Assignment 2 Math 60380, Winter '10 Due Friday, February 19

Problem 1. Let $U \subset \mathbf{C}$ be open and $u: U \to \mathbf{R}$ be a C^2 function. Suppose that $\overline{D(P,R)} \subset U$.

(a) Apply the last part of the first problem on homework 1 with domain $\Omega' = \Omega_{\epsilon}$ equal to the annulus $\{\epsilon < |z - P| < R\}$, and then let $\epsilon \to 0$ to prove that

$$2\pi u(P) = \int_0^{2\pi} u(P + Re^{i\theta}) \, d\theta + \iint_{D(P,R)} \Delta u(z) \log \frac{|z - P|}{R} \, dx \, dy.$$

Solution. Replacing z with z - P throughout, it suffices to consider the case P = 0. Let $v(z) = \log \frac{|z|}{R} = \log |z| - \log R$. Then as observed on last week's homework, we have $*dv = d\theta$. Since v is harmonic except at z = 0 and vanishes on bD(0, R), the formula

$$\int_{b\Omega'} u * dv - v * du = \iint_{\Omega'} (u\Delta v - v\Delta u) \, dx \, dy$$

becomes

$$\int_0^{2\pi} u(Re^{i\theta}) \, d\theta - \int_0^{2\pi} u(\epsilon e^{i\theta}) \, d\theta + \int_{bD(0,\epsilon)} v \, * \, du = -\iint_{\Omega_\epsilon} \Delta u(z) \log \frac{|z|}{R} \, dx \, dy.$$

Adding and subtracting $2\pi u(0)$ in the second integral, using $v(z) = \log(\epsilon/R)$ in the third integral and rearranging gives

$$2\pi u(0) = \int_0^{2\pi} u(Re^{i\theta}) d\theta - \int_0^{2\pi} (u(\epsilon e^{i\theta}) - u(0)) d\theta - \log \frac{\epsilon}{R} \int_{bD(0,\epsilon)} *du + \iint_{\Omega_{\epsilon}} \Delta u(z) \log \frac{|z|}{R} dx dy.$$

Since $\log \frac{|z|}{R}$ is integrable on D(0,1), the last integral tends to

$$\iint_{D(0,R)} \Delta u(z) \log \frac{|z|}{R} \, dx \, dy$$

as $\epsilon \to 0$. It will therefore suffice to show that the second and third integrals on the right side vanish as $\epsilon \to 0$. Since u is C^2 on a neighborhood of $\overline{D(0,R)}$, the quantity |u(z) - u(0)| tends to zero uniformly as $|z| \to 0$, and the magnitudes $|u_x(z)|$ and $|u_y(z)|$ of the first derivatives are uniformly bounded (say by M > 0) on D(0, R). Hence, first of all

$$\lim_{\epsilon \to 0} \left| \int_0^{2\pi} (u(\epsilon e^{i\theta}) - u(0)) \, d\theta \right| \le \int_0^{2\pi} \lim_{\epsilon \to 0} \left| u(\epsilon e^{i\theta}) - u(0) \right| \, d\theta = \int_0^{2\pi} 0 \, d\theta = 0,$$

and secondly,

$$\begin{aligned} \left| \log \frac{\epsilon}{R} \int_{bD(0,\epsilon)} *du \right| &= \left| \log \frac{R}{\epsilon} \right| \int_{0}^{2\pi} \frac{\partial u}{\partial n} (\epsilon e^{i\theta}) \epsilon \, d\theta \\ &\leq \left| 2\pi\epsilon \left(\log \frac{R}{\epsilon} \right) \cdot \max_{|z|=\epsilon} |\nabla u(z)| \leq 4\pi M\epsilon \log \frac{R}{\epsilon}, \end{aligned}$$

which tends to zero as $\epsilon \to 0$. The desired formula is now established. \Box

(b) Use this formula to give a different proof that a C^2 function is subharmonic if and only if its Laplacian is non-negative everywhere.

Solution. If $\Delta u \ge 0$ everywhere, then the last integrand in the first part of this problem is non-positive everywhere. Hence

$$2\pi u(P) \le \int_0^{2\pi} u(P + Re^{i\theta}) \, d\theta,$$

whenever $\overline{D(P,R)} \subset \Omega$. That is, u has the subaveraging property and is therefore subharmonic.

If, on the other hand, $\Delta u(P) = -m < 0$ for some $P \in \Omega$, then the fact that u is C^2 implies that there exists $\delta > 0$ such that $\Delta u(z) < -m/2$ for all $P \in \overline{D(P, \delta)} \subset \Omega$. Hence the formula from the first part of this problem, and the fact that $\log \frac{|z-P|}{\delta} < 0$ on $D(P, \delta)$ gives

$$2\pi u(P) \ge \int_0^{2\pi} u(P + \delta e^{i\theta}) \, d\theta - \frac{m}{2} \iint_{D(0,\delta)} \log \frac{|z-P|}{\delta} \, dx \, dy > \int_0^{2\pi} u(P + \delta e^{i\theta}) \, d\theta.$$

So the subaveraging property fails at P, and u is not subharmonic on any neighborhood of P.

Problem 2. A domain in $\Omega \subset \mathbf{C}$ is *doubly-connected* if $\mathbf{C} - \Omega$ has exactly one bounded component K (which is therefore necessarily connected and compact). Supposing that Ω is doubly-connected, find a simple domain that is biholomorphically equivalent to Ω as follows:

(a) Show that if K is a single point and/or the unbounded component of $\mathbf{C} - \Omega$ is empty, then Ω is biholomorphically equivalent to \mathbf{C}^* or to $D^*(0, 1)$. Then assume for the remainder of the problem that Ω is not biholomorphic to \mathbf{C}^* or $D^*(0, 1)$. As I explained in class, we can therefore assume that $\Omega = D(0, 1) - \overline{U}$ where $U \subset D(0, 1)$ is a relatively compact open set with smooth boundary bU. In particular, all points in $b\Omega$ are regular for the Dirichlet problem.

> Solution. Suppose $K = \{z_0\}$ is a single point. If there are no unbounded components in $\mathbf{C} - \Omega$, then $\Omega = \mathbf{C} - \{z_0\}$ and $z \mapsto z + z_0$ sends Ω biholomorphically onto \mathbf{C}^* . If $\mathbf{C} - \Omega$ has an unbounded component, then $\Omega \cup \{z_0\}$ is a simply connected domain not equal to \mathbf{C} . Therefore the Riemann mapping theorem gives us a biholomorphism $f: \Omega \cup \{z_0\} \to D(0, 1)$ that sends z_0 to 0. Restricting to Ω , we obtain a biholomorphism $f: \Omega \to D^*(0, 1)$.

> Finally, suppose instead that K contains more than one point, but $\mathbf{C} - \Omega$ has no unbounded components. Choosing $z_0 \in K$ and applying the transformation $z \mapsto \frac{1}{z-z_0}$ puts us in the situation we just took care of, because the point at infinity is sent to the origin which then comprises the entire bounded component of $\mathbf{C} - \Omega$. Hence Ω is biholomorphic to $D^*(0, 1)$.

(b) Let δ be a small (enough) positive number. Explain why any piecewise C^1 closed curve $\gamma \subset \Omega$ is homologous to $kbD(0, 1 - \delta)$ for exactly one $k \in \mathbb{Z}$.

Solution. We know that γ is homologous to any closed curve that has the same index about every point in $\mathbf{C} - \Omega$. We proved last semester that this index is

- the same for all points in the same connected component of $\mathbf{C} \Omega$; and (in particular)
- zero for points in unbounded components of $\mathbf{C} \Omega$.

Thus if we fix a point $z_0 \in K$, we have that γ is homologous to any curve whose index about z_0 coincides with $k := \operatorname{ind}_{\gamma}(z_0)$. The index is always an integer, and for $bD(0, 1-\delta)$, it is one (since $z_0 \in D(0, 1-\delta)$). Hence $\gamma \sim kbD(0, 1)$.

(c) Let $h: \Omega \to \mathbf{R}$ be the harmonic extension of the function equal to 1 on bD(0, 1) and to 0 on bU. Show that $\int_{bD(0,1-\delta)} *dh > 0$ and therefore that h does not have a harmonic conjugate on all of Ω . (Hint: consider the derivative of $m(r) := \int_0^{2\pi} h(re^{i\theta}) d\theta$ with respect to r).

Solution. Note that $m(1) = 2\pi$ but $m(r) < 2\pi$ for any r < 1 (such that m(r) is well-defined), since as a non-constant harmonic function $h(z) < 1 = \max_{w \in b\Omega} h(w)$ for all $z \in \Omega$. Now m(r) is continuous for $r \leq 1$ and differentiable for r < 1, so by the mean value theorem, there exists $r' \in (r, 1)$ such that (1-r)m'(r') = m(1)-m(r) > 0. In particular, m'(r') > 0. On the other hand,

$$m'(r') = \int_0^{2\pi} \frac{dh}{dr} (r'e^{i\theta}) \, d\theta = r' \int_{bD(0,r')} \frac{dh}{dn} (r'e^{i\theta}) \, ds = r' \int_{bD(0,r')} *dh$$

by the fourth part problem 1 on the last homework. Since $bD(0, 1 - \delta)$ is homologous in Ω to bD(0, r'), the assertion follows.

(d) Show nevertheless that there exists (a smallest) $\alpha > 0$ and a holomorphic function $f: \Omega \to \mathbf{C}$ such that $|f| = e^{\alpha h}$.

Solution. Fix $z_0 \in \Omega$ and for any $z \in \Omega$, define

$$f(z) = \exp \alpha \left(h(z) + i \int_{z_0}^{z} * dh \right)$$

where the integral is taken over some path from z_0 to z. To the extent that the second integral in parenthesis is well-defined, it gives a harmonic conjugate for h, and f is therefore holomorphic.

Of course, we need to know that at least f (if not the harmonic conjugate of h) is well-defined. This amounts to knowing that if we choose two different paths γ_1, γ_2 from z_0 to z, then

$$\alpha\left(\int_{\gamma_1} *dh - \int_{\gamma_2} *dh\right) = 2\pi\ell$$

for some $\ell \in \mathbf{Z}$. Since $\gamma_1 - \gamma_2$ is a closed curve, we know from the first part of this problem that it is homologous to $kbD(0, 1 - \delta)$. Therefore the difference above is the same as $k\alpha \int_{bD(0,1-\delta)} *dh$. This last quantity will be an integer multiple of 2π for all $k \in \mathbf{Z}$ if and only if it is when k = 1. Since $I := \int_{bD(0,1-\delta)} *dh > 0$, we see that $\alpha = 2\pi/I$ is the smallest positive number that makes f well-defined.

(e) Let $\Omega_{\delta} = \{z \in \Omega : d(z, \mathbb{C} - \Omega) > \delta\}$. Then (you can take this for granted) $b\Omega_{\delta}$ is a union of two C^1 simple closed curves: $bD(0, 1 - \delta)$ and another simple closed curve γ close to bU. Given |w| > 1, explain why the index of $f \circ \gamma$ about w is zero when δ is small enough.

Solution. By construction $\lim_{z\to bU} |e^{f(z)}| = \lim_{z\to bU} e^{h(z)} = 1$. Hence for δ small enough, we have $f \circ \gamma(z) \in D(0, |w|)$ for all $z \in \gamma$. In particular, w lies in the unbounded component of the complement of $f \circ \gamma$. It follows that $\operatorname{ind}_{f \circ \gamma}(w) = 0$.

(f) Show that when $|w| < e^{\alpha}$ and $\delta > 0$ is small enough, the index of $f(bD(0, 1 - \delta))$ about w is equal to 1. (Hint: treat w = 0 first, using the argument principle and the relationship between f and h)

Solution. Suppose first that w = 0. Then the index of $f(bD(0, 1 - \delta))$ about w is given by

$$I := \frac{1}{2\pi i} \int_{bD(0,1-\Delta)} \frac{f'(z)}{f(z)} dz = \int_{bD(0,1-\Delta)} g'(z) dz$$

where $g = \alpha(h + ih^*)$ is only defined locally (up to an additive constant that disappears when differentiating) by choosing a harmonic conjugate h^* for h. Since g is holomorphic, we have that.

$$dg = \frac{\partial g}{\partial z} dz + \frac{\partial g}{\partial \bar{z}} d\bar{z} = g'(z) dz.$$

Hence $g'(z) dz = \alpha(dh + id * h) = \alpha(dh + i * dh)$, and we can continue to compute

$$2\pi iI = \alpha \int_{bD(0,1-\delta)} dh + i * dh = i\alpha \int_{bD(0,1-\delta)} * dh = 2\pi i.$$

The second equality follows because the integral of an exact 1-form about a closed curve is zero. The third equality is a consequence of my choice of α . Thus the index I = 1 as asserted.

Now assume only that $|w| < e^{\alpha}$. Since

$$\lim_{z \to bD(0,1)} |e^{f(z)}| = \lim_{z \to bD(0,1)} e^{\alpha h(z)} = e^{\alpha},$$

we can choose $\delta > 0$ small enough so that |f(z)| > |w| for all $z \in bD(0, 1 - \delta)$. In particular, w and 0 lie in the same component of the complement of $f(bD(0, 1 - \delta))$, and the index of $f(bD(0, 1 - \delta))$ about w is the same as the index about 0, which we just computed to be 1. \Box

(g) Conclude that f maps Ω biholomorphically onto the annulus $A = \{1 < |w| < e^{\alpha}\}$.

Solution. The maximum principle (applied to h and -h) tells us that 0 < h(z) < 1 for all $z \in \Omega$. Hence $1 \leq e^{\alpha}h(z) = |f(z)| \leq e^{\alpha}$ for all $z \in \Omega$. That is, $f(\Omega) \subset A$. On the other hand, given $w \in A$, the number (counting multiplicity, as always) of f-preimages of w in Ω_{δ} is equal to the index of $f(b\Omega_{\delta})$ about w. This is the difference between the indices about w of $f(bD(0, 1 - \delta)$ and $f(\gamma)$, which for small δ we showed to be

1-0=1. Letting $\delta \to 0$, we conclude that each $w \in A$ has exactly one f-preimage in Ω . So f is a holomorphic bijection from Ω onto A and therefore a biholomorphism.