
Assignment 2
Math 60380, Winter ‘10
Due Friday, February 19

Problem 1. Let U ⊂ C be open and u : U → R be a C2 function. Suppose that D(P, R) ⊂
U .

(a) Apply the last part of the first problem on homework 1 with domain Ω′ = Ωǫ equal to
the annulus {ǫ < |z − P | < R}, and then let ǫ → 0 to prove that

2πu(P ) =

∫ 2π

0

u(P + Reiθ) dθ +

∫∫

D(P,R)

∆u(z) log
|z − P |

R
dx dy.

Solution. Replacing z with z − P throughout, it suffices to consider

the case P = 0. Let v(z) = log |z|
R

= log |z| − log R. Then as observed
on last week’s homework, we have ∗dv = dθ. Since v is harmonic except
at z = 0 and vanishes on bD(0, R), the formula

∫

bΩ′

u ∗ dv − v ∗ du =

∫∫

Ω′

(u∆v − v∆u) dx dy

becomes
∫ 2π

0

u(Reiθ) dθ −

∫ 2π

0

u(ǫeiθ) dθ +

∫

bD(0,ǫ)

v ∗ du = −

∫∫

Ωǫ

∆u(z) log
|z|

R
dx dy.

Adding and subtracting 2πu(0) in the second integral, using v(z) =
log(ǫ/R) in the third integral and rearranging gives

2πu(0) =

∫ 2π

0

u(Reiθ) dθ −

∫ 2π

0

(u(ǫeiθ) − u(0)) dθ − log
ǫ

R

∫

bD(0,ǫ)

∗du

+

∫∫

Ωǫ

∆u(z) log
|z|

R
dx dy.

Since log |z|
R

is integrable on D(0, 1), the last integral tends to
∫∫

D(0,R)

∆u(z) log
|z|

R
dx dy

as ǫ → 0. It will therefore suffice to show that the second and third
integrals on the right side vanish as ǫ → 0. Since u is C2 on a neighbor-
hood of D(0, R), the quantity |u(z) − u(0)| tends to zero uniformly as
|z| → 0, and the magnitudes |ux(z)| and |uy(z)| of the first derivatives
are uniformly bounded (say by M > 0) on D(0, R). Hence, first of all
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which tends to zero as ǫ → 0. The desired formula is now established.
�

(b) Use this formula to give a different proof that a C2 function is subharmonic if and
only if its Laplacian is non-negative everywhere.

Solution. If ∆u ≥ 0 everywhere, then the last integrand in the first
part of this problem is non-positive everywhere. Hence

2πu(P ) ≤

∫ 2π

0

u(P + Reiθ) dθ,

whenever D(P, R) ⊂ Ω. That is, u has the subaveraging property and
is therefore subharmonic.

If, on the other hand, ∆u(P ) = −m < 0 for some P ∈ Ω, then the fact
that u is C2 implies that there exists δ > 0 such that ∆u(z) < −m/2

for all P ∈ D(P, δ) ⊂ Ω. Hence the formula from the first part of this

problem, and the fact that log |z−P |
δ

< 0 on D(P, δ) gives

2πu(P ) ≥

∫ 2π

0

u(P + δeiθ) dθ −
m

2

∫∫

D(0,δ)

log
|z − P |

δ
dx dy >

∫ 2π

0

u(P + δeiθ) dθ.

So the subaveraging property fails at P , and u is not subharmonic on
any neighborhood of P . �

Problem 2. A domain in Ω ⊂ C is doubly-connected if C − Ω has exactly one bounded
component K (which is therefore necessarily connected and compact). Supposing that Ω is
doubly-connected, find a simple domain that is biholomorphically equivalent to Ω as follows:

(a) Show that if K is a single point and/or the unbounded component of C−Ω is empty,
then Ω is biholomorphically equivalent to C

∗ or to D∗(0, 1). Then assume for the
remainder of the problem that Ω is not biholomorphic to C

∗ or D∗(0, 1). As I explained
in class, we can therefore assume that Ω = D(0, 1)−U where U ⊂ D(0, 1) is a relatively
compact open set with smooth boundary bU . In particular, all points in bΩ are regular
for the Dirichlet problem.

Solution. Suppose K = {z0} is a single point. If there are no un-
bounded components in C − Ω, then Ω = C − {z0} and z 7→ z + z0

sends Ω biholomorphically onto C
∗. If C − Ω has an unbounded com-

ponent, then Ω ∪ {z0} is a simply connected domain not equal to C.
Therefore the Riemann mapping theorem gives us a biholomorphism
f : Ω ∪ {z0} → D(0, 1) that sends z0 to 0. Restricting to Ω, we obtain
a biholomorphism f : Ω → D∗(0, 1).

Finally, suppose instead that K contains more than one point, but
C − Ω has no unbounded components. Choosing z0 ∈ K and applying
the transformation z 7→ 1

z−z0

puts us in the situation we just took care
of, because the point at infinity is sent to the origin which then comprises
the entire bounded component of C − Ω. Hence Ω is biholomorphic to
D∗(0, 1). �



(b) Let δ be a small (enough) positive number. Explain why any piecewise C1 closed curve
γ ⊂ Ω is homologous to kbD(0, 1 − δ) for exactly one k ∈ Z.

Solution. We know that γ is homologous to any closed curve that has
the same index about every point in C − Ω. We proved last semester
that this index is

• the same for all points in the same connected component of C−Ω;
and (in particular)

• zero for points in unbounded components of C − Ω.
Thus if we fix a point z0 ∈ K, we have that γ is homologous to any
curve whose index about z0 coincides with k := indγ(z0). The index is
always an integer, and for bD(0, 1− δ), it is one (since z0 ∈ D(0, 1− δ)).
Hence γ ∼ kbD(0, 1). �

(c) Let h : Ω → R be the harmonic extension of the function equal to 1 on bD(0, 1) and to
0 on bU . Show that

∫

bD(0,1−δ)
∗dh > 0 and therefore that h does not have a harmonic

conjugate on all of Ω. (Hint: consider the derivative of m(r) :=
∫ 2π

0
h(reiθ) dθ with

respect to r).

Solution. Note that m(1) = 2π but m(r) < 2π for any r < 1 (such
that m(r) is well-defined), since as a non-constant harmonic function
h(z) < 1 = maxw∈bΩ h(w) for all z ∈ Ω. Now m(r) is continuous for
r ≤ 1 and differentiable for r < 1, so by the mean value theorem, there
exists r′ ∈ (r, 1) such that (1−r)m′(r′) = m(1)−m(r) > 0. In particular,
m′(r′) > 0. On the other hand,

m′(r′) =

∫ 2π

0

dh

dr
(r′eiθ) dθ = r′

∫

bD(0,r′)

dh

dn
(r′eiθ) ds = r′

∫

bD(0,r′)

∗dh

by the fourth part problem 1 on the last homework. Since bD(0, 1 − δ)
is homologous in Ω to bD(0, r′), the assertion follows. �

(d) Show nevertheless that there exists (a smallest) α > 0 and a holomorphic function
f : Ω → C such that |f | = eαh.

Solution. Fix z0 ∈ Ω and for any z ∈ Ω, define

f(z) = exp α

(

h(z) + i

∫ z

z0

∗dh

)

where the integral is taken over some path from z0 to z. To the extent
that the second integral in parenthesis is well-defined, it gives a harmonic
conjugate for h, and f is therefore holomorphic.

Of course, we need to know that at least f (if not the harmonic
conjugate of h) is well-defined. This amounts to knowing that if we
choose two different paths γ1, γ2 from z0 to z, then

α

(
∫

γ1

∗dh −

∫

γ2

∗dh

)

= 2πℓ

for some ℓ ∈ Z. Since γ1 − γ2 is a closed curve, we know from the first
part of this problem that it is homologous to kbD(0, 1 − δ). Therefore
the difference above is the same as kα

∫

bD(0,1−δ)
∗dh. This last quantity

will be an integer multiple of 2π for all k ∈ Z if and only if it is when



k = 1. Since I :=
∫

bD(0,1−δ)
∗dh > 0, we see that α = 2π/I is the

smallest positive number that makes f well-defined. �

(e) Let Ωδ = {z ∈ Ω : d(z,C − Ω) > δ}. Then (you can take this for granted) bΩδ is a
union of two C1 simple closed curves: bD(0, 1 − δ) and another simple closed curve γ
close to bU . Given |w| > 1, explain why the index of f ◦ γ about w is zero when δ is
small enough.

Solution. By construction limz→bU |ef(z)| = limz→bU eh(z) = 1. Hence
for δ small enough, we have f ◦ γ(z) ∈ D(0, |w|) for all z ∈ γ. In
particular, w lies in the unbounded component of the complement of
f ◦ γ. It follows that indf◦γ(w) = 0. �

(f) Show that when |w| < eα and δ > 0 is small enough, the index of f(bD(0, 1 − δ))
about w is equal to 1. (Hint: treat w = 0 first, using the argument principle and the
relationship between f and h)

Solution. Suppose first that w = 0. Then the index of f(bD(0, 1 − δ))
about w is given by

I :=
1

2πi

∫

bD(0,1−∆)

f ′(z)

f(z)
dz =

∫

bD(0,1−∆)

g′(z) dz,

where g = α(h + ih∗) is only defined locally (up to an additive constant
that disappears when differentiating) by choosing a harmonic conjugate
h∗ for h. Since g is holomorphic, we have that.

dg =
∂g

∂z
dz +

∂g

∂z̄
dz̄ = g′(z) dz.

Hence g′(z) dz = α(dh + id ∗ h) = α(dh + i ∗ dh), and we can continue
to compute

2πiI = α

∫

bD(0,1−δ)

dh + i ∗ dh = iα

∫

bD(0,1−δ)

∗dh = 2πi.

The second equality follows because the integral of an exact 1-form about
a closed curve is zero. The third equality is a consequence of my choice
of α. Thus the index I = 1 as asserted.

Now assume only that |w| < eα. Since

lim
z→bD(0,1)

|ef(z)| = lim
z→bD(0,1)

eαh(z) = eα,

we can choose δ > 0 small enough so that |f(z)| > |w| for all z ∈
bD(0, 1 − δ). In particular, w and 0 lie in the same component of the
complement of f(bD(0, 1 − δ)), and the index of f(bD(0, 1 − δ)) about
w is the same as the index about 0, which we just computed to be 1. �

(g) Conclude that f maps Ω biholomorphically onto the annulus A = {1 < |w| < eα}.

Solution. The maximum principle (applied to h and −h) tells us that
0 < h(z) < 1 for all z ∈ Ω. Hence 1 ≤ eαh(z) = |f(z)| ≤ eα for all
z ∈ Ω. That is, f(Ω) ⊂ A. On the other hand, given w ∈ A, the number
(counting multiplicity, as always) of f -preimages of w in Ωδ is equal to
the index of f(bΩδ) about w. This is the difference between the indices
about w of f(bD(0, 1 − δ) and f(γ), which for small δ we showed to be



1− 0 = 1. Letting δ → 0, we conclude that each w ∈ A has exactly one
f -preimage in Ω. So f is a holomorphic bijection from Ω onto A and
therefore a biholomorphism. �


