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A general genus 3 curve is canonically represented as a quartic plane curve and has 28 bitangent
lines, i.e., lines that are simultaneously tangent at two points on the curve. A general genus 4 curve
is canonically represented as a space sextic (complete intersection in P3 of a quadric and cubic
hypersurface) and has 120 tritangent planes, i.e., planes that are simultaneously tangent at three
points on the curve.

Problem 1 (Modified from Problem 8 of [2]). Develop a homotopy-based method for numerically
computing bitangents and tritangents.

A parameter homotopy [3] in the space of space quadrics and cubics was used in [1] to compute
the 120 tritangents for various instances. However, this this required an “ab initio” solve to compute
the solutions to the start system for this parameter homotopy. Hence, Problem 1 entails describing
a homotopy-based method in which the start system has 28 and 120 easy to construct solutions,
respectively, that can be deformed into the 28 and 120 bitangents and tritangents of a generic
genus 3 and genus 4 curve, repsectively.
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