJ

J is relatively prime to qm1

1 . . . q
mJ−1

J−1 , we may
apply Lemma 4.1 to get

ker q1(T )m1 . . . qJ(T )mJ = ker(q1(T )m1 . . . qJ−1(T )mJ−1) ⊕ ker qJ (T )mJ

= (ker q1(T )m1 ⊕ · · · ⊕ ker qJ−1(T )mJ−1) ⊕ ker qJ(T )mJ

= ker q1(T )m1 ⊕ · · · ⊕ ker qJ−1(T )mJ−1 ⊕ ker qJ(T )mJ

where the second inequality follows from the induction hypothesis. This verifies our claim.
Applying it when j = ℓ, we find that

V = ker pmin(T ) = H1 ⊕ · · · ⊕ Hℓ.

Turning to the final assertion in the theorem, we let pj be the minimal polynomial for the

restriction T : Hj → Hj . Then pj |q
mj

j by Proposition 4.2, so pj = q
kj

j for some kj ≤ mj . On
the other hand, any vector v ∈ V can be decomposed v = v1 + · · · + vℓ where vj ∈ Hj . In
particular

p1(T ) . . . pj(T ) . . . pℓ(T )v = 0

simply because pj(T )v = 0 and all the factors on the left commute with each other. Hence
v ∈ ker(p1 . . . pℓ)(T ) for any v ∈ V , and it follows that pmin = qm1

1 . . . qmℓ

ℓ must divide

p1 . . . pℓ = qk1

1 . . . qkℓ

ℓ . Since the qj are distinct irreducible polynomials and kj ≤ mj , we
conclude that mj = kj for each j. That is, pj = q

mj

j as asserted. �
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We will next sharpen the conclusions of the Primary Decomposition Theorem by comput-
ing the dimensions of the subspaces Hj. We do this by relating Hj to the primary factors
of the characteristic polynomial pchar of T . As noted at the end of the last section, Cayley-
Hamilton may be restated by saying that pmin|pchar. In particular, every irreducible factor of
pmin is also a factor of pchar. Though pmin need not equal pchar, this last statement remains
true with pmin and pchar reversed.

Theorem 4.4. pmin and pchar have the same irreducible factors (albeit with different multi-
plicities).

Proof. Let pchar = p1 . . . pk be the prime factorization of the characteristic polynomial. Our
goal is to show that each factor pj is also a prime factor of pmin. We will prove this by
induction on the total number k of irreducible factors counted with multiplicity.

If k = 0, then pchar = 1 has no prime factors and the assertion is true vacuously.
For the induction step suppose that the assertion remains true for all k < K. If k = K, we

choose any non-zero vector v ∈ V and let H = HT,v be the cyclic subspace associated to v.
The characteristic and minimal polynomials of T |H are both equal to pT,v. Let p̃char and p̃min

denote the characteristic and minimal polynomials of the induced operator T̃ : V/H → V/H .
Then from Theorem 1.5 I have pchar = pT,vp̃char.

There is no such simple formula relating the corresponding minimal polynomials pmin, pT,v,
and p̃min. However, I claim that the last two of these each divide the first. To see this, note
that since pmin(T ) = 0, I have in particular that pmin(T )v = 0. Hence pT,v|pmin. Moreover

pmin(T̃ ) = ˜pmin(T ) = 0̃ = 0, so p̃min|pmin, too. My claim is proved.
Now let pj be any prime factor of pchar = pT,vpchar. Then either pj |pT,v or pj |p̃char. If

pj|pT,v, then pj |pmin by the previous paragraph. Suppose on the other hand that pj |p̃char.
Since deg pT,v = dim HT,v ≥ 1, I infer that pT,v has at least one prime factor. Hence p̃char

has less than K prime factors, and I may apply the induction hypothesis to see that pj |p̃min.
Hence again pj|pmin by the previous paragraph. This completes the induction step and the
proof. �

Theorem 4.5 (Primary decomposition–version II). Let pchar = qr1

1 . . . qrℓ

ℓ be the primary
factorization of the characteristic polynomial of T , and let Hj = ker q

mj

j (T ) as in Theorem
4.3. Then qr1

1 is the characteristic polynomial of the restriction T : Hj → Hj, and in
particular, the dimension of Hj is nj deg qj.

Proof. Let pj be the characteristic polynomial of T : Hj → Hj . Then pj = q
Rj

j for some
Rj ≥ mj by Cayley-Hamilton and Theorem 4.4. Moreover, by Theorem 2.6, we have pchar =
p1 . . . pℓ. Since the qj are distinct irreducible polynomials, it follows that Rj = rj for each j.
�

It is instructive to consider the implications of Theorems 4.3 and 4.5 in the case where the
underlying field F is C. Then the primary decomposition of the characteristic polynomial is
given by

pchar(x) = (x − λ1)
m1 . . . (x − λℓ)

mℓ .

Hence

V = ker(T − λ1id)m1 ⊕ · · · ⊕ ker(T − λℓid)mℓ .
14



Now suppose that B = B1∪· · ·∪Bℓ is a basis for V obtained by concatenating bases for each
the T -invariant subspaces ker(T − λjid)mj . Then by Corollary 2.6, we see that the matrix
for T relative to B has block diagonal form

A =




A1 0 . . . 0
0 A2 . . . 0

...
0 0 . . . Ak




where Aj is the matrix for T |ker(T−λj id)mj relative to Bj . In particular (Aj − λjI)mj = 0.
That is, Aj = λjI + Nj , where Nj is nilpotent (of order mj). Reassembling we see that

A =




λ1I 0 . . . 0
0 λ2I . . . 0

...
0 0 . . . λℓI


+




N1 0 . . . 0
0 N2 . . . 0

...
0 0 . . . Nk


 ,

where corresponding blocks in the two matrices each have the same sizes. Hence A = S +N
where S is diagonal, N is nilpotent and S and N commute. If we also use S and N to denote
the linear operators on V given by these matrices, we arrive at

Theorem 4.6 (SN Decomposition). If T : V → V is a linear operator on a finite dimensional
complex vector space, the T = S + N , where S is diagonalizable, N is nilpotent, and S and
N commute.

This theorem is very useful for computing eA where A is a matrix with complex entries.
The theorem tells us that eA = eSP (N) where eS is easily computed for diagonal S and P is
the Taylor polynomial for ex with degree one less than the order of the nilpotent matrix N .

5. Cyclic decomposition and Jordan Canonical Form

If the operator T is diagonalizable, then the primary subspaces of V are just the various
eigenspaces for T . Of course in this case, one can further decompose an eigenspace into
smaller T -invariant subspaces simply by choosing a basis. Since each element v of the basis
is an eigenvector, it spans a one dimensional invariant subspace HT,v, and the (direct) sum
of the subspaces HT,v is the entire eigenspace.

The next theorem, whose statement and proof are the main goals of this section, says that
the general situation is somewhat analogous to the diagonalizable one.

Theorem 5.1 (Cyclic decomposition theorem). Let T : V → V be a linear operator on a
finite dimensional vector space over a field F. Then there are non-zero vectors v1, . . . ,vk ∈
V , positive integers m1, . . . , mk and (not necessarily distint) monic irreducible polynomials
q1, . . . , qk ∈ F[x] such that

• pT,vj
= qmj for each 1 ≤ j ≤ k.

• V = HT,v1
⊕ · · · ⊕ . . .HT,vk

.

We will call any decomposition V = HT,v1
⊕ · · · ⊕ . . .HT,vk

satisfying the conclusions
of this theorem a cyclic decomposition of V relative to T . Note that each subspace HT,vj

in the decomposition is contained in the primary subspace associated to the polynomial q.
Since, as we learned in the previous section, the primary subspaces already give an invariant
decomposition of T , it suffices to prove the theorem in the case where the minimal polynomial
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for T has the form pmin = qm for some r ≥ 1—i.e under the assumption that V is equal to
the primary subspace associated to q. So until the proof of Theorem 5.1 is complete, we will
operate under this assumption. The proof of this theorem is somewhat long and requires
some preliminary lemmas.

Lemma 5.2. Let w ∈ ker q(T ) be any non-zero vector. Then pT,w = q, and in particular,
dim HT,w = deg q. Moreover, HT,w = HT,w′ for any non-zero vector w′ ∈ HT,w.

Proof. Since w 6= 0 and q(T )w = 0, we have that pT,w is a monic polynomial with degree
at least 1 that divides q. Since q is irreducible, pT,w = q. If w′ ∈ HT,w is another non-zero
vector, then HT,w′ ⊂ HT,w. But dim HT,w′ = deg q, too, so HT,w′ = HT,w. �

Lemma 5.3. Let v ∈ V be any non-zero vector and let W = HT,v∩ker q(T ). Then W = HT,w

for any non-zero w ∈ W . If v /∈ W , then for any vector w ∈ W there is a vector u ∈ HT,v

such that q(T )u = w.

Proof. Since q(T )mv = 0, it follows that pT,v divides qm and is therefore equal to qr for some
r ≤ m. Since v 6= 0, we have r ≥ 1. Thus w = q(T )r−1v is a non-zero vector in HT,v such
that q(T )w = 0, so W is non-trivial.

Clearly, HT,w ⊂ W . To see that the reverse inclusion holds, let w′ ∈ W be any other vector.
Then w′ = p(T )v for some polynomial p ∈ F[x]. Moreover, q(T )p(T )v = q(T )w′ = 0, so
that qr divides pq. Hence p = qr−1a for some a ∈ F[x], and

w′ = p(T )v = a(T )q(T )r−1v = a(T )w ∈ HT,w.

We conclude that W ⊂ HT,w, as desired.
Lemma 5.2 now tells us that W = HT,w for any non-zero w ∈ W . And if v /∈ W , then

r > 1 and we further obtain that w = q(T )u where u = a(T )q(T )r−2v. �

Lemma 5.4. Let W ⊂ ker q(T ) be a T -invariant subspace. Then there are vectors w1, . . . ,ws

such that
ker q(T ) = W ⊕ HT,w1

⊕ · · · ⊕ HT,ws
.

The number of vectors wj is uniquely determined by the formula s = dimker q(T )−dim W

deg q
.

Proof. Suppose W ′ ⊂ ker q(T ) is any invariant subspace and w ∈ ker q(T ) a non-zero vector.
If there exists a non-zero vector w′ ∈ HT,w∩W ′, then by invariance of W ′, we have HT,w′ ⊂ W
and by Lemma 5.2 that w ∈ W ′. Hence we arrive at a dichotomy: either w ∈ W ′, or
W ′ ∩ HT,w is trivial. Based on this, we now construct our list of vectors wj .

Suppose in fact that w1, . . . ,ws ∈ ker q(T ) is any list of non-zero vectors such that the sub-
spaces W, HT,w1

, . . . , HT,ws
are independent. Then using Lemma 5.2 we compare dimensions

and find that
dim W + s deg q ≤ dim ker q(T )

with equality if and only if ker q(T ) = W ⊕ HT,w1
⊕ · · · ⊕ HT,ws

. In particular, the number
s of vectors in the list is bounded above, and we may choose the list so that s is as large
as possible. If ker q(T ) 6= W ′ := W ⊕ HT,w1

⊕ · · · ⊕ HT,ws
, then we can choose a non-zero

ws+1 ∈ ker q(T ) − W ′. But according to the dichotomy established in the first paragraph,
HT,ws+1

∩W ′ is trivial. And therefore Proposition 2.2 tells us that W, HT,w1
, . . . , HT,ws+1

are
independent subspaces, contradicting the assumption that our list of subspaces was as long
as possible. We conclude that ker q(T ) = W ′ after all. �

16



Having laid some groundwork, we can now proceed to the proof of our main result.
Proof of Theorem 5.1. Recall that we are assuming with no loss of generality that pmin =
qm, where q ∈ F[x] is irreducible. We will proceed by induction on m. If m = 1, then
V = ker q(T ), and the theorem follows from applying Lemma 5.4 with W = {0}.

Supposing that the theorem is true for all m < M , we consider the case m = M . Let
Ṽ = V/ ker q(T ). Since ker q(T ) is invariant, we have an induced operator T̃ : Ṽ → Ṽ . Given

any v ∈ V , we have q(T )mv = 0, so v ∈ ker q(T )M−1. Hence q(T̃ )M−1ṽ = ˜q(T )M−1v = 0̃.
Thus the minimal polynomial for T̃ : Ṽ → Ṽ is qr for some r < M . It follows from our
induction hypothesis that there are non-zero vectors ṽ1, . . . , ṽp ∈ Ṽ such that

Ṽ = HT̃ ,ṽ1
⊕ · · · ⊕ HT̃ ,ṽp

.

Working back in V , we let W = (HT,v1
+ · · ·+HT,vp

)∩ker q(T ), which is invariant. Lemma
5.4 gives us vectors vp+1, . . . ,vk such that ker q(T ) = W ⊕ HT,vp+1

⊕ · · · ⊕ HT,vk
. We claim

that

V = HT,v1
⊕ · · · ⊕ HT,vk

,

which completes the induction step.
To prove the claim, let us first show that HT,v1

, . . . , HT,vk
are independent. That is,

suppose we have wj ∈ HT,vj
such that

w1 + · · ·+ wk = 0.

Then since wp+1, . . . ,wk ∈ ker q(T ), we may pass to the quotient Ṽ and obtain

w̃1 + · · ·+ w̃p = 0̃.

Since HT̃ ,ṽ1
, . . . , HT̃ ,ṽp

are independent, it follows that w̃1, . . . , w̃p = 0̃. That is, wj ∈

ker q(T ) ∩ HT,vj
⊂ W for 1 ≤ j ≤ p. From independence of W, HT,vp+1

, . . .HT,vk
, we then

obtain that 0 = w1 + · · ·+ wp = wp+1 = · · · = wk.
By Lemma 5.3 moreover, there are vectors uj ∈ HT,vj

such that q(T )uj = wj . Hence

q(T )(u1 + · · ·+ up) = w1 + · · ·+ wp = 0.

In other words, moving to the quotient again, we get

ũ1 + · · · + ũp = 0̃

Using independence of the subspaces HT̃ ,ṽj
again, we infer that uj ∈ ker q(T ) and therefore

wj = q(T )uj = 0, for 1 ≤ j ≤ p. This proves that HT,v1
, . . . , HT,vk

are independent
subspaces.

To complete the proof of the claim, we must show V = HT,v1
+ · · ·+ HT,vk

. Given v ∈ V ,
we have ṽ = ũ1 + . . . ũp for some uj ∈ HT,vj

, 1 ≤ j ≤ p. Hence

v = u1 + · · · + up + w

for some w ∈ ker q(T ). Additionally, w = w1 + . . .wk for some wj ∈ HT,vj
∩ker q(T ). Hence

v ∈ HT,v1
+ · · ·+ HT,vk

, as desired, and the claim is proved. �

Unlike the subspaces in the Primary Decomposition Theorem, those in the Cyclic Decom-
position Theorem are not uniquely determined. They depend on the choices of vectors vj

made along the way. However, some aspects of the subspaces do not depend on these choices.
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Theorem 5.5. Let

V = HT,v1
⊕ · · · ⊕ HT,vk

= HT,w1
⊕ · · · ⊕ HT,wℓ

be two cyclic decompositions of V relative to T . Then in fact k = ℓ and by reindexing the
vectors in one of the decompositions, one may arrange that for each 1 ≤ j ≤ k, the minimal
polynomial for the restriction T : HT,vj

→ HT,vj
is the same as that of T : HT,wj

→ HT,wj
.

In particular, dim HT,vj
= dim HT,wj

.

As observed after the statement of Theorem 5.1, any cyclic decomposition of V relative
to T refines the primary decomposition of V . Hence we may again assume that pmin = qm,
where q ∈ F[x] is monic and irreducible. Under this assumption it suffices to show only that
we can reindex the vectors in the two decompositions so that dim HT,vj

= dim HT,wj
for all

1 ≤ j ≤ min{k, ℓ}. Everything else follows from the facts that dim V =
∑k

j=1 dim HT,vj
=∑ℓ

j=1 dim HT,wj
and that the minimal polynomial of the restriction T : HT,v → HT,v to a

cyclic subspace is qr where r deg q = dim HT,v.

We will need some more auxiliary results. Let Ṽ = V/ ker q(T ) and T̃ be as in the proof
of Theorem 5.1.

Lemma 5.6. The minimal polynomial of T̃ is qm−1.

Proof. Given any ṽ ∈ Ṽ , we have q(T )mv = 0. Hence q(T )m−1v ∈ ker q(T ). Hence q(T̃ )ṽ =
0̃. From this, we conclude that the minimal polynomial of T is qr for some r ≤ m − 1.

On the other hand, the logic reverses: since q(T̃ )rṽ = 0 for all ṽ ∈ Ṽ , we have q(T )rv ∈
ker q(T ). Thus q(T )r+1v = 0 for all v ∈ V , and from this we see that Hence pmin = qm

where m ≤ r + 1. Reconciling the two paragraphs, we obtain r = m − 1 as asserted. �

Lemma 5.7. Suppose that H1, . . . , Hk ⊂ V are independent subspaces, each invariant by T .
For each 1 ≤ j ≤ k, set

H̃j = {ṽ ∈ Ṽ : v ∈ Hj}.

Then H̃1, . . . , H̃K ⊂ Ṽ are independent subspaces.

Proof. Given w̃j ∈ H̃j, we may suppose wj ∈ HT,vj
. If

w̃1 + · · ·+ w̃k = 0̃,

then w1 + · · ·+ wk ∈ ker q(T ). That is,

q(T )w1 + · · ·+ q(T )wk = 0.

By invariance of Hj we have q(T )wj ∈ Hj, and hence by independence of the Hj, we have
q(T )wj = 0 for each j. So w̃j = 0̃ for each j, which proves that the subspaces HT̃ ,ṽj

are

independent. �

Proof of Theorem 5.5. Again we proceed by induction on m, the case m = 1 being an
immediate consequence of Lemmas 5.2 and 5.4.

Assume the corollary has been established for all m < M and consider the case m = M .
Suppose the subspaces HT,v1

, . . . , HT,vk
are reordered, and p ≤ k chosen so that HT,vj

⊂
ker q(T ) if and only if j > p. Then HT̃ ,ṽj

is trivial if and only if j > p. So by Lemma

5.7, HT̃ ,ṽ1
, . . . , HT̃ ,ṽp

furnishes a cyclic decomposition of Ṽ . Likewise, we may reorder the
18



subspaces HT,w1
, . . . , HT,wℓ

and choose s ≤ ℓ so that HT,ws+1
, . . . , HT,wℓ

⊂ ker q(T ) and

HT̃ ,w̃1
, . . .HT̃ ,w̃s

furnish a cyclic decomposition of Ṽ .
Now from Lemma 5.6 and our induction hypothesis, we have that p = s and after reorder-

ing subspaces again, dim HT̃ ,ṽj
= dim HT̃ ,w̃j

for all 1 ≤ j ≤ p. The remaining subspaces on
each list all have dimension equal to deg q, so the induction step is complete and the theorem
is proved. �

As a final remark about general linear operators, we should point out that a cyclic de-
composition of V relative to T is the finest possible decomposition of V into T -invariant
subspaces.

Theorem 5.8. Suppose V = H1 ⊕ . . .Hℓ, where Hj ⊂ V are T -invariant subspaces. Then
there is a cyclic decomposition

V = HT,v1
⊕ . . . HT,vk

of V relative to T such that for each j, we have HT,vj
⊂ Hi for some i (depending on j).

Proof. Since Hj is T -invariant, we can apply Theorem 5.1 to the restriction T : Hj → Hj

and obtain a cyclic decomposition

Hj = HT,v1,j
⊕ · · · ⊕ HT,vkj,j

.

Then the subspaces {HT,vi,j
: 1 ≤ i ≤ ℓ and 1 ≤ j ≤ ki} form a cyclic decomposition of V

relative to T . �

As with the primary decomposition theorem, we would like to see what the cyclic decom-
position theorem says in the particular case when the vector space V is complex. In this
case, we have that q(x) = (x − λ) for some root λ ∈ C of pchar. So if v = vj is one of the
vectors in the conclusion of Theorem 5.1 and pT,v = qr, then {v, . . . , T r−1v} is a basis for
HT,v.

Proposition 5.9. An alternative basis for HT,v is

B′ = {v, (T − λ)v, . . . , (T − λ)r−1v}.

The matrix for T : HT,v → HT,v relative to B′ is



λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0

...
0 0 0 . . . 1
0 0 0 . . . λ




Proof. To prove the first assertion, it suffice to show that B′ is merely independent, because
#B′ = dim HT,v. So suppose that

0 = c0v + · · · + cr−1(T − λ)r−1v = p(T )v,

where p(x) =
∑r−1

j=0 cj(x − λ)j is a polynomial of degree at most r − 1. On the other hand,

by definition of pT,v = (T − λ)r, we have that (x− λ)r must divide p. The only way this can
happen is if p = 0. Since {1, x − λ, . . . , (x − λ)r−1} are independent polynomials, we infer
that all the coefficients cj vanish. This proves that B′ is independent and therefore a basis.
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Turning to the matrix for T : HT,v → HT,v relative to B′, we note that

T (T − λ)jv = (T − λ)j+1v + λ(T − λ)jv.

Hence the jth column in [T ]B′ is (presented horizontally) [T (T−λ)jv]B′ = (0, . . . , 1, λ, . . . , 0),
where the λ falls in the jth entry of the column. �

Applying Proposition 5.9 to each subspace in the cyclic decomposition of each non-trivial
primary subspace associated to T : V → V , we arrive at the famous

Corollary 5.10 (Jordan canonical form). Suppose that T : V → V is a linear operator on
a finite dimensional complex vector space V . Then there is a basis B for V such that the
matrix T relative to B has block diagonal form




A1 0 . . . 0
0 A2 . . . 0

...
0 0 . . . Ak




where each matrix Aj is a kj × kj matrix of the form



λj 1 0 . . . 0
0 λj 1 . . . 0
0 0 λj . . . 0

...
0 0 0 . . . 1
0 0 0 . . . λj




.

for some root λj of the characteristic polynomial of T .
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