
Assignment 1
Math 60380, Winter ‘10 Due Friday, February 5

Textbook problems:

GK, p249: 65.

Solution. False. For a counterexample choose any negative subharmonic
function that is not harmonic. For instance, u(z) = log |z| on D(0, 1). Or (if
you prefer something bounded) u(z) = |z|2 − 1 on D(0, 1).

Problem 1. (This problem expands on exercise 5 in Krantz; it also depends on your knowing
a bit about differential forms—wedge product and Green’s/Stokes’ Theorem mostly). Let
η = Adx + B dy be a 1-form on an open set Ω ⊂ C. We define ∗η to be the 1-form
−B dx+ Ady.

(a) Let u : Ω → R be a C2 function. One calls ∗du (sometimes written ‘dcu’) the conjugate

differential of u. Show that d ∗ du = ∆u dx ∧ dy. Hence ∗du is closed if and only if f
is harmonic.

Solution. I compute

d ∗ du = d(−uy dx+ ux dy) = (−uxy dx+ −uyy dy) ∧ dx+ (uxx dx+ uyx dy) ∧ dy

= −uyy dy ∧ dx+ uxx dx ∧ dy = (uxx + uyy) dx ∧ dy = ∆u dx ∧ dy.

The third equality holds because dx ∧ dx = dy ∧ dy = 0 and the fourth
because dy ∧ dx = −dx ∧ dy.

(b) Show that if v is a second C2 function, then du ∧ ∗dv = dv ∧ ∗du.

Solution.

du∧∗dv = (ux dx+uy dy)∧(−vy dx+vx dy) = uxvx dx∧dy−uyvy dy∧dx = (uxvx+uyvy) dx∧dy.

Since the last expression is symmetric in u and v, it follows that it is
also equal to dv ∧ ∗du.

(c) Show that if u is harmonic and Ω is simply connected that ∗du = dv where v : Ω → R

is any harmonic conjugate for u. Deduce from this a simple expression for ∗d log |z|.

Solution. Since Ω is simply connected, we know there exists a harmonic
conjugate v for u. Since u+iv is holomorphic, it follows from the Cauchy-
Riemann equations that

dv = vx dx+ vy dy = −uy dx+ ux dy = ∗du.

Now v is a harmonic conjugate for log |z| in some domain if and only if
v(z) = θ+C where θ is the argument of z and C is a complex constant.
Hence ∗d log |z| = dv = dθ.

(d) Let γ be a C1 curve in Ω. Show that in more classical language, one has
∫

γ
∗du =∫

γ
∂u
∂n
|dγ| where n is the righthand normal vector to γ.

Solution. The unit tangent vector to γ is given by (γ′1, γ
′
2)/|γ

′|. The
right hand normal n to γ is therefore obtained by rotating this vector π/2



radians clockwise. Thus n = (γ′2,−γ
′
1)/|γ

′| and ∂u
∂n

= ∇u·n =
−uxγ′

2
+uyγ′

1

|γ′|
.

From this, I infer∫
γ

∗du =

∫
γ

−uy dx+ ux dy =

∫
(−uyγ

′
1 + uxγ

′
2) dt =

∫
∂u

∂n
|γ′(t)| dt =

∫
γ

∂u

∂n
|dγ|.

(e) Show that if Ω′ ⊂ Ω is a bounded open subset with smooth boundary bΩ′ ⊂ Ω, and if
u, v : Ω → R are C2 functions, then∫

bΩ′

u ∗ dv − v ∗ du =

∫∫
Ω′

(u∆v − v∆u) dx dy.

Solution. Green’s/Stokes’ Theorem gives me that∫
bΩ′

u ∗ dv− v ∗ du =

∫∫
Ω′

d(u ∗ dv− v ∗ du) =

∫∫
Ω′

du∧∗dv+ u d ∗ dv− dv∧∗du+ v d ∗ du.

From the first two parts of this problem, I see that the last integral is
the same as

∫∫
Ω′

(u∆v − v∆u) dx dy.

Problem to be continued on next assignment...

Problem 2. Let Ω ⊂ R2 = C be open. As with functions on the real line, one calls a function
ψ : Ω → R of two real variables convex if ψ( z+w

2
) ≤ 1

2
(ψ(z) + ψ(w)) for all z, w ∈ R2. One

can show (and you can take for granted) that convex functions are automatically continuous.
Given this, show that a convex function is subharmonic. Show by example that a subharmonic
function need not be convex.

Solution. If ψ is convex and D(P,R) ⊂ C, then for any θ ∈ R, we have

ψ(P ) ≤
1

2
(ψ(P +Reiθ) + ψ(P − Reiθ)) =

1

2
(ψ(P +Reiθ) + ψ(P +Rei(π+θ)).

Hence

1

2π

∫ 2π

0

ψ(P +Reiθ) dθ =
1

2π

∫ π

0

(ψ(P +Reiθ)+ψ(P +Rei(π+θ))) dθ ≥
1

π

∫ π

0

ψ(P ) dθ = ψ(P ).

So ψ satisfies the subaveraging property and is therefore subharmonic. �

To see that a subharmonic function need not be convex, consider log |z|
which is subharmonic on C. However, the restriction of this function to the
positive real axis is log x, which is actually strictly concave down everywhere.
So log(x+y

2
) > log x+log y

2
for all x, y > 0.

Problem 3. Let Ω = (a, b)×R ⊂ C be an open vertical strip and u : Ω → [−∞,∞) be given
by u(x, y) = ψ(x) (i.e. u is really a function of only one variable). Show that u is subharmonic
if and only if ψ is convex. (Hint: show that if u is not convex, then after subtracting the
right harmonic function from u, the difference violates the maximum principle).



Solution. If ψ is convex, then so is u. Hence, from the previous problem, it
follows that u is subharmonic.

Suppose, on the other hand, that ψ is not convex. Then there exist real
numbers a < b < c such that ψ(b) > ℓ(b), where ℓ : R → R is the affine
function agreeing with ψ at a and c. Since ψ− ℓ is continuous, we may choose
x0 ∈ (a, c) such that ψ(x0) − ℓ(x0) > 0 is maximal. Note that h(x, y) = ℓ(x) is
a harmonic function on C. So u is subharmonic if and only if u− h is. On the
other hand, u − h is a non-constant function (it’s equal to zero at any point
a + iy but positive at any point x0 + iy) with an interior local maximum at
any point of the form x0 + iy. That is, u − h does not satisfy the maximum
principle and is therefore not subharmonic. �

Problem 4. (‘Radial’ subharmonic functions) Let Ω = {R1 < |z| < R2} be an annulus and
u : Ω → [−∞,∞) be given by u(reiθ) = f(r) for all points reiθ ∈ Ω (i.e. u is a ‘radial’
function, with u(z) depending only on the distance of z from 0). Show that u is subharmonic
if and only if f is a convex function of log r (i.e. f(ex) is a convex function of x = log r). (Hint:
reduce to the previous problem). From this, give an explicit description (i.e. a formula) for
any radial harmonic function on Ω.

Solution. Note that the function f(z) = ez maps the open vertical strip
Ω′ = (logR1, logR2) × R onto Ω. While f is not (1, 1), we see that f ′(z) = ez

never vanishes. Hence f is at least locally invertible. Since subharmonicity is
a local property, it follows that u is subharmonic on Ω if and only if u ◦ f is
subharmonic on Ω′. Also, since u(reiθ) = f(r) is a radial function, we have
that u ◦ f(z) = u(exeiy) = f(ex) is a function of x = Re z only. Hence by the
previous problem, u is subharmonic if and only if f(ex) is a convex function of
x. �

A radial function h(reiθ) = f(r) is harmonic if and only if h and −h are
both subharmonic. By the first part of the problem, this is true if and only if
f(ex) and −f(ex) are both convex, which is to say that f is an affine function
of x = log r. So h is harmonic if and only if there exist real constants α, β such
that h(reiθ) = α log r + β for all reiθ ∈ Ω.

Problem 5. Show that if f : Ω′ → Ω is holomorphic and u : Ω → [−∞,∞) is subharmonic,
then u ◦ f is subharmonic. (Hint: since we showed in class that this is true when f is
injective, and since being subharmonic is a local property, it more or less suffices to establish
the subaveraging property about points P at which f ′(P ) = 0. For the latter, it might help
to use problem 1 on homework 9 from last semester.)

Solution. If f is constant, the assertion is clear, so suppose that f is not
constant.

As noted in class, it suffices to show for each P ∈ Ω′ that u◦f is subharmonic
on a neighborhood of P , now if f ′(P ) 6= 0, it follows that there is a neighborhood
V ∋ P such that f : V → f(V ) ⊂ Ω′ is invertible. Hence, as we showed in class
u ◦ f is subharmonic on V . If f ′(P ) = 0, on the other hand, then we showed in
homework last semester that there exists a neighborhood V ∋ P , R > 0, and



k ≥ 2 such that f = gk where g maps V conformally onto D(0, R). Hence u ◦ f
is subharmonic on V if and only if u(wk) is subharmonic on D(0, R). To see
that u(wk) is subharmonic, fix any r > 0 smaller than R. Then∫ 2π

0

(u(reiθ)k) dθ =

∫ 2π

0

u(reikθ) dθ =

∫ 2πik

0

u(eiφ)
dφ

k
=

∫ 2π

0

u(eiφ) dφ ≥ u(0).

That is, u(wk) has the subaveraging property for small enough disks centered
at 0. It follows that u(wk) is subharmonic on D(0, R) and therefore that u ◦ f
is subharmonic everywhere on Ω′. �


