Assignment 3 Math 60380, Winter '10 Due Friday, March 5

On this homework it will suffice if you only do one of the two problems 3 and 4. Which one you do is up to you.

Problem 1. Let $\gamma : [0,1] \to \mathbb{C}$ be a path with $\gamma(0) = z_0$. Suppose that $f : D(z_0, R) \to \mathbb{C}$ is holomorphic, and let $[f]_{z_0} \in \mathcal{O}_{z_0}$ be the germ of f at z_0 . Verify that the following are equivalent:

- f can be analytically continued along γ ;
- there exists a lift $\tilde{\gamma}$ of γ to $|\mathcal{O}_{\mathbf{C}}|$ satisfying $\tilde{\gamma}(z_0) = [f]_{z_0}$.

Mostly, this amounts to unraveling and comparing definitions.

Solution. That f can be analytically continued along γ means there exists a family of disks $\{D_t = D(\gamma(t), r(t)) : t \in [0, 1]\}$ and holomorphic functions $f_t \in \mathcal{O}(D_t)$ such that

- $D_0 = D(z_0, R)$ and $f_0 = f$;
- For each $t \in [0, 1]$ there exists $\epsilon > 0$ such that $|t' t| < \epsilon$ implies $\gamma(t') \in D_t$ and $f_{t'} \equiv f_t$ on $D_{t'} \cap D_t$.

From this data, I define $\tilde{\gamma} : [0,1] \to |\mathcal{O}_{\mathbf{C}}|$ by $\tilde{\gamma}(t) = [f_t]_{\gamma(t)}$. Then $\tilde{\gamma}(0) = [f]_{z_0}$ by definition. Likewise, if $\pi : |\mathcal{O}_{\mathbf{C}}| \to \mathbf{C}$ is the natural projection, then $\pi \circ \tilde{\gamma} = \gamma$. To verify that $\tilde{\gamma}$ is continuous, fix $t \in [0,1]$, let $\epsilon > 0$ be as a above, and fix a neighborhood $U \subset |\mathcal{O}_{\mathbf{C}}|$ of $\tilde{\gamma}(t)$. By definition of the topology on $|\mathcal{O}_{\mathbf{C}}|$, we may shrink U if necessary and assume that $U = \{[f_t]_z : z \in D(\gamma(t), \epsilon')\}$ for some $\epsilon' < \epsilon$. If (t_j) is a sequence converging to t, then there exists $J \in \mathbf{N}$ such that j > J implies that $|\gamma(t_j) - \gamma(t)| < \epsilon'$. In particular, $\gamma(t_j) \in D(\gamma(t), \epsilon')$ and $f_t \equiv f_{t_j}$ near $z := \gamma(t_j)$. Thus $\tilde{\gamma}(t_j) = [f_{t_j}]_z = [f_t]_z \in U$. Hence $\tilde{\gamma}$ is continuous and therefore a lift of γ .

Starting over, we begin with a lift $\tilde{\gamma} : [0,1] \to |\mathcal{O}_{\mathbf{C}}|$ satisfying $\tilde{\gamma}(0) = [f]_{z_0}$. For each $t \in [0,1]$, the germ $\tilde{\gamma}(t) \in \mathcal{O}_{\gamma(t)}$ is given by $[f_t]_{\gamma(t)}$ where f_t is holomorphic on a neighborhood U of $\gamma(t)$. Shrinking U, we may assume $U = D_t$ is a disk. Let $\tilde{U} = \{[f_t]_z : z \in D_t\}$ be the corresponding open set in $|\mathcal{O}_{\mathbf{C}}|$. Then by continuity of $\tilde{\gamma}$, we have $\epsilon > 0$ such that $\tilde{\gamma}(t') \in \tilde{U}$ when $|t' - t| < \epsilon$. That is, $f_t \equiv f_{t'}$ on some open subset of $\gamma(t')$. This means first of all that $\gamma(t') \in D_t$, and secondly that $f_t \equiv f'_t$ on $D_{t'} \cap D_t$ (because the intersection is connected). Since $f_0 = \tilde{\gamma}(0) = [f]_{z_0}$ by definition, it follows that the family $\{f_t \in \mathcal{O}(D_t)\}$ is an analytic continuation of f along γ .

Problem 2. Let $\Omega = \{z \in \mathbf{H} : 0 < \operatorname{Re} z < 1 \text{ and } |z - 1/2| > 1/2\}$ be the maximal hyperbolic triangle we used to construct the function λ ; let R denote reflection about the bottom side of T, and let \tilde{R} denote reflection about the image $R(\gamma)$ where γ is the left side of Ω . Verify that $\tilde{R} \circ R = \frac{z}{2z+1}$.

Solution. Let me first work out the formula for reflection about an arbitrary circle S := bD(P, R). The affine transformation $T(z) = \frac{z-P}{R}$ maps S to

bD(0,1). Hence reflection about S is given by $R_S = T^{-1} \circ R_{bD(0,1)} \circ T$, where $R_{bD(0,1)}(z) = \frac{1}{z}$ is reflection about bD(0,1). Thus

$$R_S(z) = T^{-1}(R/(\overline{z-P})) = \frac{R^2}{\overline{z-P}} + P.$$

Now I specialize this formula to the reflections R and \hat{R} of interest in this problem. It follows from the previous formula that

$$R(z) = \frac{1/4}{\bar{z} - 1/2} + 1/2 = \frac{\bar{z}}{2\bar{z} - 1}.$$

In particular, applying R to the endpoints of γ , we find R(0) = 0 and $R(\infty) = \frac{1}{2}$. Hence \tilde{R} is reflection about bD(1/4, 1/4), which is given by

$$\tilde{R}(z) = \frac{1/16}{\bar{z} - 1/4} + 1/4 = \frac{\bar{z}}{4\bar{z} - 1}$$

It follows that

$$\tilde{R} \circ R(z) = \frac{z}{2z+1},$$

as desired.

Problem 3. Let $\Omega \subset \mathbf{C}$ be open and $c_0, \ldots, c_{n-1} : \Omega \to \mathbf{C}$ be continuous functions. Consider the 'continuous' family of polynomials $P(z, w) = z^n + c_{n-1}(w)z^{n-1} + \cdots + c_0(w)$. Suppose for some $w_0 \in \Omega$ that the polynomial $P(z, w_0)$ has n distinct roots z_0, \ldots, z_{n-1} .

(a) Fix $\epsilon > 0$ such that $\epsilon < \frac{1}{2} \min_{i \neq j} |z_i - z_j|$. Show that there exists $\delta > 0$ such that for all $w \in D(w_0, \delta)$, the polynomial P(z, w) has (distinct) roots $z_1(w), \ldots, z_n(w)$ such that $|z_j(w) - z_j| < \epsilon$. (Hint: use Rouché's Theorem or the argument principle).

Solution. With this choice of ϵ , the disks $D(z_j, \epsilon)$ have disjoint closures. In particular z_j is the only root of P(z, 0) in $D(z_j, \epsilon)$ and there exists m > 0 such that |P(z, 0)| > m for all $z \in bD(z_j, \epsilon)$ and all $1 \leq j \leq n$. Since the functions c_j are continuous, the function P(z, w) is continuous as a function of both variables z and w. So we further have $\delta > 0$ such that |P(z, 0) - P(z, w)| < m/2 for all $|w| < \delta$ and $z \in bD(z_j, \epsilon)$. This means that when $|w| < \delta$, the hypothesis of Rouché's Theorem is satisfied by P(z, 0) and P(z, w):

$$|P(z,0) - P(z,w)| < m/2 < |P(z,0)| \le |P(z,0)| + |P(z,w)|$$

for all $z \in bD(z_j, \epsilon)$. Hence P(z, w) has the same number of zeroes in $D(z_j, \epsilon)$ as P(z, 0) does—that is, exactly one. Call this zero $z_j(w)$. Since the disks $D(z_j, \epsilon)$ are mutually disjoint, the zeroes $z_1(w), \ldots, z_n(w)$ of P(z, w) are all distinct.

(b) Show that if $\gamma \subset \mathbf{C}$ is a simple closed curve enclosing exactly one zero (counting multiplicity) z_0 of a holomorphic function $f: \mathbf{C} \to \mathbf{C}$, then $z_0 = \frac{1}{2\pi} \int_{\gamma} \frac{zf'(z)}{f(z)} dz$.

Solution. The value of the given integral is the sum of the residues of the function h := zf'/f over all points inside γ . Now h has poles only where f vanishes, so by hypothesis, h has exactly one pole (at the point z_0) inside γ . Since f(z) has a simple zero at z_0 , I can write $f(z) = (z - z_0)g(z)$ where g is a non-vanishing holomorphic function. From this, I compute

$$h(z) = \frac{z}{(z - z_0)} + \frac{zg'}{g},$$

so that h has (at worst) a simple pole at z_0 . I can therefore compute the residue of h at z_0 by

$$\operatorname{res}_{h}(z_{0}) = \lim_{z \to z_{0}} (z - z_{0})h(z) = \lim_{z \to z_{0}} z + z(z - z_{0})g'(z)/g(z) = z_{0}.$$

I conclude that

$$\frac{1}{2\pi} \int_{\gamma} \frac{zf'(z)}{f(z)} dz = \frac{1}{2\pi} \int_{\gamma} h(z) dz = \operatorname{res}_h(z_0) = z_0.$$

(c) Now assume that the functions c_j are holomorphic on Ω . Show that the root functions $z_j(w)$ are also holomorphic on $D(w_0, \delta)$.

Solution. From the previous two parts of the problem, I have that

$$z_j(w) = \frac{1}{2\pi i} \int_{bD(z_j,\epsilon)} z \frac{P'(z,w)}{P(z,w)} dw$$

In particular, $z_j(w)$ depends smoothly on w since the integrand varies smoothly with w at all points $z \in bD(z_j, \epsilon)$. To check that $z_j(w)$ is holomorphic, I differentiate

$$\frac{\partial}{\partial \bar{w}} z_j(w) = \frac{1}{2\pi i} \int_{bD(z_j,\epsilon)} \frac{\partial}{\partial \bar{w}} \left(z \frac{P'(z,w)}{P(z,w)} \right) \, dw = 0$$

since the integrand is a holomorphic function of w for each $z \in bD(z_j, \epsilon)$. \Box

Problem 4. Let $\Omega \subset \mathbf{C}$ be a domain and $A : \Omega \to M_{n \times n}(\mathbf{C})$ be a holomorphically varying $n \times n$ matrix and $z_0 \in \Omega$ be a given point. The existence and uniqueness theorem for linear ordinary differential equations says that there exists $\delta > 0$ such that for any vector $\mathbf{w}_0 \in \mathbf{C}^n$ there exists a unique holomorphic mapping $F : D(z_0, \delta) \to \mathbf{C}^n$ satisfying $F(z_0) = \mathbf{w}_0$ and F'(z) = A(z)F(z) for all $z \in D(z_0, \delta)$. Here you are asked to prove this theorem as follows:

(a) Show for any matrix $n \times n$ matrix M and any vector $\mathbf{x} \in \mathbf{C}^n$, one has $||M\mathbf{x}|| \le n ||M|| ||\mathbf{x}||$, where $||\mathbf{x}||$ and ||M|| both denote the magnitude of the largest entry.

Solution. Let $M_{ij}, x_j \in \mathbf{C}$ denote the ij entry of M and jth entry of \mathbf{x} respectively. Then

$$\|M\mathbf{x}\| = \max_{i} |\sum_{j} M_{ij}x_{j}| \le \max_{i} \sum_{j} |M_{ij}x_{j}| \le \sum_{j} \max_{i} |M_{ij}x_{j}| \le \sum_{j=1}^{n} \|M\| \|\mathbf{x}\| = n \|M\| \|\mathbf{x}\|$$

(b) Let \mathcal{F} be the set of bounded holomorphic mappings $F : D(z_0, \delta) \to \mathbb{C}^n$ satisfying $F(z_0) = \mathbf{w}_0$. 'Bounded' here means that $||F|| := \max\{||F(z)|| : z \in D(z_0, \delta)\} < \infty$. Show that if we set d(F, G) = ||F - G||, then \mathcal{F} is a complete metric space. Solution. Suppose that the sequence $(F_n) \subset \mathcal{F}$ is Cauchy with respect to the given metric. Let $F_{nj}: D(z_0, \delta) \to \mathbb{C}$ denote the *j*th entry in F_n . By definition, we have $|F_{nj}(z) - F_{mj}(z)| \leq ||F_n(z) - F_m(z)|| \leq ||F - G||$, so it follows that $(F_{nj}(z))_{n\geq 0} \subset \mathbb{C}$ is a Cauchy sequence for each $1 \leq j \leq n$ and each $z \in D(z_0, \delta)$. Since \mathbb{C} is a complete metric space, it follows that this last sequence converges. We call the limit $F_j(z)$. I claim that $F_{nj} \to F_j$ uniformly on $D(z_0, \delta)$. To see that this is so, fix $\epsilon > 0$ and let $N \in \mathbb{N}$ be large enough that $m, n \geq N$ and $z \in D(z_0, \delta)$ implies $|F_n(z) - F_m(z)| < \epsilon/2$. Then

$$|F_{nj}(z) - F_j(z)| \le |F_{nj}(z) - F_{mj}(z)| + |F_{mj}(z) - F_j(z)| < \epsilon/2 + |F_{mj}(z) - F_j(z)|$$

for all $m \geq N$. Letting m tend to infinity, we see that $|F_n(z) - F(z)| \leq \epsilon/2 < \epsilon$. for all $n \geq N$, establishing my claim. It follows that F_j is holomorphic on $D(z_0, \delta)$. Letting $F = (F_1, \ldots, F_n) : D(z_0, \delta) \to \mathbb{C}$ denote the mapping obtained by collecting these component functions and increasing N above so that $|F_j(z) - F(z)| < \epsilon$ for all $1 \leq j \leq n$ and all $z \in D(z_0, \delta)$, we conclude that

$$d(F_n, F) = \max_{z,j} |F_{nj}z - F_j(z)| < \epsilon.$$

This proves that $F_n \to F$; i.e. Cauchy sequences in \mathcal{F} converge.

(c) Given $F \in \mathcal{F}$, let $H(z) = \mathbf{w}_0 + \int_{z_0}^z A(z)F(z) dz$; that is, H is the unique holomoprhic antiderivative of AF satisfying $H(z_0) = \mathbf{w}_0$. Show that $H \in \mathcal{F}$ and that the function $T: \mathcal{F} \to \mathcal{F}$, given by T(F) = H is a contraction mapping if $\delta > 0$ is set small enough.

> Solution. First pick δ_0 so that $\overline{D(z_0, \delta_0)} \subset \Omega$. Let $M = \max_{z \in \overline{D(z_0, \delta_0)}} ||A(z)||$. Using the straight line path from z_0 to z in the integral above, we find for any $F, G \in \mathcal{F}$ that

$$\|T(F) - T(G)\| = \left\| \int_{z_0}^{z} (AF(z) - AG(z)) \, dz \right\| \le |z - z_0| \, \|A(F - G)\| < \delta Mn \, \|F - G\| \, .$$

So if we set $\delta < (Mn)^{-1}$, we obtain that $d(T(F), T(G)) \leq Cd(F, G)$ where $C = \delta Mn < 1$. So T is a contraction mapping. \Box

(d) Conclude.

Solution. With δ set as in the previous item, the contraction mapping theorem tells us that there is a unique $F \in \mathcal{F}$ satisfying F = T(F); i.e. F is the unique holomorphic antiderivative of AF satisfying $F(z_0) =$ \mathbf{w}_0 . Rephrasing one more time, we conclude that $F : D(z_0, \delta) \to \mathbf{C}$ is the unique holomorphic mapping satisfying $F(z_0) = \mathbf{w}_0$ and F'(z) =A(z)F(z) for all z.

Problem 5. Let $f: D^*(0,1) \to \mathbb{C}$ be a holomorphic function with an isolated singularity at 0. Suppose that the image $f(D^*(0,1))$ omits two distinct points in \mathbb{C} . Complete the following outline to show that f has either a removable singularity or a pole at 0.

(a) For any $\epsilon \in (0, 1]$, let $f_{\epsilon} : D^*(0, 1) \to \mathbb{C}$ be given by $f_{\epsilon}(z) = f(\epsilon z)$. Show that we may choose a strictly decreasing sequence $\epsilon_j \to 0$ such that $f_j := f_{\epsilon_j}$ converges normally on $D^*(0, 1)$. In particular, f_j converges uniformly on the circle bD(0, 1/2).

Solution. By hypothesis, $f_{\epsilon}(D^*(0,1)) = f(D^*(0,\epsilon)) \subset f(D^*(0,1)) \subset \mathbf{C} \setminus \{z_0, z_1\}$ for two distinct points $z_0, z_1 \in \mathbf{C}$. Hence by Montel's Theorem $\mathcal{F} = \{f_{\epsilon} : \epsilon \in (0,1]\}$, is a normal family. So if $(\epsilon_j) \subset (0,1)$ is any sequence, we may pass to a subsequence and assume that (f_{ϵ_j}) converges normally on $D^*(0,1)$. In particular, starting with e.g. $\epsilon_j = 1/j$ and refining gives us a sequence (ϵ_j) that decreases to zero and for which $f_j = f_{\epsilon_j}$ converges normally to some function g on $D^*(0,1)$ that is either holomorphic or everywhere infinite. Since bD(0,1/2) is a compact subset of $D^*(0,1)$, the convergence is uniform on bD(0,1/2).

(b) Suppose first that f_j does not converge normally to ∞ ; i.e. $f_j \to g$ for some holomorphic function $g: D^*(0,1) \to \mathbb{C}$. Let M be the maximum of |g| on bD(0,1/2). Let $A_j = \{\epsilon_j/2 < |z| < \epsilon_{j+1}/2\}$, and show that for j large enough |f| < M + 1 on $\overline{A_j}$.

Solution. Since g is finite, and the convergence of f_j to g is uniform on bD(0, 1/2), there is $J \in \mathbb{N}$ such that $j \geq J$ implies that $|f_j - g| < 1$ on bD(0, 1/2). In particular $|f_j| < M + 1$ on bD(0, 1/2) for all $j \geq J$. Since $f_j(z) = f(\epsilon_j z)$, it follows that |f| < M + 1 on $bD(0, \epsilon_j/2)$ for all $j \geq J$. Since $j + 1 \geq J$ if $j \geq J$, it follows that $|f_j| < M + 1$ on bA_j . By the maximum principle, we see that $|f_j| < M + 1$ on all of $\overline{A_j}$.

(c) Conclude that in this case f has a removable singularity at 0.

Solution. We have $|f_j| < M + 1$ on $\bigcup_{j \ge J} \overline{A_j} \supset D^*(0, \epsilon_J/2)$. That is f is bounded on a punctured neighborhood of zero and therefore has a removable singularity there.

(d) Supposing instead that $f_j \to \infty$ normally. Use similar reasoning (presented in abbrieviated form) to show that f has a pole at 0.

Solution. In this case, we have for any M > 0 that there exists $J \in \mathbf{N}$ such that $j \geq J$ implies $|f_j| \geq M$ on bD(0, 1/2). From this it follows as above that $|f| \geq M$ on $\overline{A_j}$ for all $j \geq J$; i.e. $|f| \geq M$ on $D^*(0, \epsilon_J/2)$. Since this is true for every M (for some $\epsilon_J > 0$ which depends on M), I conclude that $\lim_{z\to 0} f(z) = \infty$. So f has a pole at 0.