
6 Sets and relations

A set, which is nothing more than a collection of objects, is one of the most basic notions in
mathematics. The objects belonging to the set are called its elements. We write ‘x ∈ A’ to
indicate that x is an element of A.

The most basic of all sets is the empty set ∅. That is, ∅ is the unique set which contains
no elements. The following definition presents a variety of other basic terminology connected
with sets.

Definition 6.1 Let A and B be sets.

• The union of A and B is the set

A ∪B := {x : x ∈ A or x ∈ B}.

• The intersection of A and B is the set

A ∩B := {x : x ∈ A and x ∈ B}.

• The difference between A and B is the set

A− B := {x ∈ A : x /∈ B}.

• B is a subset of A if every element of B is also an element of A. When B is a subset

of A, we call A−B the complement of B in A, and when the set A can be understood

from context, we write Bc for A−B.

• We say that A is a subset of B if for every x ∈ A, we also have x ∈ B. In this case,

we write A ⊂ B.

• We say that A = B if A ⊂ B and B ⊂ A.

• We say that A and B are disjoint if A ∩ B = ∅.

Many assertions in mathematics boil down to statements about the relationship between
two sets. For instance, the assertion the solutions of x2 = 1 are 1 and −1 can be rephrased
as an equality between two sets

{x ∈ R : x2 = 1} = {−1, 1}.

Proving that two sets are equal, or that one is a subset of another is therefore an important
skill. Fortunately, it’s not a difficult one as long as you remember what you’re up to. Let us
give an example here.

Proposition 6.2 For any sets A,B,C, we have

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
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Before beginning, we point out the basic strategy. By definition, showing two sets are
equal means showing that one is a subset of the other and vice versa. And to show that one
set is a subset of another, we must show that any element in the first is an element of the
second.
Proof. To show that the left set is a subset of the right, let x ∈ A∩ (B ∪C) be given. Then
on the one hand x ∈ A, and on the other hand x ∈ B or x ∈ C. If x ∈ B, then it follows that
x ∈ A∩B. Likewise, if x ∈ C, then it follows that x ∈ A∩C. Hence x ∈ (A∩B)∪ (A∩C).
This proves

A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C).

To show the right set is a subset of the left set, let x ∈ (A∩B)∪ (A∩C) be given. Then
either x ∈ A∩B or x ∈ A∩C. If x ∈ A∩B, then x ∈ A and x ∈ B, so certainly x ∈ B ∪C,
too. Hence x ∈ A ∩ (B ∪ C). If, on the other hand, x ∈ A ∩ C, then we similarly see that
x ∈ A ∩ (B ∪ C). So in either case, we see that x ∈ A ∩ (B ∪ C). This proves

(A ∩B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C).

Putting the results together, we conclude that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

�

There is one other way to combine two sets. In some sense, it’s the largest possible way
to combine two sets.

Definition 6.3 The cartesion product of two sets A and B is the set

A×B := {(a, b) : a ∈ A, b ∈ B}

comprising all ordered pairs whose first element lies in A and whose second element lies in

B.

So if A is the set of all U.S. presidents and B is the set of all species of trees, then
(Woodrow Wilson,weeping willow) is an example of an element of A × B. Any kind of
‘connection’ between the elements of A set with the elements of B can be described as a
subset of A×B.

Definition 6.4 A subset R ⊂ A × B is called a relation from A to B. If A = B, then we

say simply that R is a relation on A.

So if A is the set of all readers of these notes and B is the set of all flavors of ice cream,
then

R = {(a, b) ∈ A× B : a likes b-flavored ice cream}

is a relation from A to B. One element in R is (Diller, strawberry). This is not the only
element in R, since the author of these notes enjoys several flavors of ice cream. However,
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(Diller,Chunky Monkey) is certainly not in R, even though it is a well-documented element
of A× B.

An example of a relation on Z is the order relation

R = {(a, b) ∈ Z× Z : a < b}.

So a < b means exactly the same thing as (a, b) ∈ R. In fact, one often writes aRb (‘a is
related to b’) instead of (a, b) ∈ R (‘(a, b) belongs to R’), but keep in mind that the two pieces
of notation mean exactly the same thing. Concerning the example in the previous paragraph,
I might equally well have said Diller R strawberry (or better yet, Diller ♥ strawberry !)

Definition 6.5 A relation R on a set A is called

• Reflexive if xRx for every x ∈ A;

• Symmetric if xRy implies yRx for every x, y ∈ A;

• Transitive if xRy and yRz imply that xRz for every x, y, z ∈ A.

We call R an equivalence relation if R enjoys all three of these properties.

So the order relation < is transitive but not symmetric or reflexive. In particular, it is
not an equivalence relation. Consider on the other hand the following relation on the set A
of all people

R = {(x, y) ∈ A× A : x and y have the same gender}.

Then R is certainly reflexive, symmetric, and transitive. Hence R is an equivalence relation.
More generally and speaking loosely, an equivalence relation on a set A is a relation that
ties together elements that have some property in common.

Definition 6.6 Let R be an equivalence relation on a set A and x ∈ A be any element. The

equivalence class of x is the set

[x] = {y ∈ A : xRy}.

In the preceding example, there are only two different equivalence classes: the set of all
men, and the set of all women.

Theorem 6.7 Let R be an equivalence relation on a set A. Then each x ∈ A belongs to its

own equivalence class [x], and if y ∈ A is another element, we have either

• xRy, in which case [x] = [y]; or

• R does not relate x and y, in which case [x] ∩ [y] = ∅.

18



Proof. Let x ∈ A be given. Then xRx because R is reflexive. Hence x ∈ [x].
Now let y ∈ A be another element. Suppose first that xRy. I must show that [x] = [y].

To do this, let z ∈ [y] be any element. Then yRz by definition of equivalence class. Since R
is transitive and we are assuming that xRy, it follows that xRz. Hence z ∈ [x]. This proves
that [y] ⊂ [x]. To prove that [x] ⊂ [y], I note that by symmetry of R, xRy implies that
yRx. So if z ∈ [y], I can repeat the previous argument with the roles of x and y reversed, to
conclude that [x] ⊂ [y]. I conclude that [x] = [y].

It remains to consider the case where x and y are not related by R. In this case, I must
show that [x] ∩ [y] = ∅. Suppose in order to get a contradiction that z ∈ [x] ∩ [y]. Then by
definition of equivalence class, xRz and yRz. Since R is symmetric, it follows that zRy, and
since R is transitive it further follows that xRy, contradicting the fact that x and y are not
related. I conclude that there is no element z in [x] ∩ [y]. �
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