Homework 7

(due Friday, March 20)

For the sake of staying in good technical shape, I advise/encourage you to do as many integrals as you can on this assignment by <u>hand</u> and rely on e.g. Mathematica only to check your answers.

Turn in answers only.

From Jones, Chapter 2: 2-13, 2-15

8.3: 1acef, 2ac (Don't forget to sketch the curves and explain 'coincidences' among the answers)

Problem 1. Compute the arc-length integral $\int_{\infty} f \, ds$ for

(a) $\gamma : [1,3] \to \mathbf{R}^3$ given by $\gamma(t) = (t, 3t, 2t)$ and $f : \mathbf{R}^3 \to \mathbf{R}$ given by f(x, y, z) = yz.

(b) $\gamma: [0, 2\pi] \to \mathbf{R}^3$ given by $\gamma(t) = (\sin t, \cos t, t)$ and $f: \mathbf{R}^3 \to \mathbf{R}$ given by x + y + z.

Turn in full solutions.

From the 1st midterm: 2 (find and give countere.g.s to all 4 false statements),7ab (don't use cylindrical or spherical coordinates in a)

8.3: 3abd, 4 (you can use Mathematica on this one)

From Jones, Chapter 11: 11-1

Problem 2. Find a parametrization for the path from (0,0,0) to $(1,1,\sqrt{2})$ along the intersection between the surfaces $\{x^2 + y^2 = z^2\}$ and $\{y^2 = x\}$.

Problem 3. Compute the average distance to the origin among points on the circle in \mathbb{R}^2 with center (1,0) and radius 1.

Problem 4. The graph $\{(x, f(x)) \in \mathbf{R}^2 : x \in [a, b]\}$ of a C^1 function $f : [a, b] \to \mathbf{R}$ is a curve which may be parametrized by it's *x*-coordinate, i.e. by $\gamma : [a, b] \to \mathbf{R}$ given by $\gamma(t) = (t, f(t))$. Use this parametrization to obtain the following formula for the length of the graph of f:

$$\int_a^b \sqrt{1 + f'(x)^2} \, dx.$$