
A short tutorial for using TrackType:7 in Bertini

Jonathan Hauenstein
February 25, 2015

The main computation performed via TrackType:7 in Bertini [1] is the following problem
addressed in [2]: given witness sets for A1 ⊂ Cn1 , . . . , Ak ⊂ Cnk and a polynomial system
F : Cn1+···+nk+M → C`, compute

(A1 × · · · × Ak × CM) ∩ V(F).

In order to perform this computation in Bertini, one first needs to computes witness
sets for each Ai. For example, we use TrackType:1 which performs a numerical irreducible
decomposition here, but note that this could be also be computed via TrackType:6 by using
ConstructWitnessSet:1. Since Bertini writes over local files each time it is ran, it is best
to compute witness sets for each Ai in separate directories.

For example, suppose k = 2 with A1 = V(x1 − x2
2) ⊂ C2, A2 = V(y21 + y22 − 1) ⊂ C2, and

F (x1, x2, y1, y2, z1, z2, z3) =

[
z22 − x1z2 + y2

z23 − z1z2 + x2 − y1

]
.

In the files associated with this tutorial, we did the following for A1:

(1) Created the folder A1
(2) In A1, created the file input A1 which is the following:

CONFIG

TrackType:1;

END;

INPUT

variable_group x1,x2;

function f;

f = x1 - x2^2;

END;

(3) Executed Bertini with the input file input A1, e.g., $ bertini input A1

We used a similar setup for A2:

(1) Created the folder A2
(2) In A2, created the file input A2 which is the following:

CONFIG

TrackType:1;

END;

INPUT

variable_group y1,y2;

function g;

g = y1^2 + y2^2 - 1;

END;

(3) Executed Bertini with the input file input A2, e.g., $ bertini input A2

Now that we have witness sets for A1 and A2, we create the main input file needed to
compute (A1 × A2 × C3) ∩ V(F).

1

2

CONFIG

TrackType:7;

END;

INPUT

variable_group x1,x2,y1,y2,z1,z2,z3;

function f; % for A1

function g; % for A2

function F1,F2; % new polynomials

f = x1 - x2^2;

g = y1^2 + y2^2 - 1;

F1 = z2^2 - x1*z2 + y2;

F2 = z3^2 - z1*z2 + x2 - y1;

END;

Note that we have concatenated the list of variables and declared the polynomials in order.
Upon running Bertini with this input file, the following is displayed to the screen:

*************** Regeneration Extension ****************

Please enter the number of nontrivial components (-1 to quit):

We enter 2 since k = 2 and then the following is displayed:

NOTE: Regeneration extension is only implemented for generically

reduced components (both input and output)!

NOTE: Regeneration extension assumes the witness sets for the

2 components are independent!

Setup for component 1 of 2.

Please enter the name of the corresponding input file or type

’quit’ or ’exit’ (max of 255 characters):

As stated in the first note, Bertini will only perform the computation when the components
Ai are generically reduced with respect to the corresponding input system. This first note
also states that the current implementation will only output generically reduced components.

The second note states that this implementation assumes that the witness sets are in-
dependent. In particular, this means that the slices are distinct. For example, say, you
are performing computations with m components of the same polynomial system. It is
best to solve using Bertini m times to generate m different witness sets, one for each
of the components. This can be accomplished, for example, by performing the numeri-
cal irreducible decomposition TrackType:1 m times. Another option is to first compute
a numerical irreducible decomposition. Then, for each component, print the witness point
set via TrackType:4 and then reconstruct a witness set from the witness point set using
TrackType:6 with ConstructWitnessSet:1.

Now, returning to the menu, we enter the name of the first input file, namely A1/input A1.
After verifying the existence of that file, the following is then displayed:

Please enter the name of the corresponding witness_data file or type

’quit’ or ’exit’ (max of 255 characters):

3

With this setup, the name of this file is A1/witness data. After reading this file, we then
to select the dimension and component. The menu for selecting the dimension is:

*************** Components to Regenerate ****************

Dimension 1: 1 classified component

degree 2: 1 component

Please select a dimension to regenerate (-1 to quit):

In this case, we enter 1 bringing up the following:

Dimension 1: 1 classified component

component 0 has degree 2 (gen. reduced: Yes)

Please select a component to regenerate (-1 to quit, -2 to regenerate all):

Note that one may select a particular irreducible component or their union via the -2 option.
This completes the selection for the first component and a similar process is repeated

to select the second component. Once selected, Bertini performs some initial tests before
performing the intersection. After computing the witness point superset, Bertini needs to
“reclassify” the points with respect to the whole system and only keeps the ones which are
generic points on generically reduced components, i.e., have multiplicity one. The user is
reminded of twice, first by the witness set summary:

*********** Multiplicity 1 Witness Set Summary ************

NOTE: nonsingular vs singular is based on rank deficiency

and identical endpoints

|codim| witness points | nonsingular | singular

| 4 | 16 | 16 | 0

and then by the decomposition summary:

********* Multiplicity 1 Witness Set Decomposition *********

| dimension | components | classified | unclassified

| 3 | 1 | 16 | 0

4

************** Decomposition by Degree **************

Dimension 3: 1 classified component

degree 16: 1 component

References

[1] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Bertini: Software for numerical alge-
braic geometry. Available at bertini.nd.edu.

[2] J.D. Hauenstein and C.W. Wampler. Unification and extension of intersection algorithms in numerical
algebraic geometry. Available at www.nd.edu/~jhauenst/preprints/hwGeneralIntersection.pdf.

bertini.nd.edu
www.nd.edu/~jhauenst/preprints/hwGeneralIntersection.pdf

	References

