Textbook problems:

GK, p249: 65.

Solution. False. For a counterexample choose any negative subharmonic function that is not harmonic. For instance, \(u(z) = \log |z| \) on \(D(0,1) \). Or (if you prefer something bounded) \(u(z) = |z|^2 - 1 \) on \(D(0,1) \).

Problem 1. (This problem expands on exercise 5 in Krantz; it also depends on your knowing a bit about differential forms—wedge product and Green's/Stokes' Theorem mostly). Let \(\eta = A \, dx + B \, dy \) be a 1-form on an open set \(\Omega \subset \mathbb{C} \). We define \(\ast \eta \) to be the 1-form \(-B \, dx + A \, dy\).

(a) Let \(u : \Omega \to \mathbb{R} \) be a \(C^2 \) function. One calls \(\ast du \) (sometimes written \('d' \)) the conjugate differential of \(u \). Show that \(d \ast du = \Delta u \, dx \wedge dy \). Hence \(\ast du \) is closed if and only if \(f \) is harmonic.

Solution. I compute

\[
d \ast du = d(-u_y \, dx + u_x \, dy) = (-u_{xy} \, dx + u_{yx} \, dy) \wedge dx + (u_{xx} \, dx + u_{yy} \, dy) \wedge dy = -u_{yy} \, dy \wedge dx + u_{xx} \, dx \wedge dy = \Delta u \, dx \wedge dy.
\]

The third equality holds because \(dx \wedge dx = dy \wedge dy = 0 \) and the fourth because \(dy \wedge dx = -dx \wedge dy \).

(b) Show that if \(v \) is a second \(C^2 \) function, then \(du \wedge \ast dv = dv \wedge \ast du \).

Solution.

\[
du \wedge \ast dv = (u_x \, dx + u_y \, dy) \wedge (-v_y \, dx + v_x \, dy) = u_x v_x \, dx \wedge dy - u_y v_y \, dy \wedge dx = (u_x v_x + u_y v_y) \, dx \wedge dy.
\]

Since the last expression is symmetric in \(u \) and \(v \), it follows that it is also equal to \(dv \wedge \ast du \).

(c) Show that if \(u \) is harmonic and \(\Omega \) is simply connected that \(\ast du = dv \) where \(v : \Omega \to \mathbb{R} \) is any harmonic conjugate for \(u \). Deduce from this a simple expression for \(\ast d \log |z| \).

Solution. Since \(\Omega \) is simply connected, we know there exists a harmonic conjugate \(v \) for \(u \). Since \(u + iv \) is holomorphic, it follows from the Cauchy-Riemann equations that

\[
dv = v_x \, dx + v_y \, dy = -u_y \, dx + u_x \, dy = \ast du.
\]

Now \(v \) is a harmonic conjugate for \(\log |z| \) in some domain if and only if \(v(z) = \theta + C \) where \(\theta \) is the argument of \(z \) and \(C \) is a complex constant. Hence \(d \log |z| = dv = d\theta \).

(d) Let \(\gamma \) be a \(C^1 \) curve in \(\Omega \). Show that in more classical language, one has \(\int_{\gamma} \ast du = \int_{\gamma} \frac{du}{dn} |d\gamma| \) where \(n \) is the righthand normal vector to \(\gamma \).

Solution. The unit tangent vector to \(\gamma \) is given by \((\gamma_x', \gamma_y')/|\gamma'| \). The right hand normal \(n \) to \(\gamma \) is therefore obtained by rotating this vector \(\pi/2 \).
radialy clockwise. Thus \(n = (\gamma_2', -\gamma_1')/|\gamma'| \) and \(\frac{\partial u}{\partial n} = \nabla u \cdot n = \frac{-u_x \gamma_2' + u_y \gamma_1'}{|\gamma'|} \).

From this, I infer
\[
\int_{\gamma}^* du = \int_{\gamma}^* -u_y \, dx + u_x \, dy = \int (\cdot u_y \gamma_1' + u_x \gamma_2') \, dt = \int \frac{\partial u}{\partial n} |\gamma'(t)| \, dt = \int \frac{\partial u}{\partial n} |d\gamma|.
\]

(e) Show that if \(\Omega' \subset \Omega \) is a bounded open subset with smooth boundary \(b\Omega' \subset \Omega \), and if \(u, v : \Omega \to \mathbb{R} \) are \(C^2 \) functions, then
\[
\int_{\Omega'} u * dv - v * du = \int_{\Omega'} (u \Delta v - v \Delta u) \, dx \, dy.
\]

Solution. Green’s/Stokes’ Theorem gives me that
\[
\int_{\Omega'} u * dv - v * du = \int_{\Omega'} d(u * dv - v * du) = \int_{\Omega'} d(u \Delta v - v \Delta u) = \int_{\Omega'} (u \Delta v - v \Delta u) \, dx \, dy.
\]

From the first two parts of this problem, I see that the last integral is the same as \(\int_{\Omega'} (u \Delta v - v \Delta u) \, dx \, dy \).

Problem to be continued on next assignment...

Problem 2. Let \(\Omega \subset \mathbb{R}^2 = \mathbb{C} \) be open. As with functions on the real line, one calls a function \(\psi : \Omega \to \mathbb{R} \) of two real variables convex if \(\psi(\frac{z + w}{2}) \leq \frac{1}{2}(\psi(z) + \psi(w)) \) for all \(z, w \in \mathbb{R}^2 \). One can show (and you can take for granted) that convex functions are automatically continuous. Given this, show that a convex function is subharmonic. Show by example that a subharmonic function need not be convex.

Solution. If \(\psi \) is convex and \(\overline{D(P, R)} \subset \mathbb{C} \), then for any \(\theta \in \mathbb{R} \), we have
\[
\psi(P) \leq \frac{1}{2}(\psi(P + Re^{i\theta}) + \psi(P - Re^{i\theta})) = \frac{1}{2}(\psi(P + Re^{i\theta}) + \psi(P + Re^{i(\pi + \theta)})).
\]

Hence
\[
\frac{1}{2\pi} \int_0^{2\pi} \psi(P + Re^{i\theta}) \, d\theta = \frac{1}{2\pi} \int_0^{\pi} (\psi(P + Re^{i\theta}) + \psi(P + Re^{i(\pi + \theta)})) \, d\theta \geq \frac{1}{\pi} \int_0^{\pi} \psi(P) \, d\theta = \psi(P).
\]

So \(\psi \) satisfies the subaveraging property and is therefore subharmonic. \(\Box \)

To see that a subharmonic function need not be convex, consider \(\log |z| \) which is subharmonic on \(\mathbb{C} \). However, the restriction of this function to the positive real axis is \(\log x \), which is actually strictly concave down everywhere. So \(\log(\frac{z + w}{2}) > \frac{\log x + \log y}{2} \) for all \(x, y > 0 \).

Problem 3. Let \(\Omega = (a, b) \times \mathbb{R} \subset \mathbb{C} \) be an open vertical strip and \(u : \Omega \to [-\infty, \infty) \) be given by \(u(x, y) = \psi(x) \) (i.e. \(u \) is really a function of only one variable). Show that \(u \) is subharmonic if and only if \(\psi \) is convex. (Hint: show that if \(u \) is not convex, then after subtracting the right harmonic function from \(u \), the difference violates the maximum principle).
Solution. If \(\psi \) is convex, then so is \(u \). Hence, from the previous problem, it follows that \(u \) is subharmonic.

Suppose, on the other hand, that \(\psi \) is not convex. Then there exist real numbers \(a < b < c \) such that \(\psi(b) > \ell(b) \), where \(\ell : \mathbb{R} \to \mathbb{R} \) is the affine function agreeing with \(\psi \) at \(a \) and \(c \). Since \(\psi - \ell \) is continuous, we may choose \(x_0 \in (a, c) \) such that \(\psi(x_0) - \ell(x_0) > 0 \) is maximal. Note that \(h(x, y) = \ell(x) \) is a harmonic function on \(\mathbb{C} \). So \(u \) is subharmonic if and only if \(u - h \) is. On the other hand, \(u - h \) is a non-constant function (it’s equal to zero at any point \(a + iy \) but positive at any point \(x_0 + iy \)) with an interior local maximum at any point of the form \(x_0 + iy \). That is, \(u - h \) does not satisfy the maximum principle and is therefore not subharmonic. \(\square \)

Problem 4. (‘Radial’ subharmonic functions) Let \(\Omega = \{ R_1 < |z| < R_2 \} \) be an annulus and \(u : \Omega \to [-\infty, \infty) \) be given by \(u(re^{i\theta}) = f(r) \) for all points \(re^{i\theta} \in \Omega \) (i.e. \(u \) is a ‘radial’ function, with \(u(z) \) depending only on the distance of \(z \) from 0). Show that \(u \) is subharmonic if and only if \(f \) is a convex function of \(\log r \) (i.e. \(f(e^z) \) is a convex function of \(x = \log r \)). (Hint: reduce to the previous problem.) From this, give an explicit description (i.e. a formula) for any radial harmonic function on \(\Omega \).

Solution. Note that the function \(f(z) = e^z \) maps the open vertical strip \(\Omega' = (\log R_1, \log R_2) \times \mathbb{R} \) onto \(\Omega \). While \(f \) is not \((1, 1)\), we see that \(f'(z) = e^z \) never vanishes. Hence \(f \) is at least locally invertible. Since subharmonicity is a local property, it follows that \(u \) is subharmonic on \(\Omega \) if and only if \(u \circ f \) is subharmonic on \(\Omega' \). Also, since \(u(re^{i\theta}) = f(r) \) is a radial function, we have that \(u \circ f(z) = u(e^z e^{i\theta}) = f(e^z) \) is a function of \(x = \Re z \) only. Hence by the previous problem, \(u \) is subharmonic if and only if \(f(e^z) \) is a convex function of \(x \).

A radial function \(h(re^{i\theta}) = f(r) \) is harmonic if and only if \(h \) and \(-h \) are both subharmonic. By the first part of the problem, this is true if and only if \(f(e^z) \) and \(-f(e^z) \) are both convex, which is to say that \(f \) is an affine function of \(x = \log r \). So \(h \) is harmonic if and only if there exist real constants \(\alpha, \beta \) such that \(h(re^{i\theta}) = \alpha \log r + \beta \) for all \(re^{i\theta} \in \Omega \).

Problem 5. Show that if \(f : \Omega' \to \Omega \) is holomorphic and \(u : \Omega \to [-\infty, \infty) \) is subharmonic, then \(u \circ f \) is subharmonic. (Hint: since we showed in class that this is true when \(f \) is injective, and since being subharmonic is a local property, it more or less suffices to establish the subaveraging property about points \(P \) at which \(f'(P) = 0 \). For the latter, it might help to use problem 1 on homework 9 from last semester.)

Solution. If \(f \) is constant, the assertion is clear, so suppose that \(f \) is not constant.

As noted in class, it suffices to show for each \(P \in \Omega' \) that \(u \circ f \) is subharmonic on a neighborhood of \(P \), now if \(f'(P) \neq 0 \), it follows that there is a neighborhood \(V \ni P \) such that \(f : V \to f(V) \subset \Omega' \) is invertible. Hence, as we showed in class \(u \circ f \) is subharmonic on \(V \). If \(f'(P) = 0 \), on the other hand, then we showed in homework last semester that there exists a neighborhood \(V \ni P, R > 0, \) and
$k \geq 2$ such that $f = g^k$ where g maps V conformally onto $D(0, R)$. Hence $u \circ f$ is subharmonic on V if and only if $u(w^k)$ is subharmonic on $D(0, R)$. To see that $u(w^k)$ is subharmonic, fix any $r > 0$ smaller than R. Then
\[
\int_0^{2\pi} (u(re^{i\theta})^k) d\theta = \int_0^{2\pi} u(re^{ik\theta}) d\theta = \int_0^{2\pi} \frac{u(e^{i\phi})}{k} d\phi = \int_0^{2\pi} u(e^{i\phi}) d\phi \geq u(0).
\]
That is, $u(w^k)$ has the subaveraging property for small enough disks centered at 0. It follows that $u(w^k)$ is subharmonic on $D(0, R)$ and therefore that $u \circ f$ is subharmonic everywhere on Ω'. \square