
1. Partitions of rectangles

A rectangle I ⊂ Rn is a product I = [a1, b1]×· · ·×[an, bn] of compact intervals [aj, bj] ⊂ R.
We refer to Ij = [aj, bj] as the jth component of I. The volume of I is the non-negative
number Vol I := Π1≤j≤n(bj − aj). We call I non-degenerate if Vol I 6= 0.

We say that two rectangles I, I ′ overlap if their interiors intersect. We say that a finite
collection C of rectangles fills I if I =

⋃
K∈CK. A partition of I is a finite collection P of

mutually non-overlapping rectangles that fills I. We call P non-degenerate if all its elements
are non-degenerate. Of course, if a partition P of I is non-degenerate, then so is I. A
non-degenerate partition P of an interval [a, b] ⊂ R is equivalent to the finite increasing
sequence

a = x0 < x1 < · · · < xm = b

of endpoints of successive intervals [xj−1, xj] ∈ P .
We will need the following reality check on our definition of volume of a rectangle.

Theorem 1.1 (Consistency). If I ⊂ Rn is a rectangle and P is a partition of I, then
Vol I =

∑
J∈P Vol J .

Though this might seem intuitively obvious, it is nevertheless a bit awkward to justify
logically. In order to prove it, we introduce an especially simple sort of partition and show
that any partition can be replaced by one of this type. Specifically, suppose we have separate
partitions Pj of each component [aj, bj] of I. Then the associated product partition P of I
is the one consisting of all rectangles J = J1 × · · · × Jn where Jj ∈ Pj.

Definition 1.2. If C is another collection of rectangles that fills I, then we say that the
partition P of I refines C if for each J ∈ P and K ∈ C, either J ⊂ K or J and K do not
overlap.

If P is a partition refining C, then for each rectangle K ∈ C, the subcollection PK := {J ∈
P : J ⊂ K} is a partition of K. If, moreover, P is a product partition, then so is PK .

Lemma 1.3 (Refinement). Let I ⊂ Rn be a non-degenerate rectangle and C be a collection
of rectangles with

⋃
J∈C = I. Then there is a non-degenerate product partition P of I that

refines C.

As will be fairly clear from the proof, the partition P we construct is the ‘coarsest’ possible
in the sense that any other product partition P̃ refining C must also refine P .

Proof. Suppose first that we are in dimension n = 1. Then we can take P to be the partition
associated to the ordered sequence x0 < · · · < xm of distinct endpoints xj of intervals in C.
To see that P refines C, note that for each interval J = [xj−1, xj] ∈ P , there is an interval
K = [xk, x`] ∈ C containing the midpoint of J . Necessarily then, we have k ≤ j − 1 and
` ≥ j, i.e. J ⊂ K.

Now suppose n > 1. For each 1 ≤ j ≤ n we let Ij ⊂ R denote the jth component of I
and set

Cj := {Kj ⊂ Ij : there exists K ∈ C with jth component Kj}.
Then Ij =

⋃
Kj∈Cj Kj, so the previous paragraph tells us that there is a partition Pj of Ij that

refines Cj. The proof is concluded by observing that the product partition P of I associated
to P1, . . . ,Pn refines C. �
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Now we can justify the Consistency Theorem above in a relatively painless fashion.

Proof. Let us first prove the theorem assuming that the given partition P is the non-
degenerate product partition of I associated to partitions Pj of the components [aj, bj] of I.
For each j, let aj = xj,0 < · · · < xj,mj

= bj be the sequence of endpoints of intervals in Pj.
Then ∑

J∈P

Vol J =
mn∑
in=1

· · ·
m1∑
i1=0

(x1,i1 − x1,i1−1) . . . (xn,in − xn,in−1)

= (b1 − a1)
mn∑
in=1

· · ·
m2∑
i2=0

(x2,i2 − x2,i2−1) . . . (xn,in − xn,in−1)

= · · · = (b1 − a1) . . . (bn − an) = Vol I,

where all but the first equality follow from the fact that the inner sum telescopes.
For a more general partition P , we can choose a non-degenerate product partition P̃ that

refines P . For each J ∈ P we let (as above) P̃J be the product partition of J consisting of
rectangles J̃ ∈ P̃ contained in J . Then∑

J∈P

Vol J =
∑
J∈P

∑
J̃∈P̃J

Vol J̃ =
∑
J̃∈P̃

Vol J̃ = Vol I,

where we have applied the first part of the proof in both the first and last equalities. �

Another important implication of the Refinement Lemma is the following.

Corollary 1.4 (Common Refinement). If P ,P ′ are two partitions of the same rectangle
I ⊂ Rn, then there is a non-degenerate product partition refining both P and P ′.

Proof. Apply the Refinement Lemma to C = P ∪ P ′. �

2. Integrals of step functions

To any subset S ⊂ Rn, one associates the indicator function 1S : Rn → R given by
1(x) = 1 if x ∈ S and 1(x) = 0 otherwise.

Definition 2.1. A step function f : I → R on a rectangle I ⊂ Rn is a linear combination∑
J∈P cJ1J , where P is a partition of I. The integral of f is∫

f =
∑
J∈P

cJVol J.

We will more or less disregard the values of the step function on the boundaries of the
rectangles J ∈ P . For instance, if g : I → R is another function, we will say that f ≤ g
if f(x) ≤ g(x) for all x /∈

⋃
J∈P ∂J . As with volumes, one needs to perform a consistency

check for the definition of integral for a step function, showing that it is independent of the
decomposition of f into indicator functions.

Theorem 2.2 (Consistency for Integrals). Suppose that f =
∑

J∈P cJ1J =
∑

J̃∈P̃ cJ̃1J̃ are
two different ways of defining the same step function. Then∑

J∈P

cJVol J =
∑
J̃∈P̃

cJ̃Vol J̃ .
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Proof. Applying the Common Refinement Corollary above to the partitions P and P̃ and
replacing P̃ with the refinement given by the corollary, we reduce to the case where P̃ refines
P . Then for each J̃ ∈ P̃ we have cJ̃ = cJ where J is the unique rectangle in P that contains

J̃ . The integral of f is therefore given by∑
J∈P

cJVol J =
∑
J∈C

∑
J̃∈PJ

cJVol J̃ =
∑
J̃∈P̃

cJ̃Vol J̃ ,

where the first equality comes from the Refinement Theorem and the second from the facts
that cJ̃ = cJ and that each J̃ ∈ P̃ is contained in exactly one J ∈ P . �

The Common Refinement Corollary is also useful for establishing many other basic prop-
erties of step functions.

Proposition 2.3. Suppose f, g : I → R are step functions and c ∈ R is a constant. Then
cf , f + g, fg, |f |, max{f, g}, min{f, g} are all step functions. If f(x) 6= 0 for all x ∈ I,
then the reciprocal 1/f is a step function. Moreover,

• f ≤ g implies
∫
f ≤

∫
g;

•
∫
cf = c

∫
f ;

•
∫
f + g =

∫
f +

∫
g;

•
∫
|f | ≥

∣∣∫ f
∣∣.

Proof. Good Exercise. �
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