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In optimization, the Farkas’ lemma can be used to create certificates for infeasible linear programs,
e.g, see [1, § 3.4]. Weakly infeasible semidefinite programs are precisely the semidefinite programs
for which a generalization of the Farkas’ lemma does not provide a certificate of infeasibility. In
this example, we will apply the homotopy continuation approach developed in [2] using Bertini
to show weak infeasibility of a given problem.

For symmetric matrices A1, . . . , Am, C ∈ Rn×n and vector b ∈ Rm, we consider a semidefinite
program (SDP) of the form

(SDP)

maximize
y

bTy

subject to
m∑
i=1

yiAi + S = C,

S � 0

where S � 0 means that S is a positive semidefinite matrix, i.e., S ∈ Rn×n is symmetric with
nonnegative eigenvalues. The problem (SDP) is weakly infeasible if (SDP) is infeasible, i.e.,{

(S, y)

∣∣∣∣∣
m∑
i=1

yiAi + S = C, y ∈ Rm, S � 0

}
= ∅,

but, for every ε > 0, there exists an (S, y) with S � 0 such that∥∥∥∥∥C −
m∑
i=1

yiAi − S

∥∥∥∥∥ ≤ ε.

For any M > 0, the approach in [2] is based on an equivalent description of weak infeasibility,
namely that the optimal value of

(1)

maximize
y

λ

subject to
m∑
i=1

yiAi + S + λI = C,

S � 0,

M − λ ≥ 0

is 0 but is not attained, i.e., supremum but not maximum. Hence, [2] shows that this can be
observed by tracking a solution path that converges to the solution “at infinity” via projective space.

Specifically, we consider the following weakly infeasible dual problem from [2, Ex. 22]:

(2)
maximize y1

subject to
[
−y1 1
1 0

]
� 0

which correspond to (SDP) with n = 2, m = 1, b1 = 1,

C =

[
0 1
1 0

]
, and A1 =

[
1 0
0 0

]
.
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2

Executing SDP.sh calls Bertini using the input file inputSDPwhich describes a user-defined
homotopy for solving the corresponding convex optimization problem (1) with start point provided
in startSDP. In our test, the optimal value for the corresponding problem (1) was listed in
finite solutions as
-0.2445702296757684721963589418950279479506e-22 0.3653431852837309498585163934304979240182e-22

which is numerically zero. The corresponding projective point [s0, s11, s12, s22, y1, λ] ∈ P5, where
s0 is the homogenizing coordinate, also listed in finite solutions was
0.1420070460664174067897746451440804620169e-22 0.2716396090825499892177910018151099374657e-22
-0.9999999999999999999999809212362127033653e0 0.1455368815474751575296648535118111906290e-22
0.1420070460664174067897746451440804620169e-22 0.2716396090825499892177910018151099374657e-22
0.1907876289541177621636074426719895984223e-22 0.1455367866824031885270725179756176428056e-22
0.1000000000000000000000000000000000000000e1 0.0000000000000000000000000000000000000000e0
-0.8675774237068931461938116210113334916410e-23 -0.6697978245640461650248622491859873332321e-23

Since s0 = 0, this shows that the solution the corresponding problem (1) is “at infinity,” i.e., the op-
timal value of 0 is not achieved. Therefore, this computation confirms the weak infeasibility of (2).

Following a similar strategy, Bertini was applied to the “messy” (i.e., structure was scrambled
under row operations and rotations) weakly infeasible cases in the test suite developed in [3] in-
volving SDPs on 10 × 10 matrices. Table 1 shows how this approach in Bertini was able to
identify all of these cases while standard software in optimization failed to identify any of them as
weakly infeasible.

m = 20 m = 10
SeDuMi [6] 0 0
SDPT3 [7] 0 0
MOSEK [4] 0 0

Preprocess [5] + SeDuMi [6] 0 0
Bertini 100 100

TABLE 1. Number of successes (out of 100) of identifying “messy” weakly infea-
sible SDPs from [3]
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