
Assignment 4
Math 60380, Winter ‘10
Due Friday, April 2

Problem 1. (Linearizing coordinates near at attracting fixed point) Let P : C → C be
a polynomial function (this would work for rational functions, too, but then the point at
infinity might become involved, holomorphic things would become meromorphic, etc) and
z0 = P (z0) be an attracting fixed point. That is, P ′(z0) = λ with |λ| < 1. Let A be the
immediate basin of z0. Then there is a surjective holomorphic function ψ : A→ C such that
ψ(z0) = 0, ψ′(z0) = 1 and ψ ◦ P = λψ. Hence w = ψ(z) conjugates the map z 7→ P (z) on a
small neighborhood of z0 to the linear transformation w → λw near 0. Prove the existence
of ψ as follows:

• Without loss of generality (i.e. by conjugating with an affine transformation) z0 = 0.

Solution. Let ϕ(z) = z+z0 and P̃ = ϕ−1 ◦P ◦ϕ. Then since ϕ(0) = z0,

we see that P̃ has a fixed point at 0, and since multipliers of fixed points
are unchanged by holomorphic conjugacy, 0 is attracting for P̃ with
multiplier λ. �

• Given a positive number r′ ∈ (|λ|, 1), there exists ǫ > 0 such that z ∈ D(0, ǫ) implies
|P n(z)| ≤ (r′)n|z|.

Solution. Assuming (as I will from now on) that z0 = 0, I have P (z) =
λz + z2Q(z) for some other polynomial Q. Let M = maxz∈D(0,1) |Q(z)|.

Given any number r′ ∈ (|λ|, 1), I choose ǫ = min{1, r′−|λ|
M

}. Then if
z ∈ D(0, ǫ), I have

|P (z)| ≤ |λ||z| + |z|2|Q(z)| ≤ (|λ| +M |z|)|z| <

(

|λ| +M
r′ − |λ|

M

)

|z| = r′|z|.

In particular, since r′ < 1, I see that z ∈ D(0, ǫ) implies that P (z) ∈
D(0, ǫ) and hence inductively P n(z) ∈ D(0, ǫ) for every n ∈ N. In
particular, I can iterate my estimate on |P (z)| and obtain |P n(z)| <
(r′)n|z| for every n ∈ N. �

• Let ψn(z) = λ−nP n(z). Show that there exists ǫ > 0 such that ψn converges uniformly
on D(0, ǫ) by estimating |ψj(z) − ψj−1(z)| and using ψn = ψ0 +

∑n
j=1(ψj − ψj−1).

Solution. Observe that

|ψj(z) − ψj−1(z)| = |λ−jP j(z) − λ−j+1P j−1(z)| =
|P (w)− λw|

|λj|
=

|w2Q(w)|

|λ|j
,

where w = P j−1(z) and Q is the polynomial introduced in my solution
to the previous part of this problem. So if I choose r′ ∈ (|λ|, 1) so that
(r′)2 < |λ|, then the previous part of the problem gives me an ǫ > 0 such
that z ∈ D(0, ǫ) implies |P j−1(z)| < (r′)j−1|z| < ǫ(r′)j−1 for all j ≥ 1.
Plugging into the previous estimate gives

|ψj(z) − ψj−1(z)| ≤M
|P j−1(z)|2

|λ|j
≤
Mǫ

r′

2

·

(

(r′)2

|λ|

)j

= Ctj



for all z ∈ D(0, ǫ) and all j ≥ 1, where C > 0 and t = (r′)2/|λ| < 1.
Hence the series

∞
∑

j=1

(ψj(z) − ψj−1(z))

is dominated by the convergent geometric series
∑

Ctj and therefore
converges absolutely and uniformly on D(0, ǫ). It follows that the func-
tions ψn = ψ0 +

∑n
j=1(ψj − ψj−1) converge uniformly on D(0, ǫ). �

• Let ψ = limψn. Show that ψ and its first derivative take the correct values at 0 and
that ψ ◦ P = λψ on D(0, ǫ).

Solution. Clearly ψ(0) = limλ−nP n(0) = limλ−n · 0 = 0. Also, since
the ψn are holomorphic functions converging uniformly on D(0, ǫ), the
sequence ψ′

n of derivatives converges normally, too. Hence

ψ′(0) = limψ′
n(0) = limλ−n(P n)′(0) = limλ−n · λn = lim 1 = 1.

Finally, I have

ψ ◦ P = limψn ◦ P = limλ−nP n+1 = λ limψn+1 = λψ,

as desired. �

• Use the relationship between ψ and P to extend the definition of ψ to all of A. Show
that ψ(A) = C.

Solution. The iterates of P converge uniformly to the constant function
z 7→ 0 on any compact subset K ⊂ A. So given such a K, there exists
N ∈ N so that n ≥ N implies |P n(z)| < ǫ for all z ∈ K. I therefore
define ψ(z) = λ−nψ ◦ P n(z) for all z ∈ K and some n ≥ N . To see
that this definition is consistent, I need to know that it is independent
of my choice of n. So consider another index m ≥ N ; without loss of
generality, say m > n. Then since P n(z) ∈ D(0, ǫ), I have from the
previous part of this problem that

λ−mψ ◦ Pm(z) = λ−nλn−mψ ◦ Pm−n(P n(z)) = λ−nψ(P n(z)),

which shows that my definition of ψ on K does not depend on my choice
of index. Exhausting A with compact sets K, I can therefore extend the
definition of ψ to the entire immediate basin A of 0. Since ψ ◦P n varies
holomorphically with z, the extended function ψ is holomorphic in z.

In particular, since ψ ◦ P − λψ ≡ 0 on D(0, ǫ), I have ψ ◦ P = λψ on
all of A. To see that ψ(A) = C, note that D(0, ǫ) ⊂ P−n(D(0, ǫ)) for
all n ∈ N. So if An ⊂ C is the connected component of P−n(D(0, ǫ))
containing D(0, ǫ) it follows from backward invariance of the Fatou set
and the definition of immediate basin that An ⊂ A and P n(A) = D(0, ǫ).
Therefore ψ(An) = λnψ(P n(An)) = λnψ(D(0, ǫ)) for every n ∈ N. Since
ψ is non-constant, we have that ψ(D(0, ǫ) contains a disk D(0, δ) about
0 = ψ(0). Therefore the sets ψ(An) ⊃ D(0, λnδ) exhaust C. �

• Recall that the Julia set of P is infinite when degP ≥ 2. Show in this case that ψ
cannot be injective. Show further that ψ has a critical point at z ∈ A if and only if
P n(z) is critical for P for some n ≥ 0.



Solution. If ψ : A→ C were injective, it would be biholomorphic, and
since ψ(A) = C, the inverse function would be a holomorphic function
ψ−1 : C → A. But A is disjoint from the Julia set of P , and since the
Julia set is infinite, A omits at least two points in C. So by Picard’s
little theorem ψ is constant, contradicting the fact that ψ′(0) = 1. It
follows that ψ is not injective.

Since ψ′(0) 6= 0, we may assume (shrinking ǫ if necessary) that ψ′(z) 6=
0 for all z ∈ D(0, ǫ). Now if z ∈ A is any point in the immediate basin
of 0, and n ∈ N is large enough that w := P n(z) ∈ D(0, ǫ), then we
have ψ′(z) = λ−n(ψ ◦ P n)′(z) = λ−nψ′(w)(P n)′(z) = 0 if and only if
(P n)′(z) = 0. But 0 = (P n)′(z) = P ′(P n−1(z)) · · · · · P ′(z) if and only if
P ′(P j(z)) = 0 for some j ∈ {0, . . . , n− 1}. �

Problem 2. Recall the construction of the complex torus from class: beginning with ω1, ω2 ∈
C not on the same line, one defines Γ = {n1ω1 + n2ω2 : nj ∈ Z} and R = C/Γ with the
quotient topology. A key fact is that Γ ∩ D(0, ǫ) = {0} for ǫ > 0 small enough. Show the
following additional facts:

• Γ is discrete and closed.

Solution. Suppose, to get a contradiction, that z ∈ C is a limit point of
Γ. Given ǫ > 0 as above, the disk D(z, ǫ/2) must contain infinitely many
distinct points in Γ. If ω, ω′ ∈ Γ are two of these, then |ω − ω′| ≤ |ω −
z|+ |ω′−z| < ǫ/2+ǫ/2 = ǫ. Writing ω = n1ω1 +n2ω2, ω

′ = n′
1ω1 +n′

2ω2,
we see that ω − ω′ = (n1 − n′

1)ω1 + (n2 − n′
2)ω2 is a non-zero point in

Γ ∩ D(0, ǫ), contradicting our choice of ǫ. This proves that Γ has no
limit points in C—i.e. Γ is closed and discrete. �

• The quotient map π : C → R is a covering.

Solution. Let p = π(z) ∈ R be any point and U = π(D(z, ǫ/2))
(again with ǫ > 0 as above). Then π−1(U) =

⋃

ω∈ΓD(z + ω, ǫ/2).
Since π is continuous and open by definition, it suffices to show that
the disks D(z + ω, ǫ/2) in this union are mutually disjoint and that
the restriction of π to any one of them is injective. Note that if w ∈
D(z + ω, ǫ/2) ∩D(z + ω′, ǫ/2) lies in two different disks, then

|ω − ω′| = |(ω + z) − (ω′ + z)| ≤ |(ω + z) − w| + |(ω′ + z) − w| < ǫ/2 + ǫ/2 = ǫ,

again contradicting our choice of ǫ. Hence the disks D(z + ω, ǫ/2) are
mutually disjoint. Similarly, if π(w) = π(w′) for two points w,w′ ∈
D(z + ω, ǫ/2), then w − w′ ∈ Γ ∩ D(0, ǫ which implies that w = w′.
Hence π|D(z+ω,ǫ/2) is injective. �

• R is Hausdorff.

Solution. Let p = π(z), p′ = π(z′) ∈ R be two distinct points. Then
π−1(p′) = {z′ + ω : ω ∈ Γ}, which is closed in C. Since {z} is compact
and not contained in π−1(p′), the distance δ from z to π−1(p′) is positive.
I claim that the neighborhoods U = π(D(z, δ/2) and U ′ = π(D(z′, δ/2))
of p and p′, respectively, are disjoint. If q ∈ U ∩ U ′ lay in both sets,



then q = π(ζ) = π(ζ ′) for some ζ ∈ D(z, δ/2), ζ ′ ∈ D(z′, δ/2). Thus
ζ − ζ ′ ∈ Γ and |z − (z′ + ω)| ≤ |z − ζ | + |z − ζ ′| < δ contradicting the
fact that z is at distance δ from π−1(p′). �

• R is compact.

Solution. Since ω1, ω2 are linearly independent over R, we can write
any point z ∈ C as z = x1ω1 + x2ω2 = (n1 + r1)ω1 + (n2 + r2)ω2 where
xj ∈ R, nj ∈ Z, rj ∈ [0, 1). Hence π(z) = π(r1ω1 + r2ω)2) ∈ R.
It follows that R = π(C) is the continuous image of the compact set
{r1ω1 + r2ω2 : rj ∈ [0, 1]}. Thus R is compact. �

Problem 3. Let R and S be Riemann surfaces. A continuous map f : R → S is proper if
the preimage f−1(K) of every compact set K ⊂ S is compact in R (Note that if R itself is
compact, this condition is trivially satisfied). Suppose now that f is holomorphic, proper,
and non-constant. For any p ∈ S, let degf(p) be the number of preimages of p counted with
multiplicity.

• Give equivalent definitions of the multiplicity of a preimage of p from two points of
view: the order of vanishing of a holomorphic function and something more topological.
You don’t have to prove equivalence.

Solution. Suppose f(q) = p. Let z : U ⊂ R → C and w : V ⊂ R → C

be charts about q and p. Adding constants to z and w, I may assume
z(q) = 0 = w(p). The function h = w ◦ f ◦ z−1 is therefore defined
on a neighborhood of 0 and satisfies h(0) = 0. I define the multiplicity
of f at p to be the order of vanishing of h at 0. Alternatively, m is
multiplicity of q as a preimage of p if for any neighborhood U ∋ q
such that U ∩ f−1(p) = {q}, there is a neighborhood W ∋ p such that
m = #f−1(p′) ∩ U for all p′ ∈W \ {p}.

• Show that degf(p) is finite for all p ∈ S.

Solution. Since {p} is compact and f is proper, so is f−1(p). So if
the set f−1(p) is infinite, it must have an accumulation point, which
by the identity theorem implies that f is constant. Hence f−1(p) is
finite. Now degf (p) =

∑

q∈f−1(p)m(q), where m(q) is the multiplicity of
q as a preimage of p. The order of vanishing definition for multiplicity
makes clear that m(q) is finite when f is non-constant. Combined with
finiteness of f−1(q, we infer that degf(p) is finite. �

• Let Sn = {p ∈ S : degf(p) ≥ n}. Show that Sn is open.

Solution. The second definition of multiplicity for preimages makes
clear that if f(q) = p with multiplicity m, then there is a neighborhoods
W ∋ p such that f−1(p′) contains m points near q for all p′ ∈ W .
Since there are only finitely many preimages of p, we can choose a single
neighborhood W that works for all q ∈ f−1(p) simultaneously. Hence
p′ ∈W implies that #f−1(p′) ≥

∑

q∈f−1(p)m(q) = degf(p). So if p ∈ Sn,
so is W , which proves that Sn is open. �



• Let (pj) ⊂ Sn be a sequence of points converging to p ∈ R. Suppose that no pj is a
critical value of f (i.e. pj = f(q) with multiplicity larger than one.) Show that after
refining the sequence, if necessary, degf (pj) converges and lim degf (pj) ≤ degf (p).
(Hint: K = {pj : j ∈ N} ∪ {p} is compact).

Solution. Since pj ∈ Sn and pj is not a critical value, we can for each
j choose n distinct preimages q1j , . . . , qnj ⊂ f−1(pj). As noted, K is
compact. So by proper therefore f−1(K) is, too. This means that after
refining the given sequence, we may assume for each 1 ≤ i ≤ n that
qij → qi ∈ R. By continuity f(qi) = p. So if all the qi are distinct, it
follows that degf (p) ≥ n = #{qi}. On the other hand, if, say k of the
qi are the same point q, then any neighborhood U ∋ q will contain at
least k preimages of pj for j large enough. By the second definition of
multiplicity, we infer that q has multiplicity ≥ k as a preimage of p. So
even if the qi are not distinct, it follows that degf(p) ≥ n.

• Conclude that S = Sn for n small enough and that in fact, degf (p) is independent of p.
The number degf (p) is therefore simply called the degree of f . This is a generalization

of the notion of the degree of a rational function R : C → C

Solution. I claim that the previous part of this problem implies that
Sn is closed. Indeed this is immediate once I show that no point in S
is a limit of critical values of f . Then in particular any limit point p of
Sn is a limit of a sequence of non-critical values, and the previous item
shows that p ∈ Sn.

So assume to get a contradiction that p is a limit of critical values
(pj) ⊂ S. That is pj = f(qj) where qj is a critical point. As in the
previous item, I can assume that qj → q where f(q) = p. Now I choose
coordinate charts z : U ∋ q → C and w : V ∋ p → C such that
z(q) = 0 = w(p) and consider the holomorphic function h = w ◦ f ◦ z−1

defined near 0. Without loss of generality, qj ∈ U , pj ∈ V , and h
is defined at zj := z(pj). Then zj → 0 and h′(zj) = 0 for all j. It
follows that h′ ≡ 0 near 0, so that h is constant near 0. Equivalently
f is constant near q which implies by the identity theorem that f is
constant, contrary to assumption.

Finally, as an open and closed subset of S, the set Sn is either empty
or equal to S. It is certainly non-empty for n = 1 small enough by the
first part of this problem, so Sn = S for n small enough. Now if n is the
largest n for which Sn = S, it follows that all points in S have at least
n preimages. On the other hand Sn+1 must be empty, so no point has
more than n preimages. I conclude that degf(p) = n for all p ∈ S. �

Problem 4. (Added 4/13/10) Many facts about harmonic functions can be established by
recourse to similar facts about holomorphic functions. For instance, if Ω ⊂ C is a domain in
the complex plane (or more generally, a Riemann surface) and h : Ω → R is harmonic, then
it is often quite useful to find a holomorphic function f : R → C such that |f | = eh. Use this
idea to prove each of the following statements:



(a) Let hn : Ω → [0,∞) be a sequence of non-negative harmonic functions. Show that
by passing to a subsequence, one can arrange that hn → h uniformly on compacts
subsets, where h is either identically ∞ or harmonic.

Solution. By problem 1 on homework 4 from last semester, we may
suppose that Ω = D(P,R) is a disk. Then there are holomorphic func-
tions gn : Ω → C such that Re g = h. Setting fn = egn, I obtain that
|f | = ehn ≥ 1 for all n. Since the range of fn always omits D(0, 1), it
follows from Montel’s Theorem that on passing to a subsequence, we
have that fn → f uniformly on compacts where f is either holomorphic
or f ≡ ∞. So if h = log |f |, then h is harmonic in the first case and
h ≡ ∞ in the second. Moreover, |fn| = ehn converges uniformly on
compacts to |f | = eh. Since |x− y| ≤ |ex − ey| for all x, y ≥ 1, we have
|hn −h| ≤ |ehn −eh|, which implies that hn → h uniformly on compacts.

Now when Ω is not a disk, I can at least choose countably many disks
Dj = D(Pj, Rj) ⊂ Ω that cover Ω. By refining the sequence (hn) to get
a normally convergence subsequence (h1n) on D1 and then refining (h1n)
to get a normally convergent subsequence (h2n) on D2, etc, I arrive at
a diagonal subsequence (hnn) that converges normally on every disk Dn

in my cover.

(b) Let h : D∗(0, 1) → R be a harmonic function with an isolated singularity at 0. Show
that if |h(z)| ≤M for all z ∈ D∗(0, 1), then h extends harmonically past 0.

Solution. Since D∗(0, 1) is doubly connected, problem 2d from Home-
work 2 gives us a number α > 0 and a holomorphic function f :
D∗(0, 1) → C such that |f | = eαh. In particular, |f | ≤ eαM on D∗(0, 1).
So by Riemann’s removable singularity theorem, f extends to a holo-
morphic function f : D(0, 1) → C. The bound on h also implies that
ef ≥ e−αM > 0 on D∗(0, 1), so it follows that f(0) 6= 0. Hence h extends
harmonically past 0 by setting h(0) = α−1 log |f(0)|.

Note that since the domains in question are not (necessarily) simply connected in either
statement, one cannot automatically assume the existence of a harmonic conjugate for the
given function h. In proving the first assertion, you can skirt this issue by taking advantage
of problem 1 on homework 4 from last semester (it’s stated for holomorphic functions, but
that’s actually irrelevant to the argument used to prove it). In the second assertion, you can
imitate the idea from problem 2d on Homework 2, taking advantage of the fact that D∗(0, 1)
is doubly-connected.


