Textbook problems:

GK, p249: 65.

Solution. False. For a counterexample choose any negative subharmonic function that is not harmonic. For instance, $u(z) = \log |z|$ on D(0, 1). Or (if you prefer something bounded) $u(z) = |z|^2 - 1$ on D(0, 1).

Problem 1. (This problem expands on exercise 5 in Krantz; it also depends on your knowing a bit about differential forms—wedge product and Green's/Stokes' Theorem mostly). Let $\eta = A dx + B dy$ be a 1-form on an open set $\Omega \subset \mathbf{C}$. We define $*\eta$ to be the 1-form -B dx + A dy.

(a) Let $u : \Omega \to \mathbf{R}$ be a C^2 function. One calls *du (sometimes written $d^c u$) the conjugate differential of u. Show that $d * du = \Delta u \, dx \wedge dy$. Hence *du is closed if and only if f is harmonic.

Solution. I compute

$$d * du = d(-u_y \, dx + u_x \, dy) = (-u_{xy} \, dx + -u_{yy} \, dy) \wedge dx + (u_{xx} \, dx + u_{yx} \, dy) \wedge dy$$
$$= -u_{yy} \, dy \wedge dx + u_{xx} \, dx \wedge dy = (u_{xx} + u_{yy}) \, dx \wedge dy = \Delta u \, dx \wedge dy.$$

The third equality holds because $dx \wedge dx = dy \wedge dy = 0$ and the fourth because $dy \wedge dx = -dx \wedge dy$.

(b) Show that if v is a second C^2 function, then $du \wedge *dv = dv \wedge *du$.

Solution.

 $du \wedge *dv = (u_x \, dx + u_y \, dy) \wedge (-v_y \, dx + v_x \, dy) = u_x v_x \, dx \wedge dy - u_y v_y \, dy \wedge dx = (u_x v_x + u_y v_y) \, dx \wedge dy.$

Since the last expression is symmetric in u and v, it follows that it is also equal to $dv \wedge *du$.

(c) Show that if u is harmonic and Ω is simply connected that *du = dv where $v : \Omega \to \mathbf{R}$ is any harmonic conjugate for u. Deduce from this a simple expression for $*d \log |z|$.

Solution. Since Ω is simply connected, we know there exists a harmonic conjugate v for u. Since u+iv is holomorphic, it follows from the Cauchy-Riemann equations that

$$dv = v_x \, dx + v_y \, dy = -u_y \, dx + u_x \, dy = *du.$$

Now v is a harmonic conjugate for $\log |z|$ in some domain if and only if $v(z) = \theta + C$ where θ is the argument of z and C is a complex constant. Hence $*d \log |z| = dv = d\theta$.

(d) Let γ be a C^1 curve in Ω . Show that in more classical language, one has $\int_{\gamma} *du = \int_{\gamma} \frac{\partial u}{\partial n} |d\gamma|$ where *n* is the righthand normal vector to γ .

Solution. The unit tangent vector to γ is given by $(\gamma'_1, \gamma'_2)/|\gamma'|$. The right hand normal n to γ is therefore obtained by rotating this vector $\pi/2$

radians clockwise. Thus $n = (\gamma'_2, -\gamma'_1)/|\gamma'|$ and $\frac{\partial u}{\partial n} = \nabla u \cdot n = \frac{-u_x \gamma'_2 + u_y \gamma'_1}{|\gamma'|}$. From this, I infer

$$\int_{\gamma} *du = \int_{\gamma} -u_y \, dx + u_x \, dy = \int (-u_y \gamma_1' + u_x \gamma_2') \, dt = \int \frac{\partial u}{\partial n} \left| \gamma'(t) \right| \, dt = \int_{\gamma} \frac{\partial u}{\partial n} \left| d\gamma \right|$$

(e) Show that if $\Omega' \subset \Omega$ is a bounded open subset with smooth boundary $b\Omega' \subset \Omega$, and if $u, v : \Omega \to \mathbf{R}$ are C^2 functions, then

$$\int_{b\Omega'} u \, * \, dv - v \, * \, du = \iint_{\Omega'} (u\Delta v - v\Delta u) \, dx \, dy.$$

Solution. Green's/Stokes' Theorem gives me that

$$\int_{b\Omega'} u * dv - v * du = \iint_{\Omega'} d(u * dv - v * du) = \iint_{\Omega'} du \wedge * dv + u d * dv - dv \wedge * du + v d * du.$$

From the first two parts of this problem, I see that the last integral is the same as $\iint_{\Omega'} (u\Delta v - v\Delta u) dx dy$.

Problem to be continued on next assignment...

Problem 2. Let $\Omega \subset \mathbf{R}^2 = \mathbf{C}$ be open. As with functions on the real line, one calls a function $\psi : \Omega \to \mathbf{R}$ of *two* real variables convex if $\psi(\frac{z+w}{2}) \leq \frac{1}{2}(\psi(z) + \psi(w))$ for all $z, w \in \mathbf{R}^2$. One can show (and you can take for granted) that convex functions are automatically continuous. Given this, show that a convex function is subharmonic. Show by example that a subharmonic function need not be convex.

Solution. If ψ is convex and $\overline{D(P,R)} \subset \mathbf{C}$, then for any $\theta \in \mathbf{R}$, we have $\psi(P) \leq \frac{1}{2}(\psi(P+Re^{i\theta})+\psi(P-Re^{i\theta})) = \frac{1}{2}(\psi(P+Re^{i\theta})+\psi(P+Re^{i(\pi+\theta)}).$

Hence

$$\frac{1}{2\pi} \int_0^{2\pi} \psi(P + Re^{i\theta}) \, d\theta = \frac{1}{2\pi} \int_0^{\pi} (\psi(P + Re^{i\theta}) + \psi(P + Re^{i(\pi+\theta)})) \, d\theta \ge \frac{1}{\pi} \int_0^{\pi} \psi(P) \, d\theta = \psi(P).$$

So ψ satisfies the subaveraging property and is therefore subharmonic.

To see that a subharmonic function need not be convex, consider $\log |z|$ which is subharmonic on **C**. However, the restriction of this function to the positive real axis is $\log x$, which is actually strictly concave down everywhere. So $\log(\frac{x+y}{2}) > \frac{\log x + \log y}{2}$ for all x, y > 0.

Problem 3. Let $\Omega = (a, b) \times \mathbf{R} \subset \mathbf{C}$ be an open vertical strip and $u : \Omega \to [-\infty, \infty)$ be given by $u(x, y) = \psi(x)$ (i.e. *u* is really a function of only one variable). Show that *u* is subharmonic if and only if ψ is convex. (Hint: show that if *u* is not convex, then after subtracting the right harmonic function from *u*, the difference violates the maximum principle). Solution. If ψ is convex, then so is u. Hence, from the previous problem, it follows that u is subharmonic.

Suppose, on the other hand, that ψ is not convex. Then there exist real numbers a < b < c such that $\psi(b) > \ell(b)$, where $\ell : \mathbf{R} \to \mathbf{R}$ is the affine function agreeing with ψ at a and c. Since $\psi - \ell$ is continuous, we may choose $x_0 \in (a, c)$ such that $\psi(x_0) - \ell(x_0) > 0$ is maximal. Note that $h(x, y) = \ell(x)$ is a harmonic function on \mathbf{C} . So u is subharmonic if and only if u - h is. On the other hand, u - h is a non-constant function (it's equal to zero at any point a + iy but positive at any point $x_0 + iy$) with an interior local maximum at any point of the form $x_0 + iy$. That is, u - h does not satisfy the maximum principle and is therefore not subharmonic. \Box

Problem 4. ('Radial' subharmonic functions) Let $\Omega = \{R_1 < |z| < R_2\}$ be an annulus and $u : \Omega \to [-\infty, \infty)$ be given by $u(re^{i\theta}) = f(r)$ for all points $re^{i\theta} \in \Omega$ (i.e. u is a 'radial' function, with u(z) depending only on the distance of z from 0). Show that u is subharmonic if and only if f is a convex function of $\log r$ (i.e. $f(e^x)$ is a convex function of $x = \log r$). (Hint: reduce to the previous problem). From this, give an explicit description (i.e. a formula) for any radial harmonic function on Ω .

Solution. Note that the function $f(z) = e^z$ maps the open vertical strip $\Omega' = (\log R_1, \log R_2) \times \mathbf{R}$ onto Ω . While f is not (1, 1), we see that $f'(z) = e^z$ never vanishes. Hence f is at least locally invertible. Since subharmonicity is a local property, it follows that u is subharmonic on Ω if and only if $u \circ f$ is subharmonic on Ω' . Also, since $u(re^{i\theta}) = f(r)$ is a radial function, we have that $u \circ f(z) = u(e^x e^{iy}) = f(e^x)$ is a function of $x = \operatorname{Re} z$ only. Hence by the previous problem, u is subharmonic if and only if $f(e^x)$ is a convex function of x.

A radial function $h(re^{i\theta}) = f(r)$ is *harmonic* if and only if h and -h are both subharmonic. By the first part of the problem, this is true if and only if $f(e^x)$ and $-f(e^x)$ are both convex, which is to say that f is an affine function of $x = \log r$. So h is harmonic if and only if there exist real constants α, β such that $h(re^{i\theta}) = \alpha \log r + \beta$ for all $re^{i\theta} \in \Omega$.

Problem 5. Show that if $f: \Omega' \to \Omega$ is holomorphic and $u: \Omega \to [-\infty, \infty)$ is subharmonic, then $u \circ f$ is subharmonic. (Hint: since we showed in class that this is true when f is injective, and since being subharmonic is a local property, it more or less suffices to establish the subaveraging property about points P at which f'(P) = 0. For the latter, it might help to use problem 1 on homework 9 from last semester.)

Solution. If f is constant, the assertion is clear, so suppose that f is not constant.

As noted in class, it suffices to show for each $P \in \Omega'$ that $u \circ f$ is subharmonic on a neighborhood of P, now if $f'(P) \neq 0$, it follows that there is a neighborhood $V \ni P$ such that $f: V \to f(V) \subset \Omega'$ is invertible. Hence, as we showed in class $u \circ f$ is subharmonic on V. If f'(P) = 0, on the other hand, then we showed in homework last semester that there exists a neighborhood $V \ni P$, R > 0, and $k \geq 2$ such that $f = g^k$ where g maps V conformally onto D(0, R). Hence $u \circ f$ is subharmonic on V if and only if $u(w^k)$ is subharmonic on D(0, R). To see that $u(w^k)$ is subharmonic, fix any r > 0 smaller than R. Then

$$\int_{0}^{2\pi} (u(re^{i\theta})^k) \, d\theta = \int_{0}^{2\pi} u(re^{ik\theta}) \, d\theta = \int_{0}^{2\pi ik} u(e^{i\phi}) \, \frac{d\phi}{k} = \int_{0}^{2\pi} u(e^{i\phi}) \, d\phi \ge u(0).$$

That is, $u(w^k)$ has the subaveraging property for small enough disks centered at 0. It follows that $u(w^k)$ is subharmonic on D(0, R) and therefore that $u \circ f$ is subharmonic everywhere on Ω' .