1. BERMAN-BOUCKSOM FORMULA FOR THE DERIVATIVE OF THE MODIFIED ENERGY
FUNCTIONAL

Let X be a compact complex manifold with Kéhler form w. Let E : PSH(w) — [—00, 00)
be the Aubin-Mabuchi energy functional discussed in class, and £!(w) denote the subset of
PSH(w) on which F is finite. From concavity and upper-semicontinuity of E, it follows that
&' is convex and closed (in the L' topology).

Given ¢ € &' (w) and ¢ € C(X), we set ¢y = o+t and e(t) = E(p;). We showed in class
that ¢'(0) = [ Y wy, which is very useful for understanding critical points of . However,
a big drawback in the definition of e is that it concerns values of the energy functional at
functions ¢; which are not necessarily w-psh. To fix this problem, we replace E with the
modified energy functional E o P where, for any usc function ¢ we define P(¢) to be an
upper envelope

P(¢) :=sup{u € PSH(w) : u < ¢}.

If the set on the right side is non-empty, then P(¢) € PSH(w) (note that the upper envelope
P(¢) is automatically usc since ¢ is). If not, we set P(¢) = —oo. Several properties of P
are immediate consequences of the definition:

P(¢) < ¢ with equality everywhere if and only if ¢ € PSH(w);
P(g1+ ¢2) = P(1) + P(o2);

¢1 < ¢ implies P(¢1) < P(d2);

P(pr) 2 o+t ¢l

A less obvious property that will be important to us is

Theorem 1.1. For any continuous function ¢ on X, we have P(¢) = ¢ a.e. with respect to
WP(g)-

Proof. Suppose P(¢) < ¢ at zgp. We work in local coordinates about z. Since P(¢) — ¢ is

usc, there exist €, > 0 such that P(¢) < ¢(29) —€ < ¢ on B,(2p). Let h be a local potential

for w on a neighborhood of B,(zp). Let u : B,(z) — R be the maximal psh function such
that u = P(¢) + h on bB,.(z). Then

3= u—h on B.(2)
" | P(¢) on X — B.(2).
is an w-psh function satisfying P(¢) < ¢ < ¢. Therefore P(¢) = ¢ and Wh(g) = (dd“u)* =0
on B, (z). It follows that 2o ¢ supp wp,. O

Let é(t) = F o P(y;). Berman and Boucksom showed that é has the same derivative as e
at t = 0.

Theorem 1.2. &(0) = [ w

Let us take this theorem for granted momentarily and explain its connection with varia-
tional solution of the complex Monge-Ampere equation.

Corollary 1.3. Let i1 be a non-negative Borel measure on X with the same total mass as
w™. If p € E(w) mazimizes E,(p) := E(p) — [ o u, then Wt = p.
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Proof. Note first that since P(¢) = ¢, we have that ¢ maximizes £, o P over all usc functions
on X. On the other hand, since P(¢) < ¢, we have

EoP(gb)—/quSEMOP(Cb)

with equality at any ¢ € PSH(w). Hence ¢ also maximizes the left side of this inequality.
But the second term on the left is linear in ¢, so from Theorem 1.2, we see that the function

a(t) =EoP<sot>—/w

z/w(wﬁ—ﬂ)

We infer that the right side is zero for any ¢ € C(X). Hence w] = p as desired. O

is differentiable at t = 0 with

1.1. Proof of Theorem 1.2, step 1. We spend the remainder of this section proving
Theorem 1.2. First we reduce to the case where both ¢ and v are smooth. Since both
functions are at least usc, we can choose sequences (yp,), (1;) C C*°(X) decreasing to ¢ and
¢ at every point. One can check that then P(p; + t1;) decreases to P(y;), too.

Note that by the fundamental theorem of calculus, Theorem 1.2 is equivalent to the

statement that .
0 Jx

By continuity of Monge-Ampere under decreasing limits and (on the right side) the domi-
nated convergence theorem, this equation is the limit of

Eo P(pj+ ;) — Eo P(g;) _/ /wWPg;]thwj

So it suffices to justify this equation, which is (again) equivalent to

d
G E o Pl +ty)lmo = /1/11 Wh(p,)-

Note that we write P(y;) instead of ¢; on the right side, because we do not assume that the
approximants ¢; are w-psh (we could do this if we were willing to break down and invoke
Demailly’s approximation theorem).

1.2. Proof of Theorem 1.2, step 2. So from now on, we take ¢, to be smooth, but
we do assume that ¢ is necessarily w-psh. Our next step will be to ‘linearize’ out the E in
E o P. By concavity of E, we have

é(t) —e(0) = E(P(¢r) — E(P(p)) < Dpp) E(P(¢1) — P(p)) = /(P(%) — P(¢)) Wy
Thus . (0 .
lim sup élt) — &) < lim sup 7 /(P(got) — P(¢)) Wh(p)-

t—0 t—0
With slightly more effort we will show that the reverse inequality holds. For any ¢t € R and

any s € [0, 1], we have pg = (1 — s) + s¢;. Setting T' = st, we invoke convexity of P to get
e(T) = E(P(¢r)) 2 E(P(¢) + s(P(¢1) = P(¢))-



Letting s — 0 while holding ¢ fixed gives
e(T)—e0) _ 1 1 "
A > DB (Pe) - Plo) = 7 [ (Ple) = Pl iy
Letting t — 0 on the right side, we infer that &'(0) exists and satisfies

- . 1 n

¢'(0) = lim sup n /(P(got) — P(p)) W (p)-

t—0

lim inf
T—0 T

1.3. Proof of Theorem 1.2, step 3. We will conclude the proof of Theorem 1.2 by showing
for any ¢, ¢ € C(X).

t—0 t

lim > [ (P(pr) - 0= [ bube

In fact < follows from subadditivity of P: namely, P(got P(p) +tP() < P(p) +th. So
we need only establish that

. n
limint 7 [ (Pler) = () = o)y 20
Since P(p) — P(p) > tP(y)) > —t||¢||, the integrand is bounded below by —Ct and is

non-zero only on the open set
Op 1= {P(pr) < P(p) + 10} € Oy = {P(pr) < i} {P(r) < P() + tv)}
It therefore suffices to show that wp, (Ot) tends to 0 with ¢.

Scaling 1) appropriately, we may assume that w > —dd“y, i.e. ¥ € PSH(w). Hence ¢; and
i := P(p) + t) are wy-psh, where w; := (1 + t)w. We estimate

/ ng(go) < / (wp(¢)+tww)”:/ WZP(ga)thw S/ Wt, P(epr) S/ Wt,P(p1)>
Ot Ot Ot Ot Ot

the second inequality resulting from the comparison principle and the definition of ©,. The

last integral is equal to.
/ Whipo + Dt ( ) ) / W Ny
O =1 J O

Theorem 1.1 tells us that P(y;) = ¢; a.e. with respect to Wi (s SO the first integral is
zero. The integrals in the sum are all controlled by expanding the domain of integrationa
dn applying Stokes Theorem:

W AW </w Aw? /wj.
/(’)t P(so) x P(so) x

Together our estimates show that
/ wh(p) < O()
O

so that the left side tends to zero with ¢ as desired. O



