Assignment 2
Math 60380, Winter '10
Due Friday, February 19

Problem 1. Let $U \subset \mathbf{C}$ be open and $u: U \rightarrow \mathbf{R}$ be a C^{2} function. Suppose that $\overline{D(P, R)} \subset$ U.
(a) Apply the last part of the first problem on homework 1 with domain $\Omega^{\prime}=\Omega_{\epsilon}$ equal to the annulus $\{\epsilon<|z-P|<R\}$, and then let $\epsilon \rightarrow 0$ to prove that

$$
2 \pi u(P)=\int_{0}^{2 \pi} u\left(P+R e^{i \theta}\right) d \theta+\iint_{D(P, R)} \Delta u(z) \log \frac{|z-P|}{R} d x d y
$$

Solution. Replacing z with $z-P$ throughout, it suffices to consider the case $P=0$. Let $v(z)=\log \frac{|z|}{R}=\log |z|-\log R$. Then as observed on last week's homework, we have $* d v=d \theta$. Since v is harmonic except at $z=0$ and vanishes on $b D(0, R)$, the formula

$$
\int_{b \Omega^{\prime}} u * d v-v * d u=\iint_{\Omega^{\prime}}(u \Delta v-v \Delta u) d x d y
$$

becomes

$$
\int_{0}^{2 \pi} u\left(R e^{i \theta}\right) d \theta-\int_{0}^{2 \pi} u\left(\epsilon e^{i \theta}\right) d \theta+\int_{b D(0, \epsilon)} v * d u=-\iint_{\Omega_{\epsilon}} \Delta u(z) \log \frac{|z|}{R} d x d y
$$

Adding and subtracting $2 \pi u(0)$ in the second integral, using $v(z)=$ $\log (\epsilon / R)$ in the third integral and rearranging gives

$$
\begin{aligned}
2 \pi u(0)= & \int_{0}^{2 \pi} u\left(R e^{i \theta}\right) d \theta-\int_{0}^{2 \pi}\left(u\left(\epsilon e^{i \theta}\right)-u(0)\right) d \theta-\log \frac{\epsilon}{R} \int_{b D(0, \epsilon)} * d u \\
& +\iint_{\Omega_{\epsilon}} \Delta u(z) \log \frac{|z|}{R} d x d y
\end{aligned}
$$

Since $\log \frac{|z|}{R}$ is integrable on $D(0,1)$, the last integral tends to

$$
\iint_{D(0, R)} \Delta u(z) \log \frac{|z|}{R} d x d y
$$

as $\epsilon \rightarrow 0$. It will therefore suffice to show that the second and third integrals on the right side vanish as $\epsilon \rightarrow 0$. Since u is C^{2} on a neighborhood of $\overline{D(0, R)}$, the quantity $|u(z)-u(0)|$ tends to zero uniformly as $|z| \rightarrow 0$, and the magnitudes $\left|u_{x}(z)\right|$ and $\left|u_{y}(z)\right|$ of the first derivatives are uniformly bounded (say by $M>0$) on $D(0, R)$. Hence, first of all

$$
\lim _{\epsilon \rightarrow 0}\left|\int_{0}^{2 \pi}\left(u\left(\epsilon e^{i \theta}\right)-u(0)\right) d \theta\right| \leq \int_{0}^{2 \pi} \lim _{\epsilon \rightarrow 0}\left|u\left(\epsilon e^{i \theta}\right)-u(0)\right| d \theta=\int_{0}^{2 \pi} 0 d \theta=0
$$

and secondly,

$$
\begin{aligned}
\left|\log \frac{\epsilon}{R} \int_{b D(0, \epsilon)} * d u\right| & =\log \frac{R}{\epsilon}\left|\int_{0}^{2 \pi} \frac{\partial u}{\partial n}\left(\epsilon e^{i \theta}\right) \epsilon d \theta\right| \\
& \leq 2 \pi \epsilon\left(\log \frac{R}{\epsilon}\right) \cdot \max _{|z|=\epsilon}|\nabla u(z)| \leq 4 \pi M \epsilon \log \frac{R}{\epsilon}
\end{aligned}
$$

which tends to zero as $\epsilon \rightarrow 0$. The desired formula is now established.
(b) Use this formula to give a different proof that a C^{2} function is subharmonic if and only if its Laplacian is non-negative everywhere.

Solution. If $\Delta u \geq 0$ everywhere, then the last integrand in the first part of this problem is non-positive everywhere. Hence

$$
2 \pi u(P) \leq \int_{0}^{2 \pi} u\left(P+R e^{i \theta}\right) d \theta
$$

whenever $\overline{D(P, R)} \subset \Omega$. That is, u has the subaveraging property and is therefore subharmonic.

If, on the other hand, $\Delta u(P)=-m<0$ for some $P \in \Omega$, then the fact that u is C^{2} implies that there exists $\delta>0$ such that $\Delta u(z)<-m / 2$ for all $P \in \overline{D(P, \delta)} \subset \Omega$. Hence the formula from the first part of this problem, and the fact that $\log \frac{|z-P|}{\delta}<0$ on $D(P, \delta)$ gives

$$
2 \pi u(P) \geq \int_{0}^{2 \pi} u\left(P+\delta e^{i \theta}\right) d \theta-\frac{m}{2} \iint_{D(0, \delta)} \log \frac{|z-P|}{\delta} d x d y>\int_{0}^{2 \pi} u\left(P+\delta e^{i \theta}\right) d \theta
$$

So the subaveraging property fails at P, and u is not subharmonic on any neighborhood of P.

Problem 2. A domain in $\Omega \subset \mathbf{C}$ is doubly-connected if $\mathbf{C}-\Omega$ has exactly one bounded component K (which is therefore necessarily connected and compact). Supposing that Ω is doubly-connected, find a simple domain that is biholomorphically equivalent to Ω as follows:
(a) Show that if K is a single point and/or the unbounded component of $\mathbf{C}-\Omega$ is empty, then Ω is biholomorphically equivalent to \mathbf{C}^{*} or to $D^{*}(0,1)$. Then assume for the remainder of the problem that Ω is not biholomorphic to \mathbf{C}^{*} or $D^{*}(0,1)$. As I explained in class, we can therefore assume that $\Omega=D(0,1)-\bar{U}$ where $U \subset D(0,1)$ is a relatively compact open set with smooth boundary $b U$. In particular, all points in $b \Omega$ are regular for the Dirichlet problem.

Solution. Suppose $K=\left\{z_{0}\right\}$ is a single point. If there are no unbounded components in $\mathbf{C}-\Omega$, then $\Omega=\mathbf{C}-\left\{z_{0}\right\}$ and $z \mapsto z+z_{0}$ sends Ω biholomorphically onto \mathbf{C}^{*}. If $\mathbf{C}-\Omega$ has an unbounded component, then $\Omega \cup\left\{z_{0}\right\}$ is a simply connected domain not equal to \mathbf{C}. Therefore the Riemann mapping theorem gives us a biholomorphism $f: \Omega \cup\left\{z_{0}\right\} \rightarrow D(0,1)$ that sends z_{0} to 0 . Restricting to Ω, we obtain a biholomorphism $f: \Omega \rightarrow D^{*}(0,1)$.

Finally, suppose instead that K contains more than one point, but $\mathbf{C}-\Omega$ has no unbounded components. Choosing $z_{0} \in K$ and applying the transformation $z \mapsto \frac{1}{z-z_{0}}$ puts us in the situation we just took care of, because the point at infinity is sent to the origin which then comprises the entire bounded component of $\mathbf{C}-\Omega$. Hence Ω is biholomorphic to $D^{*}(0,1)$.
(b) Let δ be a small (enough) positive number. Explain why any piecewise C^{1} closed curve $\gamma \subset \Omega$ is homologous to $k b D(0,1-\delta)$ for exactly one $k \in \mathbf{Z}$.

Solution. We know that γ is homologous to any closed curve that has the same index about every point in $\mathbf{C}-\Omega$. We proved last semester that this index is

- the same for all points in the same connected component of $\mathbf{C}-\Omega$; and (in particular)
- zero for points in unbounded components of $\mathbf{C}-\Omega$.

Thus if we fix a point $z_{0} \in K$, we have that γ is homologous to any curve whose index about z_{0} coincides with $k:=\operatorname{ind}_{\gamma}\left(z_{0}\right)$. The index is always an integer, and for $b D(0,1-\delta)$, it is one (since $z_{0} \in D(0,1-\delta)$). Hence $\gamma \sim k b D(0,1)$.
(c) Let $h: \Omega \rightarrow \mathbf{R}$ be the harmonic extension of the function equal to 1 on $b D(0,1)$ and to 0 on $b U$. Show that $\int_{b D(0,1-\delta)} * d h>0$ and therefore that h does not have a harmonic conjugate on all of Ω. (Hint: consider the derivative of $m(r):=\int_{0}^{2 \pi} h\left(r e^{i \theta}\right) d \theta$ with respect to r).

Solution. Note that $m(1)=2 \pi$ but $m(r)<2 \pi$ for any $r<1$ (such that $m(r)$ is well-defined), since as a non-constant harmonic function $h(z)<1=\max _{w \in b \Omega} h(w)$ for all $z \in \Omega$. Now $m(r)$ is continuous for $r \leq 1$ and differentiable for $r<1$, so by the mean value theorem, there exists $r^{\prime} \in(r, 1)$ such that $(1-r) m^{\prime}\left(r^{\prime}\right)=m(1)-m(r)>0$. In particular, $m^{\prime}\left(r^{\prime}\right)>0$. On the other hand,
$m^{\prime}\left(r^{\prime}\right)=\int_{0}^{2 \pi} \frac{d h}{d r}\left(r^{\prime} e^{i \theta}\right) d \theta=r^{\prime} \int_{b D\left(0, r^{\prime}\right)} \frac{d h}{d n}\left(r^{\prime} e^{i \theta}\right) d s=r^{\prime} \int_{b D\left(0, r^{\prime}\right)} * d h$
by the fourth part problem 1 on the last homework. Since $b D(0,1-\delta)$ is homologous in Ω to $b D\left(0, r^{\prime}\right)$, the assertion follows.
(d) Show nevertheless that there exists (a smallest) $\alpha>0$ and a holomorphic function $f: \Omega \rightarrow \mathbf{C}$ such that $|f|=e^{\alpha h}$.

Solution. Fix $z_{0} \in \Omega$ and for any $z \in \Omega$, define

$$
f(z)=\exp \alpha\left(h(z)+i \int_{z_{0}}^{z} * d h\right)
$$

where the integral is taken over some path from z_{0} to z. To the extent that the second integral in parenthesis is well-defined, it gives a harmonic conjugate for h, and f is therefore holomorphic.

Of course, we need to know that at least f (if not the harmonic conjugate of h) is well-defined. This amounts to knowing that if we choose two different paths γ_{1}, γ_{2} from z_{0} to z, then

$$
\alpha\left(\int_{\gamma_{1}} * d h-\int_{\gamma_{2}} * d h\right)=2 \pi \ell
$$

for some $\ell \in \mathbf{Z}$. Since $\gamma_{1}-\gamma_{2}$ is a closed curve, we know from the first part of this problem that it is homologous to $k b D(0,1-\delta)$. Therefore the difference above is the same as $k \alpha \int_{b D(0,1-\delta)} * d h$. This last quantity will be an integer multiple of 2π for all $k \in \mathbf{Z}$ if and only if it is when
$k=1$. Since $I:=\int_{b D(0,1-\delta)} * d h>0$, we see that $\alpha=2 \pi / I$ is the smallest positive number that makes f well-defined.
(e) Let $\Omega_{\delta}=\{z \in \Omega: d(z, \mathbf{C}-\Omega)>\delta\}$. Then (you can take this for granted) $b \Omega_{\delta}$ is a union of two C^{1} simple closed curves: $b D(0,1-\delta)$ and another simple closed curve γ close to $b U$. Given $|w|>1$, explain why the index of $f \circ \gamma$ about w is zero when δ is small enough.

Solution. By construction $\lim _{z \rightarrow b U}\left|e^{f(z)}\right|=\lim _{z \rightarrow b U} e^{h(z)}=1$. Hence for δ small enough, we have $f \circ \gamma(z) \in D(0,|w|)$ for all $z \in \gamma$. In particular, w lies in the unbounded component of the complement of $f \circ \gamma$. It follows that $\operatorname{ind}_{f \circ \gamma}(w)=0$.
(f) Show that when $|w|<e^{\alpha}$ and $\delta>0$ is small enough, the index of $f(b D(0,1-\delta))$ about w is equal to 1 . (Hint: treat $w=0$ first, using the argument principle and the relationship between f and h)

Solution. Suppose first that $w=0$. Then the index of $f(b D(0,1-\delta))$ about w is given by

$$
I:=\frac{1}{2 \pi i} \int_{b D(0,1-\Delta)} \frac{f^{\prime}(z)}{f(z)} d z=\int_{b D(0,1-\Delta)} g^{\prime}(z) d z
$$

where $g=\alpha\left(h+i h^{*}\right)$ is only defined locally (up to an additive constant that disappears when differentiating) by choosing a harmonic conjugate h^{*} for h. Since g is holomorphic, we have that.

$$
d g=\frac{\partial g}{\partial z} d z+\frac{\partial g}{\partial \bar{z}} d \bar{z}=g^{\prime}(z) d z
$$

Hence $g^{\prime}(z) d z=\alpha(d h+i d * h)=\alpha(d h+i * d h)$, and we can continue to compute

$$
2 \pi i I=\alpha \int_{b D(0,1-\delta)} d h+i * d h=i \alpha \int_{b D(0,1-\delta)} * d h=2 \pi i .
$$

The second equality follows because the integral of an exact 1-form about a closed curve is zero. The third equality is a consequence of my choice of α. Thus the index $I=1$ as asserted.

Now assume only that $|w|<e^{\alpha}$. Since

$$
\lim _{z \rightarrow b D(0,1)}\left|e^{f(z)}\right|=\lim _{z \rightarrow b D(0,1)} e^{\alpha h(z)}=e^{\alpha},
$$

we can choose $\delta>0$ small enough so that $|f(z)|>|w|$ for all $z \in$ $b D(0,1-\delta)$. In particular, w and 0 lie in the same component of the complement of $f(b D(0,1-\delta))$, and the index of $f(b D(0,1-\delta))$ about w is the same as the index about 0 , which we just computed to be 1 .
(g) Conclude that f maps Ω biholomorphically onto the annulus $A=\left\{1<|w|<e^{\alpha}\right\}$.

Solution. The maximum principle (applied to h and $-h$) tells us that $0<h(z)<1$ for all $z \in \Omega$. Hence $1 \leq e^{\alpha} h(z)=|f(z)| \leq e^{\alpha}$ for all $z \in \Omega$. That is, $f(\Omega) \subset A$. On the other hand, given $w \in A$, the number (counting multiplicity, as always) of f-preimages of w in Ω_{δ} is equal to the index of $f\left(b \Omega_{\delta}\right)$ about w. This is the difference between the indices about w of $f(b D(0,1-\delta)$ and $f(\gamma)$, which for small δ we showed to be
$1-0=1$. Letting $\delta \rightarrow 0$, we conclude that each $w \in A$ has exactly one f-preimage in Ω. So f is a holomorphic bijection from Ω onto A and therefore a biholomorphism.

