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Abstract— Face parsing is a fundamental task in computer
vision, enabling applications such as identity verification, facial
editing, and controllable image synthesis. However, existing face
parsing models often lack fairness and robustness, leading to
biased segmentation across demographic groups and errors
under occlusions, noise, and domain shifts. These limitations
affect downstream face synthesis, where segmentation biases
can degrade generative model outputs. We propose a multi-
objective learning framework that optimizes accuracy, fairness,
and robustness in face parsing. Our approach introduces a
homotopy-based loss function that dynamically adjusts the
importance of these objectives during training. To evaluate its
impact, we compare multi-objective and single-objective U-Net
models in a GAN-based face synthesis pipeline (Pix2PixHD).
Our results show that fairness-aware and robust segmenta-
tion improves photorealism and consistency in face genera-
tion. Additionally, we conduct preliminary experiments using
ControlNet, a structured conditioning model for diffusion-
based synthesis, to explore how segmentation quality influences
guided image generation. Our findings demonstrate that multi-
objective face parsing improves demographic consistency and
robustness, leading to higher-quality GAN-based synthesis.1

I. INTRODUCTION

Facial parsing—the segmentation of fine-grained facial
components such as eyes, nose, mouth, and hair—is a
fundamental task in computer vision, supporting applications
in face recognition [34], augmented reality [17], and facial
expression analysis [5]. Recent advances in deep learn-
ing have significantly improved segmentation accuracy [3],
[18], yet existing models primarily optimize for benchmark
performance while often neglecting key concerns such as:
(1) fairness across demographic groups, (2) robustness to
noise, occlusions, and domain shifts, and (3) the impact of
segmentation on downstream generative models. While face
parsers may perform well on clean, well-represented data,
they often degrade sharply for underrepresented demograph-
ics [2], [11], [25] or in challenging real-world conditions [9],
[8], [12]. Such biases and fragility not only reduce trust
and usability in applications like identity verification and
facial editing but also propagate into generative synthesis,
amplifying disparities in downstream tasks.

Recent efforts have explored multi-objective optimization
for general segmentation [15], [30], [28] and fairness-aware
approaches in facial analysis [21], [24]. However, a unified

1For anonymity during the review process, source codes and trained
model weights are omitted but will be made publicly available upon
publication.

strategy that jointly optimizes accuracy, fairness, and robust-
ness in face parsing remains underexplored. Furthermore,
integrating fair and robust segmentation with generative
models introduces additional complexities: state-of-the-art
GAN-based [10] and diffusion-based models [39] rely on
semantically structured segmentation maps [26], [35] to
generate realistic and controllable faces. If the segmentation
model introduces bias or lacks robustness, these deficiencies
are propagated—and often amplified—by generative models,
leading to unnatural or demographically skewed outputs [20],
[32], [7]. This issue is particularly pronounced in GAN-
based synthesis, where segmentation errors cause unnatural
facial reconstructions, and in diffusion-based models such
as ControlNet, where inaccurate parsing reduces semantic
alignment and editability.

To address these challenges, we propose a homotopy-
based multi-objective learning framework for face parsing
that explicitly balances accuracy, fairness, and robustness.
Our method dynamically adjusts training objectives over
time, shifting from an accuracy-first paradigm in early
training to a balanced trade-off incorporating fairness and
robustness. This approach enables stronger segmentation
performance across diverse demographic groups while im-
proving resilience to occlusions, noise, and domain shifts.
Unlike prior works that optimize for fairness or robustness
in isolation, our framework unifies these perspectives within
a single pipeline and systematically evaluates their impact
on generative face synthesis.

To validate our approach, we integrate multi-objective
and single-objective U-Net models into a GAN-based
face synthesis pipeline (Pix2PixHD) and assess their im-
pact on generative quality. We further conduct prelimi-
nary experiments with ControlNet, a structured diffu-
sion model, to examine how segmentation quality affects
guided image generation. Our evaluations span real-world
perturbations—including Gaussian noise, occlusions, blur,
and lighting shifts—as well as multiple demographic groups,
measuring both segmentation performance (mIoU, fairness
variance) and generative quality (Fréchet Inception Distance
(FID), LPIPS similarity [38], [40]). Our key contributions are
as follows:

(1) Fairness-Aware Face Parsing: We introduce a multi-
objective learning framework that explicitly optimizes accu-
racy, fairness, and robustness.

(2) Systematic Fairness & Robustness Evaluation: We



Fig. 1. Overview of Our Multi-Objective Face Parsing and Synthesis Framework. Our proposed homotopy-based multi-objective learning framework
optimizes accuracy (Lacc), robustness (Lrob), and fairness (Lfair). This framework produces fairness-aware and robust segmentation maps, which
are used to train two generative pipelines: (1) a GAN-based synthesis model (Pix2PixHD), where improved segmentation enhances photorealism and
demographic consistency, and (2) a diffusion-based synthesis model (ControlNet), where structured parsing maps guide semantic alignment and editability.
The improved segmentation quality enhances photorealism, fairness, and robustness in generative models. Key improvements include reduced bias in GAN-
generated faces and more stable semantic conditioning in diffusion synthesis.

quantify segmentation fairness via mIoU variance and assess
robustness under occlusions, noise, and domain shifts.

(3) Impact on GAN-Based Face Synthesis: We show
that fairness-aware segmentation improves GAN-generated
face quality, reducing FID scores and enhancing perceptual
realism (lower LPIPS scores).

(4) Preliminary Diffusion-Based Analysis: We explore
how segmentation quality influences diffusion-based synthe-
sis (ControlNet).

Our findings highlight the importance of fair and robust
face parsing in developing bias-aware generative models
with applications in face editing, identity verification, and
ethical AI deployment. The remainder of this paper is struc-
tured as follows: we discuss related work in Section II,
present our proposed method and experiments in Section III,
describe results in Section IV, and conclude with implica-
tions and future research directions in Section V.

II. RELATED WORK

A. Multi-Objective Optimization in Computer Vision

Multi-objective optimization is widely used in computer
vision to balance competing objectives such as accuracy,
efficiency, and robustness [29]. Traditional methods rely on
fixed weighting schemes for loss functions, limiting adapt-
ability across different tasks. More recent techniques, such as
homotopy-based optimization, introduce dynamic weighting
mechanisms that shift priorities during training [4]. These
methods have shown promise in solving complex optimiza-
tion problems, particularly in high-dimensional polynomial
systems [23]. However, their application to specialized areas
such as face parsing and generative modeling remains largely
unexplored. Our work extends homotopy-based optimization

to structured face parsing, explicitly integrating accuracy,
fairness, and robustness into a single multi-objective frame-
work.

B. Generative Adversarial Networks and Multi-Objective
Training

Generative Adversarial Networks (GANs) are widely used
for tasks such as face generation, editing, and domain
adaptation [10]. Unlike diffusion models, which rely on
iterative denoising, GANs synthesize high-quality images
in a single forward pass, making them efficient for appli-
cations such as interactive facial editing [14]. GAN-based
architectures provide structured control over facial attributes
through techniques such as semantic segmentation-guided
generation [26] and latent space manipulation [36].

Multi-objective training of GANs has been explored
through multi-discriminator architectures to improve sta-
bility and diversity [1] and evolutionary optimization ap-
proaches for adversarial training [33]. However, GANs re-
main susceptible to mode collapse, demographic biases,
and robustness issues, particularly when trained on imbal-
anced datasets [32]. Our work introduces a homotopy-based
optimization framework that explicitly balances perceptual
realism, semantic alignment, and demographic fairness by
leveraging segmentation maps as conditioning inputs. This
allows us to systematically evaluate how fairness-aware pars-
ing influences structured image synthesis. Additionally, we
extend our analysis to diffusion-based synthesis (ControlNet),
enabling a direct comparison between GANs and diffusion
models in terms of controllability, fairness, and robustness.



C. Diffusion Models and Structured Conditioning

Diffusion models have emerged as powerful alternatives to
GANs for high-resolution image generation, achieving state-
of-the-art performance in photorealistic synthesis [13]. Struc-
tured conditioning mechanisms, such as ControlNet [39], im-
prove controllability by integrating external control signals,
including segmentation or edge maps. While prior work has
demonstrated the effectiveness of diffusion models for face
synthesis [27], their dependence on structured inputs has
not been systematically examined in the context of fairness-
aware segmentation pipelines. Our study investigates the role
of multi-objective face parsing in guiding diffusion-based
synthesis and compares its impact against traditional GAN-
based conditioning.

D. Fairness in Face Parsing and Generative Models

Fairness has been extensively studied in face recogni-
tion and classification, where demographic biases in deep
learning models have been well documented [2]. However,
fairness-aware segmentation remains underexplored [11], de-
spite evidence that segmentation models exhibit higher error
rates for underrepresented demographic groups [6]. These
disparities can propagate into downstream applications, such
as attribute editing and face synthesis, amplifying biases in
generative outputs.

While existing work has introduced fairness-aware regu-
larization for generative models [32], few studies explicitly
examine how segmentation biases affect generative synthesis
pipelines. Our approach addresses this gap by incorporating
fairness as an explicit training objective in face parsing
and evaluating its effect on both GAN- and diffusion-based
synthesis. By demonstrating how fairness-aware segmenta-
tion improves photorealism and demographic consistency, we
establish a framework for more equitable face generation.

E. Face Parsing for Generative Synthesis

Face parsing, which involves segmenting facial compo-
nents such as eyes, lips, and hair, plays a critical role in tasks
like face editing, synthesis, and attribute manipulation [19].
Previous work has explored using segmentation maps to
enhance GAN-based face editing [26]. For instance, regional
GAN inversion techniques leverage parsing maps to enable
fine-grained control over facial feature editing [37]. How-
ever, existing methods prioritize accuracy without explicitly
addressing fairness or robustness.

Our framework extends face parsing for generative syn-
thesis by integrating segmentation and GAN training into
a unified multi-objective pipeline. Using homotopy-based
optimization, we balance realism, semantic alignment, and
fairness, ensuring that segmentation maps remain robust to
variations in demographic attributes and imaging conditions.

F. Robustness and Cross-Domain Generalization

Robustness to noise, occlusion, and domain shifts re-
mains a key challenge in vision models [8], [12]. While
segmentation models are often evaluated under controlled

conditions, their deployment in real-world applications re-
quires generalization across diverse datasets and imaging
environments [22]. Domain adaptation methods, such as Cy-
cleGAN, have been explored for cross-domain transfer [41],
but they do not explicitly enforce robustness constraints in
segmentation.

Our work incorporates robustness as an explicit opti-
mization objective in face parsing, ensuring consistent per-
formance under occlusions, noise, and cross-domain shifts.
We validate our models across multiple datasets, including
CelebAMask-HQ [16], demonstrating that multi-objective
optimization enhances generalization and resilience.

G. Contributions of Our Work

While prior work has explored elements of multi-
objective optimization, fairness-aware segmentation, and
GAN-conditioned synthesis, our approach is the first to
integrate these into a unified homotopy-based framework. By
dynamically balancing accuracy, fairness, robustness, and
semantic fidelity, we improve face parsing performance and
demonstrate its downstream impact on generative tasks.

Unlike prior methods that address fairness at the synthesis
stage, our approach ensures fairness and robustness at the
segmentation level, reducing biases before they propagate
into generative models. We systematically evaluate how
segmentation quality affects both GAN-based synthesis
(Pix2PixHD) and diffusion-based synthesis (ControlNet),
showing improvements in photorealism, demographic con-
sistency, and structured conditioning. Our findings highlight
the importance of fairness-aware segmentation for bias-aware
generative modeling in face editing and synthesis.

III. PROPOSED METHOD

In this section, we introduce our homotopy-based multi-
objective framework for face parsing and its integration with
both GAN-based and diffusion-based face editing models.
We outline the problem formulation, dataset preparation,
model architecture, training strategy, and evaluation pipeline,
emphasizing fairness, robustness, and semantic alignment.

A. Problem Formulation

We define the dataset X = {xi}, where each face image
is paired with a segmentation mask yi ∈ Y, mapping to
19 facial components (e.g., hair, eyes, mouth). Demographic
attributes are denoted as a (e.g., Male, Young, Wearing
Hat). Our objective is to train a segmentation function fθ(·)
that predicts ŷi while optimizing for accuracy, fairness, and
robustness. Accuracy is maximized by aligning ŷi with yi
using Dice loss [31]. Fairness is enforced by minimizing
variance Var(mIoUg) across demographic groups, ensuring
equitable segmentation quality. Robustness is maintained
by penalizing performance degradation (mIoU drop) under
input perturbations such as noise and occlusion.

B. Dataset Preparation

We employ the CelebAMask-HQ dataset [16], divided into
training, validation, and test sets. Each image and mask



Algorithm 1 Multi-Objective Face Parsing (Pseudo-code)
[t]
Require: Homotopy function h(t) providing (α, β, γ) for

epoch t
1: for epoch t = 1 . . . T do
2: (α, β, γ) = h(t)
3: for each batch in DataLoader do
4: Load images {x}, masks {m}, attributes {a}
5: outputs = fθ(x) ▷ U-Net forward pass
6: Lacc = DiceLoss(outputs,m)
7: outputsnoisy = outputs+ random noise()
8: Lrob = −mIoU(softmax(outputsnoisy),m)
9: Lfair = Var [mIoUg]

10: Ltotal = αLacc + β Lrob + γ Lfair

11: Backward and update θ
12: end for
13: end for

are resized to 256 × 256 for compatibility with our U-
Net architecture. Demographic attributes are extracted from
annotations to compute fairness metrics.

C. Model Architecture

Our segmentation model utilizes a U-Net architecture with
a ResNet-34 encoder pre-trained on ImageNet. It outputs 19
channels corresponding to distinct facial regions, balancing
computational efficiency with high segmentation accuracy.

D. Multi-Objective Training

We train the U-Net segmentation models by optimizing
a weighted sum of accuracy, fairness, and robustness losses,
dynamically adjusted using homotopy-based scheduling. The
training process is outlined in Algorithm 1.

a) Loss Components:
• Accuracy Loss (Lacc): Dice loss measures the overlap

between predicted and ground truth masks.
• Robustness Loss (Lrob): Negative mIoU under per-

turbed predictions to ensure stability.
• Fairness Loss (Lfair): Variance of mIoU across demo-

graphic groups to promote equitable performance.
Alternative Fairness Computation: We also compute

per-group mIoU for each demographic attribute, enabling
detailed analysis of performance disparities (see Section IV-
C.1).

E. Homotopy-Based Loss Scheduling

We dynamically balance the three loss components using
epoch-dependent weights α(t), β(t), and γ(t), ensuring
α(t) + β(t) + γ(t) = 1. Initially, accuracy is prioritized,
with weights shifting towards robustness and fairness over
time. We explore three scheduling strategies:

• Linear: α(t) decreases linearly, while β(t) and γ(t)
increase proportionally.

• Sigmoid: Smooth logistic transitions for gradual em-
phasis shifts.
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Fig. 2. Comparison of α, β, and γ schedules across three homotopy
methods (Linear, Sigmoid, and Piecewise) over 30 epochs. Each subplot
illustrates the evolution of a parameter (α, β, or γ) as it adapts during
training, highlighting the differences in transition dynamics across homotopy
strategies. The legend below the figure identifies the homotopy method for
each curve.

• Piecewise: Abrupt changes in weight distribution at
predefined training stages.

Figure 2 illustrates the evolution of these weights across
training epochs for each homotopy method.

F. Integration with Generative Models

1) GAN-Based Face Editing: We utilize the trained U-
Nets to generate segmentation maps for the training and
validation sets, which are then used to train a Pix2PixHD
GAN. The GAN architecture comprises:

• Generator G: Transforms segmentation maps into RGB
images.

• Discriminator D: Distinguishes real images from gen-
erated ones.

The GAN training involves a combination of adversarial
loss and pixel-level L1 reconstruction loss:

LGAN = Ladv(G,D) + λ ∥x̂− x∥1,

where x̂ = G(segmentation map) and x is the real image.
During testing, the GAN generates images using seg-

mentation maps from the test set produced by both single-
objective and multi-objective U-Nets, enabling evaluation of
how segmentation quality impacts generative performance.

2) ControlNet-Based Face Editing: In addition to GANs,
we integrate ControlNet [39] for diffusion-based face edit-
ing. ControlNet leverages segmentation maps to guide the
diffusion process, enhancing image fidelity and semantic
alignment. Our setup includes:

• ControlNet Model: Pre-trained on Stable Diffusion,
fine-tuned on our segmentation maps.

• Diffusion Pipeline: Combines ControlNet with a text
encoder and U-Net backbone to generate photorealistic
faces conditioned on segmentation maps.

Training Procedure: ControlNet is fine-tuned for a single
epoch using segmentation maps from the training set. In
diffusion-based experiments, we compare only the single-
objective model with the multi-objective linear homotopy
model to manage computational resources effectively. The
training minimizes the standard denoising loss:

LControlNet = Ldenoise,



where Ldenoise is the Mean Squared Error between pre-
dicted and actual noise. During testing, ControlNet generates
images using test set segmentation maps from both U-Net
models, allowing assessment of segmentation quality’s effect
on diffusion-based generation.

G. Evaluation Metrics and Setup

a) Segmentation Metrics: We evaluate segmentation
performance using the mean Intersection-over-Union (mIoU)
across 19 facial classes. Fairness is quantified by the variance
Var(mIoUg) across demographic groups, and robustness is
assessed through performance under Gaussian noise, occlu-
sions, and blur.

b) Generative Metrics: For GAN outputs, we evaluate
image quality using Fréchet Inception Distance (FID),
which quantifies realism by comparing feature distributions
between generated and real images. Additionally, Learned
Perceptual Image Patch Similarity (LPIPS) measures
perceptual similarity, where lower scores indicate greater
visual resemblance to real images.

c) Implementation Details: All experiments are im-
plemented in PyTorch and trained on four NVIDIA A10
GPUs using the Adam optimizer with a learning rate
of 10−4. For ControlNet, we fine-tune the pre-trained
control v11p sd15 seg model based on Stable Dif-
fusion v1.5. Our pipeline supports gradient accumulation
and mixed precision (FP16) for computational efficiency.
Homotopy-based loss scheduling is configurable (linear,
sigmoid, piecewise). Detailed training configurations
will be released alongside our code and models to ensure
reproducibility.

d) Workflow Summary:
1) Train U-Nets: Train single-objective and multi-

objective U-Nets on the training set, validate on the
validation set.

2) Generate Segmentation Maps: Use trained U-Nets
to produce segmentation maps for training, validation,
and test sets.

3) Train GAN: Train the Pix2PixHD GAN using seg-
mentation maps from the training and validation sets.

4) Fine-Tune ControlNet: Fine-tune ControlNet on
training set segmentation maps for one epoch.

5) Generate and Evaluate Images: Generate images
using GAN and ControlNet with test set segmentation
maps from both U-Net models; evaluate using FID and
LPIPS.

In the following section, we present quantitative and quali-
tative results demonstrating the effectiveness of our approach
across various conditions and demographic groups.

IV. RESULTS & DISCUSSION

This section presents a comprehensive evaluation of our
segmentation models and their impact on both face parsing
and generative synthesis (GAN and diffusion-based). We
compare single-objective and multi-objective training strate-
gies across robustness, fairness, and perceptual quality.

Fig. 3. Qualitative comparison of Single-Objective and Multi-Objective
models under perturbations. Blur (severity = 0.3), Gaussian Noise
(severity = 0.1), and Occlusion (severity = 0.5) are applied to input
images (first column). The Single-Objective model produces fragmented
and inaccurate segmentations, especially in occluded and blurred regions. In
contrast, the Multi-Objective model exhibits greater robustness, preserving
facial structure despite degradations, with improved stability under occlu-
sion.

TABLE I
COMPARISON OF SEGMENTATION OBJECTIVES ON U-NET.
QUANTITATIVE RESULTS COMPARING SINGLE-OBJECTIVE AND

MULTI-OBJECTIVE TRAINING STRATEGIES (LINEAR, SIGMOID, AND

PIECEWISE HOMOTOPY) BASED ON MEAN INTERSECTION OVER UNION

(MIOU) AND DICE COEFFICIENT.

Objective mIoU (%) Dice (%)

Single Objective 73.87 94.46
Multi-Objective (Linear) 74.21 94.28
Multi-Objective (Sigmoid) 73.50 94.35
Multi-Objective (Piecewise) 73.80 94.47
Multi-Objective (Alt. Fairness) 73.81 94.49

A. Segmentation Performance

Despite dedicating training capacity to multiple compet-
ing objectives (fairness and robustness) rather than solely
optimizing for accuracy, the multi-objective models achieve
segmentation performance that remains on par with or
even surpasses the single-objective baseline (Table I). This
suggests that our homotopy-based optimization effectively
balances competing goals without significantly compromis-
ing segmentation accuracy, demonstrating the feasibility of
integrating fairness and robustness without sacrificing core
performance.
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Fig. 4. Comparison of Fairness Loss Strategies on High-Disparity Demographics. The left plot represents the fairness variance-based approach, which
minimizes the variance of per-group mIoU scores, indirectly reducing fairness gaps across demographic attributes. The right plot represents the per-group
mIoU fairness loss, which explicitly tracks and optimizes fairness at a finer granularity. While the variance-based approach smooths out overall disparities,
the per-group fairness loss provides better control over specific demographic attributes, ensuring higher consistency across subpopulations. Multi-objective
models (Linear, Sigmoid, Piecewise) tend to provide more equitable segmentation across demographics compared to the Single-Objective baseline, though
certain attributes still show variability in performance.

B. Robustness Analysis: Performance Under Perturbations

To evaluate the robustness of our segmentation models,
we introduce perturbations including Gaussian noise, blur,
occlusion, and salt-and-pepper noise. We then measure
mIoU degradation under increasing severity.

Table II reports the robustness of each U-Net variant
to common perturbations (Gaussian noise, blur, bright-
ness increase, darkness) within the semantic-to-image GAN
framework. While the single-objective baseline exhibits high
FID scores across most perturbations, it maintains mod-
erate LPIPS values, indicating that at least part of its
generated diversity may stem from artifacts or less coher-
ent facial/gestural details. In contrast, the multi-objective
piecewise and linear homotopy models generally achieve
lower FID scores—particularly under noise and brightness
shifts—suggesting more robust and realistic outputs. Their
LPIPS values remain in a comparable range, indicating
that these methods retain perceptual diversity without suc-
cumbing to as many mode distortions. Interestingly, the
sigmoid variant shows strong performance against blur in
terms of FID (208.30) but the highest LPIPS under darkness
(0.456), possibly reflecting that it generates more varied
(yet not always consistently realistic) outputs under certain
perturbations.

Figure 3 illustrates segmentation performance under per-
turbations. The first column presents perturbed inputs, fol-
lowed by predictions from the Single-Objective U-Net and
the Multi-Objective U-Net (Linear). Under blur (top row), the
Single-Objective model loses fine facial details, especially
around the eyes and nose, leading to misalignment, whereas
the Multi-Objective model maintains more cohesive struc-
tures. Gaussian noise (middle row) introduces artifacts and
noisy edges in the Single-Objective model, while the Multi-
Objective approach yields smoother and more stable seg-
mentations. Occlusion (bottom row) severely disrupts Single-
Objective predictions, often causing key facial regions to dis-
appear, whereas the Multi-Objective model preserves iden-
tifiable structures, mitigating segmentation failures. These
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Fig. 5. Performance comparison of mIoU across methods and pertur-
bation types under varying severities. The plot illustrates the sensitivity
of Single Objective and Multi-Objective methods (Linear, Sigmoid, and
Piecewise) to perturbations, categorized by Gaussian noise, blur, occlusion,
and salt-and-pepper noise. Each method is distinguished using different line
styles and markers, while colors indicate the perturbation types.

results confirm that Multi-Objective training improves seg-
mentation resilience against real-world distortions.

In Figure 5 the Multi-Objective (Linear) method
marginally outperforms Single Objective at mild and mod-
erate severities. Under severe occlusion (0.5), both meth-
ods experience significant performance drops, but Multi-
Objective retains a slight advantage. Salt and pepper noise
sees marginal gains for Multi-Objective (Linear) at 0.1
severity (mIoU 0.03 vs. 0.02 for Single Objective), with all
methods converging to very low mIoU (∼0.00) at higher
severities (0.3, 0.5). While Single Objective excels in specific
mild perturbations, Multi-Objective methods, particularly the
Linear variant, exhibit better robustness under moderate



TABLE II
ROBUSTNESS OF U-NET VARIANTS UNDER DIFFERENT PERTURBATIONS (GAN RESULTS). EACH CELL SHOWS FID ↓ / LPIPS ↓. LOWER FID

INDICATES MORE REALISTIC OUTPUTS, WHEREAS LPIPS REFLECTS PERCEPTUAL DISTANCE (WHICH CAN IMPLY DIVERSITY OR ARTIFACTS).

Model Gaussian Noise Blur Brightness Darkness Notes
FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

U-Net (Single) 363.06 0.435 259.12 0.403 319.57 0.407 367.75 0.431 Baseline segmentation
U-Net (Linear + Alt. Fairness) 373.83 0.419 211.52 0.390 298.46 0.384 293.71 0.417 Linear homotopy w/ alternate fairness
U-Net (Linear) 322.23 0.434 236.44 0.386 313.02 0.433 285.24 0.425 Linear homotopy approach
U-Net (Sigmoid) 349.30 0.437 208.30 0.412 286.38 0.444 331.36 0.456 Sigmoid multi-objective
U-Net (Piecewise) 307.16 0.435 216.98 0.384 330.10 0.439 326.82 0.430 Piecewise multi-objective

conditions, showcasing their adaptability to more challenging
scenarios.

C. Fairness Evaluation

We measure fairness by computing performance disparities
across demographic attributes. The class-wise mIoU results
presented in Table III highlight the consistent advantages of
incorporating fairness-based multi-objective training into U-
Net models for face parsing. Across all 19 facial components,
the multi-objective model outperforms the single-objective
counterpart. Slight improvements are observed for all re-
gions. Even for less distinctive or ambiguous classes like
Class 7 (Eyebrows) and Class 15 (Accessories/Background),
the multi-objective model achieves modest higher scores,
with Class 15 improving from 73.21% to 73.49%.

1) Comparison of Fairness Approaches: In addition to
our original fairness variance objective, we tested a re-
fined approach that calculates per-group mIoU more ex-
plicitly (see Section III-D). Figure 4 show side-by-side
comparisons of Single-Objective vs. Multi-Objective mod-
els across high-disparity demographic attributes. In both
figures, our Multi-Objective (Linear) method generally
achieves higher performance on underrepresented attributes
(e.g., Wearing Lipstick, Chubby, Big Lips) com-
pared to the Single-Objective baseline, though the exact
mIoU values vary slightly under the new per-group log-
ging scheme. Under this updated fairness measurement, we
observe clearer demographic separations, particularly for
attributes like Eyeglasses and Smiling, which high-
lights the subpopulations that benefit most from the Linear
Homotopy weighting. Interestingly, while some categories
(Big Nose, Bags Under Eyes) display marginally lower
absolute mIoU scores, the gap between Single-Objective and
Multi-Objective models becomes smaller. Finally, despite re-
fining group-wise performance tracking, the Multi-Objective
(Linear) model maintains comparable overall accuracy, indi-
cating that this focus on fairness variance does not unduly
compromise mean IoU on standard benchmarks.

D. Impact on Generative Face Synthesis: GAN-Based Eval-
uation

To analyze the downstream impact of segmentation qual-
ity, we use the generated segmentation maps as inputs to a
Pix2PixHD GAN. Although we employed the same Pix2Pix-
like GAN architecture for all experiments, the segmentation
maps fed into the GAN were derived from U-Nets trained

Fig. 6. Impact of Segmentation Maps on GAN-Based Face Synthesis.
Segmentation maps from a Single-Objective U-Net and Multi-Objective
U-Nets (Linear, Sigmoid, Piecewise) serve as inputs to a Pix2Pix GAN.
Single-objective segmentation introduces inconsistencies, distorting facial
details. In contrast, multi-objective segmentation improves structural coher-
ence, yielding more natural and perceptually accurate face synthesis.

under distinct objectives. In the Single-Objective case, which
optimizes for raw segmentation accuracy alone, the parser
occasionally misaligned facial contours—particularly around
the eyes and mouth—producing vague or blurred regions
in the final GAN-synthesized faces (Figure 3). By contrast,
our Multi-Objective U-Nets (Linear, Sigmoid, Piecewise)
integrated fairness and robustness considerations, leading to
segmentation maps with sharper boundaries and more con-
sistent labeling of challenging facial attributes (e.g., hairlines
or eyeglasses).

When these cleaner, more robust segmentation maps were
passed to the same GAN, the generator more reliably re-
constructed key features, yielding fewer artifacts and better
overall realism. For instance, faces derived from the Multi-
Objective (Sigmoid) model exhibited reduced color bleed
around the hair boundary, while the Piecewise schedule often
improved the jawline and cheek areas. Despite occasional
local artifacts (e.g., minor tonal shifts), the multi-objective
parses generally offered stronger geometric and semantic
cues, enabling the GAN to produce final images that more
faithfully mirrored the real reference. This underscores how
upstream segmentation quality can impact downstream gen-
erative performance.

Table IV reports FID and LPIPS values for our U-Net-
based segmentation models applied to face and gesture
synthesis. While the baseline model exhibits the highest
LPIPS (0.4419), a closer inspection reveals that much of
this increased perceptual distance stems from undesirable
artifacts and inconsistencies in facial structure, rather than
meaningful diversity. This aligns with its lower overall



TABLE III
CLASS-WISE MEAN MIOU COMPARISON FOR U-NET MODELS. THE TABLE COMPARES THE SEGMENTATION PERFORMANCE OF THE

SINGLE-OBJECTIVE AND MULTI-OBJECTIVE TRAINED U-NET MODELS FOR EACH CLASS IN THE CELEBAMASK-HQ DATASET. METRICS ARE

REPORTED AS MEAN INTERSECTION-OVER-UNION (MIOU) FOR 19 FACIAL COMPONENTS. HIGHER VALUES FOR EACH CLASS ARE BOLDED.

Model 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Single Objective 73.87 73.87 73.87 73.87 73.87 73.87 75.02 73.89 73.88 73.71 73.87 73.87 73.87 73.87 73.87 73.21 73.89 73.87 75.17
Multi-Objective (Alt. Fairness) 74.21 74.21 74.21 74.21 74.21 74.21 75.06 74.23 74.22 74.09 74.21 74.18 74.21 74.21 74.21 73.49 74.23 74.21 75.24

TABLE IV
COMPARISON OF SEGMENTATION MODELS ON GAN-BASED AND

DIFFUSION-BASED FACE SYNTHESIS.

GAN-Based Face Synthesis

Segmentation Source FID ↓ LPIPS ↓

Single-Objective U-Net 117.93 0.4419
Multi-Objective (Linear) 99.93 0.4269
Multi-Objective (Linear + Alt. Fairness) 107.92 0.4198
Multi-Objective (Sigmoid) 117.57 0.4378
Multi-Objective (Piecewise) 98.87 0.4222

Diffusion-Based Face Synthesis

Segmentation Source FID ↓ LPIPS ↓

Single-Objective U-Net 261.01 0.7867
Multi-Objective U-Net (Linear) 257.18 0.7848

fidelity (FID = 117.93), suggesting that higher LPIPS in this
case correlates with noisy, less coherent generations rather
than enhanced variation.

In contrast, the Piecewise (FID = 98.87; LPIPS = 0.4222)
and Linear Homotopy (FID = 99.93; LPIPS = 0.4269)
models achieve lower LPIPS while maintaining strong re-
alism, producing more structurally accurate and percep-
tually consistent outputs. These models strike a crucial
balance—maintaining sufficient diversity in synthesis while
avoiding excessive distortions.

E. Impact on Diffusion-Based Face Synthesis

To assess the role of segmentation quality in image synthe-
sis, we integrate our segmentation maps into ControlNet and
evaluate their impact on diffusion-based face generation. Un-
like GAN-based synthesis, diffusion models rely on iterative
denoising, making them particularly sensitive to structured
conditioning inputs such as segmentation maps.

We conducted an initial experiment using Stable Diffusion
with ControlNet, conditioned on segmentation maps from
both Single-Objective and Multi-Objective U-Nets. Due to
computational constraints, training was limited to one epoch,
making this an exploratory assessment. Results in Table IV
suggest that segmentation maps from Multi-Objective models
yield slight but consistent improvements in FID and LPIPS,
indicating higher perceptual realism and stability. While
the performance gains are modest, they demonstrate that
fairness- and robustness-aware segmentation models provide
more reliable conditioning for diffusion-based face genera-
tion. As this study was limited to a single training epoch,
further research is needed to refine these insights.

Fig. 7. Effect of Segmentation Quality on Diffusion-Based Synthesis
After One Epoch of Fine-Tuning. The top row shows images generated
using segmentation maps from the Single-Objective U-Net, while the bottom
row corresponds to the Multi-Objective (Linear) U-Net. Despite being fine-
tuned for just one epoch, the Multi-Objective model produces structurally
coherent and visually consistent images, reducing artifacts and distortions
in facial features. In contrast, the Single-Objective model exhibits irregular
textures and geometric inconsistencies.

V. LIMITATIONS AND FUTURE DIRECTIONS

Despite notable improvements in fairness, robustness, and
segmentation quality, several challenges remain, presenting
opportunities for further research. First, the CelebAMask-
HQ dataset, while diverse, remains imbalanced across de-
mographic groups, which may limit generalization. Address-
ing this requires more strategic data augmentation, active
reweighting, or leveraging larger, demographically-balanced
datasets to further mitigate bias and enhance equitable per-
formance. Second, our current framework treats GANs as
passive consumers of segmentation maps. Incorporating bi-
directional optimization, where segmentation feedback in-
fluences GAN training, could improve both parsing fidelity
and generative realism. Such an approach could be extended
to diffusion models, where structured conditioning remains
underexplored in fairness-aware synthesis.

Additionally, while our method is broadly applicable be-
yond facial segmentation, extending it to domains such as
medical imaging, autonomous perception, or video-based
synthesis may require task-specific adaptations. Future re-
search should explore domain-aware multi-objective formu-
lations that account for context-specific biases and robustness
challenges. Finally, while homotopy scheduling improves
optimization efficiency, fairness-aware training introduces
additional computational overhead due to subgroup evalu-
ations. Exploring adaptive sampling strategies or efficient
approximations could make large-scale deployments more



feasible, especially for real-time applications.
Our findings underscore that multi-objective training does

not impose rigid trade-offs—adaptive optimization can inte-
grate fairness and robustness without sacrificing accuracy.
By extending these ideas to broader datasets, generative
frameworks, and real-world applications, future research can
drive the development of more equitable and resilient vision
models for AI-driven image synthesis and recognition.

ETHICAL IMPACT STATEMENT

Our research focuses on fairness-aware and robust face
parsing for generative AI, addressing biases in segmentation
models and their downstream impact on generative synthesis.
While our work aims to mitigate demographic disparities and
improve model resilience, we acknowledge potential ethical
concerns related to dataset biases, misuse, and unintended
societal impact.

Potential Risks and Negative Impacts: Face parsing and
generative models can be misused for unethical applications,
such as surveillance, deepfake generation, or reinforcing
demographic stereotypes. Despite our efforts to improve
fairness, residual biases in datasets (e.g., CelebAMask-HQ)
may persist, potentially leading to unequal model perfor-
mance across demographic groups. Additionally, robustness
improvements could inadvertently be leveraged to enhance
adversarial facial synthesis, raising concerns about identity
fraud.

Risk-Mitigation Strategies: To mitigate these risks, we
employ fairness-aware multi-objective training to reduce de-
mographic disparities and systematically evaluate robustness
against real-world perturbations. Our methodology priori-
tizes transparency and reproducibility—our dataset choices,
fairness metrics, and evaluation protocols will be made
publicly available to facilitate scrutiny and improvement.
Furthermore, we emphasize ethical use cases, discouraging
applications in deceptive or harmful generative AI practices.

Human Subject and Data Ethics: Our study does not
involve human subjects or personally identifiable information
(PII). The datasets used (CelebAMask-HQ) are publicly
available, and we adhere to all ethical guidelines concerning
their use. While we acknowledge that publicly available
datasets can contain biases, our methodology explicitly ad-
dresses this issue through fairness-aware training and demo-
graphic evaluation.

Future Ethical Considerations: Future research should
extend fairness-aware segmentation to more diverse and
representative datasets, ensuring broader applicability and
minimizing demographic bias. Additionally, interdisciplinary
collaborations with ethicists, policymakers, and domain ex-
perts will be crucial to guiding responsible deployment and
regulation of AI-generated content.

By integrating fairness and robustness into face parsing,
we aim to contribute to the development of ethical, bias-
aware AI models that enhance inclusivity and reliability in
computer vision applications.
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