Exponential of a sum of matrices

I'm going to do this a little differently than I did in class. It brings out the role of commutativity more clearly.
Theorem 0.1. Let $A, B \in M_{n \times n}(\mathbf{C})$ be commuting (real or) complex matrices. Then $e^{A+B}=$ $e^{A} e^{B}$.

Proof. I begin by observing that $B e^{A}=\sum_{j=0}^{\infty} \frac{B A^{j}}{j!}=\sum_{j=0}^{\infty} \frac{A^{j} B}{j!}=e^{A} B$.
Let $\mathbf{v} \in \mathbf{C}^{n}$ be any vector and define $\mathbf{y}(t)=e^{(A+B) t} \mathbf{v}, \mathbf{z}(t)=e^{A t} e^{B} t \mathbf{v}$. Then $\mathbf{y}(0)=$ $\mathbf{z}(0)=\mathbf{v}$ and $\mathbf{y}^{\prime}(t)=(A+B) e^{(A+B) t} \mathbf{v}=(A+B) \mathbf{y}(t)$. From the product rule and my initial observation, I further find

$$
\mathbf{z}^{\prime}(t)=A e^{A t} e^{B t} \mathbf{v}+e^{A t} B e^{B t} \mathbf{v}=A e^{A t} e^{B t} \mathbf{v}+B e^{A t} e^{B t} \mathbf{v}=(A+B) \mathbf{z}(t)
$$

Hence \mathbf{y} and \mathbf{z} solve exactly the same initial value problem. By uniqueness of solutions, I conclude $\mathbf{y}(t)=\mathbf{z}(t)$ for all $t \in \mathbf{R}$. Taking $t=1$ concludes the proof.

Now here's a point I didn't make in class. The above theorem allows to give elementary instances of subspaces of $n \times n$ matrices that exponentiate to (multiplicative) subgroups.
Corollary 0.2. Suppose that $H \subset M_{n \times n}(\mathbf{C})$ is a subspace consisting entirely of matrices that commute with each other. Then

$$
e^{H}:=\left\{e^{A}: A \in H\right\}
$$

is an abelian subgroup of the (multiplicative) group $G L(n, \mathbf{C})$ of invertible $n \times n$ matrices. That is,

- any $M \in e^{H}$ is invertible with $M^{-1} \in e^{H}$;
- given $M_{1}, M_{2} \in e^{H}$, we also have $M_{1} M_{2}=M_{2} M_{1} \in e^{H}$.

Proof. Given $A \in H$, I note that $-A \in H$ always commutes with A. Hence $e^{A} e^{-A}=e^{A-A}=$ $e^{0}=I$. Hence e^{A} is invertible with inverse in $e^{-A} \in e^{H}$.

Given $A_{1}, A_{2} \in H$, I have $A_{1}+A_{2} \in H$. Since A_{1} and A_{2} commute by hypothesis, I also have $e^{A_{1}} e^{A_{2}}=e^{A_{1}+A_{2}} \in e^{H}$.

Given any fixed $n \times n$ matrix A, the subspace H spanned by I, A, A^{2}, \ldots the non-negative powers of A satisfies the hypothesis of this theorem. Indeed, elements of H all have the form $p(A)$ for some polynomila $p(x)$, and I observed last term that for any two polynomials p and q, we have $p(A) q(A)=(p q)(A)=(q p)(A)=q(A) p(A)$. So any two elements of H commute. The Cayley-Hamilton theorem says $p(A)=0$ when p is the characteristic polynomial of p, which implies that $\operatorname{dim} H$ cannot exceed $n=\operatorname{deg} p$ even though the full vector space of $n \times n$ matrices has dimension n^{2}. As it turns out, no subspace of $M_{n \times n}$ that consists of mutually commuting matrices can have dimension larger that n.

A further interesting problem is to determine which subspaces of $M_{n \times n}$ exponentiate to "reasonable" (and possibly non-abelian) subgroups. It turns out that the most important condition here is that for all $A, B \in H$ one has $A B-B A \in H$-i.e. H is closed with respect to commutators. This is the beginning of the story of the correspondence between Lie groups and Lie algebras.

