Weakly Infeasible Semidefinite Program
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In optimization, the Farkas’ lemma can be used to create certificates for infeasible linear programs,
e.g, see [1, § 3.4]. Weakly infeasible semidefinite programs are precisely the semidefinite programs
for which a generalization of the Farkas’ lemma does not provide a certificate of infeasibility. In
this example, we will apply the homotopy continuation approach developed in [2] using Bertini
to show weak infeasibility of a given problem.

For symmetric matrices Aq, ..., A,,,C € R™"™ and vector b € R™, we consider a semidefinite
program (SDP) of the form

maximize b’y
y

(SDP) subject to Z y; Ay + 5 =C,
i=1

S>=0

where S > 0 means that S is a positive semidefinite matrix, i.e., S € R™*™ is symmetric with
nonnegative eigenvalues. The problem (SDP)) is weakly infeasible if (SDP) is infeasible, i.e.,

{(5, y)

but, for every € > 0, there exists an (S, y) with S = 0 such that

C - iyZA, - S
i=1

For any M > 0, the approach in [2] is based on an equivalent description of weak infeasibility,
namely that the optimal value of

S ydi+S=0,yeR™, Szo} =9,
i=1

< e.

maximize \
y

m
subject to Z yAi + S+ =C,
i=1
S =0,
M—-X>0
is 0 but is not attained, i.e., supremum but not maximum. Hence, [2]] shows that this can be
observed by tracking a solution path that converges to the solution ““at infinity” via projective space.
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Specifically, we consider the following weakly infeasible dual problem from [2, Ex. 22]:
maximize 1y,
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Executing SDP . sh calls Bert ini using the input file i nput SDP which describes a user-defined
homotopy for solving the corresponding convex optimization problem (|1]) with start point provided
in startSDP. In our test, the optimal value for the corresponding problem was listed in
finite_solutions as

-0.2445702296757684721963589418950279479506e-22 0.3653431852837309498585163934304979240182e-22

which is numerically zero. The corresponding projective point [sg, 511, S12, S22, ¥1, ] € P°, where
s is the homogenizing coordinate, also listed in finite_solutions was
0.1420070460664174067897746451440804620169e-22 0.2716396090825499892177910018151099374657e-22
-0.9999999999999999999999809212362127033653e0 0.1455368815474751575296648535118111906290e-22
0.1420070460664174067897746451440804620169e-22 0.2716396090825499892177910018151099374657e-22
0.1907876289541177621636074426719895984223e-22 0.1455367866824031885270725179756176428056e-22

0.1000000000000000000000000000000000000000e1 0.0000000000000000000000000000000000000000e0
-0.8675774237068931461938116210113334916410e-23 -0.6697978245640461650248622491859873332321e-23

Since sy = 0, this shows that the solution the corresponding problem (T]) is “at infinity,” i.e., the op-
timal value of 0 is not achieved. Therefore, this computation confirms the weak infeasibility of (2)).

Following a similar strategy, Bertini was applied to the “messy” (i.e., structure was scrambled
under row operations and rotations) weakly infeasible cases in the test suite developed in [3] in-
volving SDPs on 10 x 10 matrices. Table [I] shows how this approach in Bertini was able to
identify all of these cases while standard software in optimization failed to identify any of them as
weakly infeasible.

m=20|m =10
SeDuMi [6] 0 0
SDPT3 [7] 0 0
MOSEK [4] 0 0
Preprocess [3]] + SeDuMi [6] 0 0
Bertini 100 100

TABLE 1. Number of successes (out of 100) of identifying “messy” weakly infea-
sible SDPs from [J3]]
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