
Assignment 3
Math 60380, Winter ‘10
Due Friday, March 5

On this homework it will suffice if you only do one of the two problems 3 and 4. Which one

you do is up to you.

Problem 1. Let γ : [0, 1] → C be a path with γ(0) = z0. Suppose that f : D(z0, R) → C

is holomorphic, and let [f ]z0
∈ Oz0

be the germ of f at z0. Verify that the following are
equivalent:

• f can be analytically continued along γ;
• there exists a lift γ̃ of γ to |OC| satisfying γ̃(z0) = [f ]z0

.

Mostly, this amounts to unraveling and comparing definitions.

Solution. That f can be analytically continued along γ means there exists
a family of disks {Dt = D(γ(t), r(t)) : t ∈ [0, 1]} and holomorphic functions
ft ∈ O(Dt) such that

• D0 = D(z0, R) and f0 = f ;
• For each t ∈ [0, 1] there exists ǫ > 0 such that |t′− t| < ǫ implies γ(t′) ∈ Dt

and ft′ ≡ ft on Dt′ ∩ Dt.
From this data, I define γ̃ : [0, 1] → |OC| by γ̃(t) = [ft]γ(t). Then γ̃(0) = [f ]z0

by
definition. Likewise, if π : |OC| → C is the natural projection, then π ◦ γ̃ = γ.
To verify that γ̃ is continuous, fix t ∈ [0, 1], let ǫ > 0 be as a above, and fix a
neighborhood U ⊂ |OC| of γ̃(t). By definition of the topology on |OC|, we may
shrink U if necessary and assume that U = {[ft]z : z ∈ D(γ(t), ǫ′} for some
ǫ′ < ǫ. If (tj) is a sequence converging to t, then there exists J ∈ N such that
j > J implies that |γ(tj) − γ(t)| < ǫ′. In particular, γ(tj) ∈ D(γ(t), ǫ′) and
ft ≡ ftj near z := γ(tj). Thus γ̃(tj) = [ftj ]z = [ft]z ∈ U . Hence γ̃ is continuous
and therefore a lift of γ.

Starting over, we begin with a lift γ̃ : [0, 1] → |OC| satisfying γ̃(0) = [f ]z0
.

For each t ∈ [0, 1], the germ γ̃(t) ∈ Oγ(t) is given by [ft]γ(t) where ft is holo-
morphic on a neighborhood U of γ(t). Shrinking U , we may assume U = Dt is

a disk. Let Ũ = {[ft]z : z ∈ Dt} be the corresponding open set in |OC|. Then
by continuity of γ̃, we have ǫ > 0 such that γ̃(t′) ∈ Ũ when |t′ − t| < ǫ. That
is, ft ≡ ft′ on some open subset of γ(t′). This means first of all that γ(t′) ∈ Dt,
and secondly that ft ≡ f ′

t on Dt′ ∩ Dt (because the intersection is connected).
Since f0 = γ̃(0) = [f ]z0

by definition, it follows that the family {ft ∈ O(Dt)} is
an analytic continuation of f along γ. �

Problem 2. Let Ω = {z ∈ H : 0 < Re z < 1 and |z−1/2| > 1/2} be the maximal hyperbolic
triangle we used to construct the function λ; let R denote reflection about the bottom side
of T , and let R̃ denote reflection about the image R(γ) where γ is the left side of Ω. Verify

that R̃ ◦ R = z
2z+1

.

Solution. Let me first work out the formula for reflection about an arbi-
trary circle S := bD(P, R). The affine transformation T (z) = z−P

R
maps S to



bD(0, 1). Hence reflection about S is given by RS = T−1 ◦ RbD(0,1) ◦ T , where
RbD(0,1)(z) = 1

z̄
is reflection about bD(0, 1). Thus

RS(z) = T−1(R/(z − P )) =
R2

z − P
+ P.

Now I specialize this formula to the reflections R and R̃ of interest in this
problem. It follows from the previous formula that

R(z) =
1/4

z̄ − 1/2
+ 1/2 =

z̄

2z̄ − 1
.

In particular, applying R to the endpoints of γ, we find R(0) = 0 and R(∞) = 1
2
.

Hence R̃ is reflection about bD(1/4, 1/4), which is given by

R̃(z) =
1/16

z̄ − 1/4
+ 1/4 =

z̄

4z̄ − 1
.

It follows that

R̃ ◦ R(z) =
z

2z + 1
,

as desired.

Problem 3. Let Ω ⊂ C be open and c0, . . . , cn−1 : Ω → C be continuous functions. Consider
the ‘continuous’ family of polynomials P (z, w) = zn + cn−1(w)zn−1 + · · ·+ c0(w). Suppose for
some w0 ∈ Ω that the polynomial P (z, w0) has n distinct roots z0, . . . , zn−1.

(a) Fix ǫ > 0 such that ǫ < 1
2
mini6=j |zi − zj|. Show that there exists δ > 0 such that for

all w ∈ D(w0, δ), the polynomial P (z, w) has (distinct) roots z1(w), . . . , zn(w) such
that |zj(w) − zj | < ǫ. (Hint: use Rouché’s Theorem or the argument principle).

Solution. With this choice of ǫ, the disks D(zj , ǫ) have disjoint closures.
In particular zj is the only root of P (z, 0) in D(zj, ǫ) and there exists
m > 0 such that |P (z, 0)| > m for all z ∈ bD(zj , ǫ) and all 1 ≤ j ≤ n.
Since the functions cj are continuous, the function P (z, w) is continuous
as a function of both variables z and w. So we further have δ > 0
such that |P (z, 0) − P (z, w)| < m/2 for all |w| < δ and z ∈ bD(zj , ǫ).
This means that when |w| < δ, the hypothesis of Rouché’s Theorem is
satisfied by P (z, 0) and P (z, w):

|P (z, 0) − P (z, w)| < m/2 < |P (z, 0)| ≤ |P (z, 0)| + |P (z, w)|

for all z ∈ bD(zj , ǫ). Hence P (z, w) has the same number of zeroes in
D(zj , ǫ) as P (z, 0) does—that is, exactly one. Call this zero zj(w). Since
the disks D(zj , ǫ) are mutually disjoint, the zeroes z1(w), . . . , zn(w) of
P (z, w) are all distinct. �

(b) Show that if γ ⊂ C is a simple closed curve enclosing exactly one zero (counting

multiplicity) z0 of a holomorphic function f : C → C, then z0 = 1
2π

∫

γ

zf ′(z)
f(z)

dz.

Solution. The value of the given integral is the sum of the residues
of the function h := zf ′/f over all points inside γ. Now h has poles
only where f vanishes, so by hypothesis, h has exactly one pole (at
the point z0) inside γ. Since f(z) has a simple zero at z0, I can write



f(z) = (z − z0)g(z) where g is a non-vanishing holomorphic function.
From this, I compute

h(z) =
z

(z − z0)
+

zg′

g
,

so that h has (at worst) a simple pole at z0. I can therefore compute
the residue of h at z0 by

resh(z0) = lim
z→z0

(z − z0)h(z) = lim
z→z0

z + z(z − z0)g
′(z)/g(z) = z0.

I conclude that

1

2π

∫

γ

zf ′(z)

f(z)
dz =

1

2π

∫

γ

h(z) dz = resh(z0) = z0.

(c) Now assume that the functions cj are holomorphic on Ω. Show that the root functions
zj(w) are also holomorphic on D(w0, δ).

Solution. From the previous two parts of the problem, I have that

zj(w) =
1

2πi

∫

bD(zj ,ǫ)

z
P ′(z, w)

P (z, w)
dw.

In particular, zj(w) depends smoothly on w since the integrand varies
smoothly with w at all points z ∈ bD(zj , ǫ). To check that zj(w) is
holomorphic, I differentiate

∂

∂w̄
zj(w) =

1

2πi

∫

bD(zj ,ǫ)

∂

∂w̄

(

z
P ′(z, w)

P (z, w)

)

dw = 0

since the integrand is a holomorphic function of w for each z ∈ bD(zj , ǫ).
�

Problem 4. Let Ω ⊂ C be a domain and A : Ω → Mn×n(C) be a holomorphically varying
n × n matrix and z0 ∈ Ω be a given point. The existence and uniqueness theorem for linear
ordinary differential equations says that there exists δ > 0 such that for any vector w0 ∈ C

n

there exists a unique holomorphic mapping F : D(z0, δ) → C
n satisfying F (z0) = w0 and

F ′(z) = A(z)F (z) for all z ∈ D(z0, δ). Here you are asked to prove this theorem as follows:

(a) Show for any matrix n × n matrix M and any vector x ∈ C
n, one has ‖Mx‖ ≤

n ‖M‖ ‖x‖, where ‖x‖ and ‖M‖ both denote the magnitude of the largest entry.

Solution. Let Mij , xj ∈ C denote the ij entry of M and jth entry of x

respectively. Then

‖Mx‖ = max
i

|
∑

j

Mijxj | ≤ max
i

∑

j

|Mijxj| ≤
∑

j

max
i

|Mijxj | ≤

n
∑

j=1

‖M‖ ‖x‖ = n ‖M‖ ‖x‖ .

(b) Let F be the set of bounded holomorphic mappings F : D(z0, δ) → C
n satisfying

F (z0) = w0. ‘Bounded’ here means that ‖F‖ := max{‖F (z)‖ : z ∈ D(z0, δ)} < ∞.
Show that if we set d(F, G) = ‖F − G‖, then F is a complete metric space.



Solution. Suppose that the sequence (Fn) ⊂ F is Cauchy with respect
to the given metric. Let Fnj : D(z0, δ) → C denote the jth entry in Fn.
By definition, we have |Fnj(z)−Fmj(z)| ≤ ‖Fn(z) − Fm(z)‖ ≤ ‖F − G‖,
so it follows that (Fnj(z))n≥0 ⊂ C is a Cauchy sequence for each 1 ≤ j ≤
n and each z ∈ D(z0, δ). Since C is a complete metric space, it follows
that this last sequence converges. We call the limit Fj(z). I claim that
Fnj → Fj uniformly on D(z0, δ). To see that this is so, fix ǫ > 0 and
let N ∈ N be large enough that m, n ≥ N and z ∈ D(z0, δ) implies
|Fn(z) − Fm(z)| < ǫ/2. Then

|Fnj(z) − Fj(z)| ≤ |Fnj(z) − Fmj(z)| + |Fmj(z) − Fj(z)| < ǫ/2 + |Fmj(z) − Fj(z)|

for all m ≥ N . Letting m tend to infinity, we see that |Fn(z) − F (z)| ≤
ǫ/2 < ǫ. for all n ≥ N , establishing my claim. It follows that Fj is
holomorphic on D(z0, δ). Letting F = (F1, . . . , Fn) : D(z0, δ) → C

denote the mapping obtained by collecting these component functions
and increasing N above so that |Fj(z)−F (z)| < ǫ for all 1 ≤ j ≤ n and
all z ∈ D(z0, δ), we conclude that

d(Fn, F ) = max
z,j

|Fnjz − Fj(z)| < ǫ.

This proves that Fn → F ; i.e. Cauchy sequences in F converge. �

(c) Given F ∈ F , let H(z) = w0 +
∫ z

z0

A(z)F (z) dz; that is, H is the unique holomoprhic

antiderivative of AF satisfying H(z0) = w0. Show that H ∈ F and that the function
T : F → F , given by T (F ) = H is a contraction mapping if δ > 0 is set small enough.

Solution. First pick δ0 so that D(z0, δ0) ⊂ Ω. Let M = maxz∈D(z0,δ0)
‖A(z)‖.

Using the straight line path from z0 to z in the integral above, we find
for any F, G ∈ F that

‖T (F ) − T (G)‖ =

∥

∥

∥

∥

∫ z

z0

(AF (z) − AG(z)) dz

∥

∥

∥

∥

≤ |z − z0| ‖A(F − G)‖ < δMn ‖F − G‖ .

So if we set δ < (Mn)−1, we obtain that d(T (F ), T (G)) ≤ Cd(F, G)
where C = δMn < 1. So T is a contraction mapping. �

(d) Conclude.

Solution. With δ set as in the previous item, the contraction mapping
theorem tells us that there is a unique F ∈ F satisfying F = T (F ); i.e.
F is the unique holomorphic antiderivative of AF satisfying F (z0) =
w0. Rephrasing one more time, we conclude that F : D(z0, δ) → C is
the unique holomorphic mapping satisfying F (z0) = w0 and F ′(z) =
A(z)F (z) for all z. �

Problem 5. Let f : D∗(0, 1) → C be a holomorphic function with an isolated singularity at
0. Suppose that the image f(D∗(0, 1)) omits two distinct points in C. Complete the following
outline to show that f has either a removable singularity or a pole at 0.



(a) For any ǫ ∈ (0, 1], let fǫ : D∗(0, 1) → C be given by fǫ(z) = f(ǫz). Show that we may
choose a strictly decreasing sequence ǫj → 0 such that fj := fǫj

converges normally
on D∗(0, 1). In particular, fj converges uniformly on the circle bD(0, 1/2).

Solution. By hypothesis, fǫ(D
∗(0, 1)) = f(D∗(0, ǫ)) ⊂ f(D∗(0, 1)) ⊂

C \ {z0, z1} for two distinct points z0, z1 ∈ C. Hence by Montel’s The-
orem F = {fǫ : ǫ ∈ (0, 1]}, is a normal family. So if (ǫj) ⊂ (0, 1) is
any sequence, we may pass to a subsequence and assume that (fǫj

) con-
verges normally on D∗(0, 1). In particular, starting with e.g. ǫj = 1/j
and refining gives us a sequence (ǫj) that decreases to zero and for which
fj = fǫj

converges normally to some function g on D∗(0, 1) that is ei-
ther holomorphic or everywhere infinite. Since bD(0, 1/2) is a compact
subset of D∗(0, 1), the convergence is uniform on bD(0, 1/2).

(b) Suppose first that fj does not converge normally to ∞; i.e. fj → g for some holomor-
phic function g : D∗(0, 1) → C. Let M be the maximum of |g| on bD(0, 1/2). Let
Aj = {ǫj/2 < |z| < ǫj+1/2}, and show that for j large enough |f | < M + 1 on Aj.

Solution. Since g is finite, and the convergence of fj to g is uniform on
bD(0, 1/2), there is J ∈ N such that j ≥ J implies that |fj − g| < 1 on
bD(0, 1/2). In particular |fj| < M +1 on bD(0, 1/2) for all j ≥ J . Since
fj(z) = f(ǫjz), it follows that |f | < M + 1 on bD(0, ǫj/2) for all j ≥ J .
Since j + 1 ≥ J if j ≥ J , it follows that |fj| < M + 1 on bAj . By the
maximum principle, we see that |fj | < M + 1 on all of Aj.

(c) Conclude that in this case f has a removable singularity at 0.

Solution. We have |fj| < M + 1 on
⋃

j≥J Aj ⊃ D∗(0, ǫJ/2). That is
f is bounded on a punctured neighborhood of zero and therefore has a
removable singularity there. �

(d) Supposing instead that fj → ∞ normally. Use similar reasoning (presented in ab-
brieviated form) to show that f has a pole at 0.

Solution. In this case, we have for any M > 0 that there exists J ∈ N

such that j ≥ J implies |fj| ≥ M on bD(0, 1/2). From this it follows as
above that |f | ≥ M on Aj for all j ≥ J ; i.e. |f | ≥ M on D∗(0, ǫJ/2).
Since this is true for every M (for some ǫJ > 0 which depends on M), I
conclude that limz→0 f(z) = ∞. So f has a pole at 0. �


