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Abstract

A cellular decomposition of a real algebraic curve consists of a collection of vertices and
edges which have a smooth interior. A numerical cellular decomposition represents an
edge via one interior point and a homotopy that permits tracking along the edge. This
homotopy yields a parameterization of the edge that can be used for performing various
operations such as membership testing, computing winding numbers at each boundary
vertex, and generating sample points. By combining numerical cellular decomposition
with Chebyshev interpolants along each edge, we develop an approach that can effi-
ciently perform computations such as optimizing an analytic or nonanalytic function
over real algebraic curves. Examples utilizing Bertini real to compute a numerical
cellular decomposition and Chebfun to compute Chebyshev interpolants are provided.

1 Introduction

A common problem arising in various scientific and engineering fields is to perform non-
algebraic computations on real algebraic curves, that is, one may wish to intersect a one-real-
dimensional solution set of a system of polynomial equations with a non-algebraic set or find
extrema of a function evaluated on the set. For example, in an engineering design problem,
one might have a set of polynomial equality constraints that leave a one-dimensional real set
of designs meeting basic requirements. After computing a description of that set, the engineer
may search for the best design in the set by posing a fitness function to optimize. Often the
fitness function is not algebraic, and even so, we would like assurance that we will find the
global optimum. For a particular example, in Section 6.2 we consider a mechanism design
problem wherein a one-dimensional algebraic curve of degree 72 in 10 variables describes all
four-bars meeting specified motion requirements, and a subsequent optimization step finds
all four-bars on this curve that minimize the sum of the leg lengths as in (12).
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Figure 1: A cellular decomposition of the real algebraic curve defined by x6 − x3 + y2 = 0

The approach of this paper is to couple two mathematical ideas to solve this problem:
numerical cellular decomposition of the curve (implicit representation) together with Cheby-
shev interpolants of each edge (explicit representation) in the decomposition. This allows for
computations on the real algebraic curve to be performed efficiently using the interpolants.

A cellular decomposition is a description of the curve as a finite union of vertices and edges
that have a smooth interior. For example, Figure 1 illustrates a cellular decomposition for
the real algebraic curve defined by x6−x3 + y2 = 0 consisting of two vertices, v1 and v2, and
two edges, e1 and e2. A numerical cellular decomposition builds on methods from numerical
algebraic geometry, e.g., see [2, 14], to describe an edge via one interior point together with
a homotopy-based approach for tracking along the edge starting from this interior point.
Such a decomposition was first described in [13] (see also [3, 5]) and is implemented in
Bertini real [4]. By utilizing a homotopy to describe each edge, this numerical description
provides an implicit parametric representation of each edge which can be useful for deciding
membership and sampling points on each edge.

Some computations, such as plotting and optimization, can be performed more efficiently
on each edge given an explicit parametric representation. For simplicity, we always consider
representing a bounded part of a real algebraic curve. We show how to compute an analytic
reparameterization of each edge by using a numerical cellular decomposition to compute
winding numbers at each boundary vertex. The analytic reparameterization permits efficient
approximation of each edge using Chebyshev interpolants. The Matlab package Chebfun [9]
includes out-of-the-box methods for performing computations using Chebyshev interpolants,
including plotting and optimization.

The structure of this paper is as follows. Section 2 describes using numerical algebraic
geometry to represent a complex algebraic curves and a cellular decomposition to represent
a real algebraic curve. Sections 3 and 4 describe numerical aspects involving a numerical
cellular decomposition (implicit representation) and Chebyshev interpolant (explicit repre-
sentation), respectively. Section 5 provides a short description our proof-of-concept soft-
ware implementation combining Bertini real and Chebfun which is then demonstrated on
some examples in Section 6, including kinematic synthesis of a four-bar mechanism.
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2 Witness sets and cellular decompositions

Since computing a cellular decomposition of a real algebraic curve performs computations
over the complex numbers, we first start with representing a complex curve using witness
sets in numerical algebraic geometry. More details about witness sets are provided in [2, 14].
This is followed by a description of a cellular decomposition.

2.1 Witness sets

Consider a system of n polynomial equations having complex coefficients in N variables:

f(x) = f(x1, . . . , xN) =

 f1(x1, . . . , xN)
...

fn(x1, . . . , xN)

 = 0.

The solution set, namely V(f) = {x ∈ CN | f(x) = 0}, is called a complex algebraic set or
simply a variety. A variety V ⊂ CN is irreducible if, whenever V1, V2 ⊂ CN are varieties such
that V = V1∪V2, then either V = V1 or V = V2. If a variety is not irreducible, it is reducible.

For an irreducible variety V ⊂ CN , the dimension of V , denoted dimV , is equal to the
minimum of the dimension of the tangent space at any point on the variety. A point p ∈ V
is called a smooth point if the dimension of the tangent space of V at p is equal to dimV .
If p ∈ V is not a smooth point, it is called a singular point. For irreducible varieties, the set
of smooth points is path connected. If every point is smooth, the variety is a manifold.

Every variety V has an irreducible decomposition consisting of finitely many irreducible
components, namely

V =
k⋃
i=1

Vi

where each Vi is irreducible and Vi 6⊂ Vj for i 6= j. An irreducible decomposition is unique
up to relabeling. Then, dimV = maxi dimVi and, for j = 0, . . . , dimV , let

Zj =
⋃

dimVi=j

Vi.

The variety Zj is called the pure j-dimensional component of V .
Our focus is on varieties C ⊂ CN which are pure 1-dimensional, called complex alge-

braic curves or simply curves. A curve is represented in numerical algebraic geometry (e.g.,
see [2, 14]) by a witness set which is a triple {f,H,W} constructed as follows. By intersect-
ing C with a hyperplane, which is a variety defined by a single linear polynomial, say, `(x)
with H = V(`), one considers the resulting set C ∩ H. The degree of C, denoted degC, is
the maximum number of points in C ∩H such that H is a hyperplane and dim(C ∩H) = 0.
A hyperplane H is called general with respect to C if degC = #(C ∩ H). With this setup,
the three elements in the witness set for C are:

� f is a polynomial system, called a witness system, such that each irreducible component
of C is an irreducible component of V(f);
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� H is a general hyperplane, called a witness slice; and

� W = C ∩H, called a witness point set, which consists of degC points.

Since one can always handle the reducible case by considering each irreducible component
separately, we assume that C is irreducible. Then, each witness point w ∈ W for C is a
smooth point, i.e., the tangent space of C at w is one dimensional. Let Jf(w) be the Jacobian
matrix of f evaluated at w. Trivially, we know dim null Jf(w) ≥ 1. If dim null Jf(w) = 1,
then C is said to be generically reduced or, equivalently, has multiplicity 1, with respect to f .
Otherwise, C is generically nonreduced or, equivalently, has multiplicity > 1, with respect
to f . One can always assume that C is generically reduced with respect f by replacing f
with, for example, an isosingular deflation [10] of f .

Finally, since f has n polynomials, we trivially know that n ≥ N − 1. We will always
assume that n = N − 1, i.e., a well-constrained system, which can be accomplished by
replacing f with a randomization R · f where R ∈ C(N−1)×n is general. The system R · f is
also a witness system due to Bertini’s theorem, e.g., see [14, Thm. A.8.7].

Example 1. The twisted cubic curve C = {(t, t2, t3) | t ∈ C} ⊂ C3 is irreducible with
degC = 3. The following polynomial systems are three examples of witness systems for C:

f =

 y − x2
z − xy
xz − y2

 , g =

[
y − x2 + 3(xz − y2)
z − xy − 2(xz − y2)

]
, h =

[
(y − x2)(z − xy)

xz − y2
]
.

The curve C is generically reduced with respect to f and g, but generically nonreduced with
respect to h. Moreover, V(f) = C while V(g) and V(h) contain other irreducible components.
For H = V(3x− 2y + z − 4), W = C ∩H consists of 3 points. To 4 decimal places, we have

W = {(1.6506, 2.7246, 4.4973), (0.1747± 1.5469i,−2.3623± 0.5404i,−1.2486∓ 3.5597i)}

where i =
√
−1. Therefore, the witness set {g,H,W} satisfies the above assumptions since g

consists of 2 polynomials in 3 variables such that C is generically reduced with respect to g.

2.2 Cellular decomposition

Suppose that C ⊂ CN is a complex algebraic curve and consider the real points of C, namely
C ∩ RN . The set C ∩ RN is called a real algebraic curve or simply a real curve. That is, a
real curve is simply the real points of a complex algebraic curve which consists of at most
finitely many isolated real points and at most finitely many one-dimensional real arcs. This
suggests that a cellular decomposition of a real curve must have two ingredients:

� a vertex which is simply a point in RN ; and

� an edge which is subset of RN that is diffeomorphic to an open interval in R.

Hence, an edge is a one-dimensional real manifold whose endpoints are vertices. In particular,
the set of vertices V must contain the set of singular points of C that are real, which includes
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the isolated real points in C ∩RN . With this setup, a cellular decomposition of C ∩RN is a
collection of vertices V = {v1, . . . , vk} and edges E = {e1, . . . , e`} such that

C ∩ RN =
k⊔
i=1

vi t
⊔̀
j=1

ej.

Example 2. A cellular decomposition for the real part of the twisted cubic curve C in Ex. 1
consists of a single edge since C ∩R3 = {(t, t2, t3) | t ∈ R} is a one-dimensional real manifold
that is diffeomorphic to R.

Example 3. Consider the real part of the curve C = V(x6− x3 + y2) from [7, Ex. 5], which
is shown in Figure 1. A cellular decomposition of this real curve consists of the following:

� vertices v1 = (0, 0) and v2 = (1, 0);

� edges e1 =
{(
x,
√
x3 − x6

) ∣∣ x ∈ (0, 1)
}

and e2 =
{(
x,−
√
x3 − x6

) ∣∣ x ∈ (0, 1)
}

.

3 Numerical cellular decomposition and analytic repa-

rameterization

Since symbolic expressions for the edges such as those listed in Ex. 3 are typically not
available due to the Abel–Ruffini theorem and Galois theory, e.g., see [8, 15], a numerical
description of an edge, creating a numerical cellular decomposition, was developed in [5, 13]
where each edge is represented by an interior point and a homotopy that allows one to track
from the interior point along the edge. Also, as demonstrated in Ex. 3, edges need not be
analytic at the endpoints, which are vertices, analytic reparameterization is utilized so that
an edge can be represented near each endpoint using a power series expansion.

3.1 Numerical cellular decomposition

Following the setup in Section 2, let {f,H,W} be a witness set for a curve C ⊂ CN such
that f consists of N − 1 polynomials and C is generically reduced with respect to f . The
approach in [5, 13] uses this given information to construct a numerical cellular decomposition
for a real curve C∩RN using the following process consisting of 4 steps followed by 2 optional
post-processing steps, which is computed with respect to a linear projection map π : RN → R
such that C ∩ π−1(t) consists of finitely many points for every t ∈ C. This property holds
for a general linear projection map.

1. Compute critical points
Compute the finitely many points x ∈ C ∩ RN such that the Jacobian matrix of
{f(x), π(x)} is rank deficient.

2. Bound infinite behavior
To replace infinite-length edges with edges of finite length, compute the intersection
points of C ∩RN with a sphere that encompasses all of the critical points from Step 1.
Append the resulting intersection points to the list of critical points.
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3. Slice between critical points
Since the topological behavior of π−1(v) ∩ C ∩ RN can only change at a critical value
v = π(c) where c is a critical point, compute π−1(t) ∩ C ∩ RN for values of t between
successive critical values yielding interior points on the edges.

4. Connect the dots
Using the homotopy

H(x, t) =

[
f(x)

π(x)− t

]
= 0, (1)

starting at the interior points computed in Step 3, one can vary t to attempt to connect
previously computed points.

5. Merge (optional)
To reduce the number of edges, one can merge edges which connect at smooth points.

6. Smooth (optional)
One can provide a smooth sampling of each edge by collecting points obtained by
tracking along the edge using the homotopy (1).

In the end, a numerical cellular decomposition consists of a finite collection of vertices
V ⊂ C ∩ RN containing the real isolated points of C ∩ RN and the endpoints of the edges.
Each edge is represented numerically by three points: a “left” vertex v` ∈ V , a “right”
vertex vr ∈ V , and an interior point p ∈ C ∩ RN . Hence, if π` = π(v`) and πr = π(vr),
then π` < π(p) < πr and one can track along the edge via the homotopy (1) starting at
(x, t) = (p, π(p)) and letting t vary in the interval (π`, πr).

Example 4. To illustrate computing a numerical cellular decomposition, consider the real
plane curve defined by

0 = 16x81x
4
2 + 64x71x

5
2 + 96x61x

6
2 + 64x51x

7
2 + 16x41x

8
2 + 64x101

+ 320x91x2 + 584x81x
2
2 + 416x71x

3
2 − 128x61x

4
2 − 496x51x

5
2

− 128x41x
6
2 + 416x31x

7
2 + 584x21x

8
2 + 320x1x

9
2 + 64x102 − 399x81

− 1596x71x2 − 934x61x
2
2 + 2784x51x

3
2 + 4643x41x

4
2 + 2784x31x

5
2

− 934x21x
6
2 − 1596x1x

7
2 − 399x82 + 840x61 + 2520x51x2 − 772x41x

2
2

− 5744x31x
3
2 − 772x21x

4
2 + 2520x1x

5
2 + 840x62 − 766x41 − 1532x31x2

− 2298x21x
2
2 − 1532x1x

3
2 − 766x42 + 288x21 + 288x1x2 + 288x22 − 27

which arises as the discriminant [11, Fig. 9] of the Kuramoto model [12] with three coupled
oscillators. An illustration of computing a numerical cellular decomposition of this curve is
provided in Figure 2 where each edge is depicted with its own arbitrary color. The vertices
in the numerical cellular decomposition are indicated by circular dots and the interior points
for the edges are indicated with diamonds.

6



1. Compute critical points 2. Bound in�nite behaviour 3. Slice between critical points

4. Connect the dots 5. Merge (optional) 6. Smooth (optional)

Figure 2: Pictorial representation of computing a numerical cellular decomposition in four
steps. Merging (Step 5) simplifies the computed decomposition, which is particularly useful
when performing additional computations. Smoothing (Step 6) is for visualization purposes.

Example 5. The cellular decomposition of the curve C = V(x6−x3 +y2) in Ex. 3 presented
in Figure 1 is based on the projection π(x, y) = x. Hence, a numerical cellular decomposition
with homotopy

H(x, y, t) =

[
x6 − x3 + y2

x− t

]
= 0

consists of

� vertices v1 = (0, 0) and v2 = (1, 0);

� edges e1 with “left” vertex v` = v1 = (0, 0), “right” vertex vr = v2 = (1, 0), and
interior point p = (1/2,

√
7/8), and e2 with “left” vertex v` = v1 = (0, 0), “right”

vertex vr = v2 = (1, 0), and interior point p = (1/2,−
√

7/8).

3.2 Analytic reparameterization

Viewing each edge as the union of two arcs, one from the interior point p to the “left”
vertex v` and the other from the interior point p to the “right” vertex vr, each arc can be
reparameterized to be analytic at the endpoints and diffeomorphic to the interval [−1, 1].
Considering the “left” arc, let π` = π(v`) and πp = π(p). Thus, the first reparameterization
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is to replace t ∈ (π`, πp] in (1) by

t(τ) = τ · πp + (1− τ) · π` = π` + τ · (πp − π`)

where τ ∈ (0, 1]. Therefore, the “left” arc corresponds to x(τ) for τ ∈ (0, 1] satisfying
x(1) = p and H(x(τ), t(τ)) ≡ 0 where H as in (1). By local uniformization [14, § 10.2],
there exists a positive integer c`, called the cycle number or winding number such that, for
τ(s) = sc` , the “left” arc x(s) := x(τ(s)) is analytic for s ∈ [0, 1]. The cycle number c` can
be computed using singular endgames [14, § 10.2] which are typically already employed in
Step 4 of Section 3.1 when connecting the dots.

Finally, a linear transformation is used to map from [0, 1] to [−1, 1] via µ(s) = 2 · s − 1
so that s = (µ+ 1)/2. In the end, one has that x(µ) for µ ∈ [−1, 1] satisfying x(1) = p and

H`(x, µ) =

[
f(x)

π(x)−
(
π` +

(
µ+1
2

)c` · (πp − π`))
]

= 0. (2)

One can apply a similar construction to the “right” arc yielding a cycle number cr,
potentially different than c`, with corresponding homotopy

Hr(x, µ) =

[
f(x)

π(x)−
(
πr +

(
µ+1
2

)cr · (πp − πr))
]

= 0 (3)

where πr = π(vr).

Example 6. Reconsidering the setup from Ex. 5, all cycle numbers for both arcs of each
edge are 2. In particular, for the “left” arc of edge e1, π` = 0, πp = 1/2, and c` = 2 yielding

H`(x, µ) =

[
x6 − x3 + y2

x− (µ+ 1)2/8

]
= 0.

With (x(1), y(1)) = (1/2,
√

7/8), one has

(x(µ), y(µ)) =

(
(µ+ 1)2

8
,
(µ+ 1)3

512

√
512− (µ+ 1)6

)
which is clearly analytic for µ ∈ [−1, 1]. Similarly, for the “right” arc of edge e1, πr = 1,
πp = 1/2, and cr = 2 yielding

Hr(x, s) =

[
x6 − x3 + y2

x− (1− (µ+ 1)2/8)

]
= 0.

With (x(1), y(1)) = (1/2,
√

7/8), one has

(x(µ), y(µ)) =(
1− (µ+ 1)2

8
,
(µ+ 1)(7− 2µ− µ2)

512

√
(7− 2µ− µ2)(µ4 + 4µ3 − 18µ2 − 44µ+ 169)

)
which is clearly analytic for µ ∈ [−1, 1].
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4 Chebyshev interpolants

The outcome of Section 3 is a collection of implicitly defined arcs x(µ) for µ ∈ [−1, 1] which
are analytic. Hence, one is able to perform computations on x(µ) by path tracking using
the corresponding homotopy (2) or (3). Rather than perform computations implicitly using
a homotopy, another approach for performing additional computations on each arc is to
construct an explicit representation in the form of a Chebyshev interpolant approximating
the arc. In particular, one can construct a Chebyshev interpolant for each coordinate xi(µ)
of x(µ) which then easily facilitates many efficient computations on the arc, such as plotting
and optimization as implemented in the Matlab package Chebfun [9].

For N ≥ 1, the Chebyshev points of the second kind are

µj = − cos(j · π/N) ∈ (−1, 1) for j = 0, . . . , N. (4)

Given a function f(µ), let fj = f(µj). Then, there is a unique polynomial pN(x), called the
Chebyshev interpolant, with deg pN ≤ N such that p(xj) = fj for j = 0, . . . , N . By selecting
an appropriate value of N , one is able to control the error

‖pN − f‖∞ = max
−1≤µ≤1

|pN(µ)− f(µ)|

thereby creating an explicit polynomial approximation of the function for µ ∈ [−1, 1]. In
Chebfun, the value of N is selected for the error to be roughly machine precision.

Applied to the problem of approximating x(µ), each coordinate xi(µ) is approximated
using its own Chebyshev interpolant so the value of N utilized can be different for each coor-
dinate. As stated above, each x(µj) is computed via path tracking using the corresponding
homotopy (2) or (3).

5 Implementation details

The software Bertini real [4] implements the numerical cellular decomposition as described
in [3, 5, 13]. The cycle numbers, as described in Section 3.2, are naturally computed and
recorded as part of this decomposition. The Matlab package Chebfun [9] implements the com-
putation of Chebyshev interpolants along with a whole host of operations one can perform on
them, including optimization and visualization. The advantage of combining Bertini real

and Chebfun is to allow fast and efficient computations over real curves in any ambient
dimension as exemplified in Section 6.

Since a Chebyshev interpolant is constructed for each coordinate for the “left” and “right”
arcs for each edge, some implementation improvements are available. First, we note that
this was described theoretically for simplicity of presentation. However, one is not compelled
to do this. Using the least common multiple of the cycle numbers for the “left” and “right”
arcs, a common regularization can be used.

Second, since Chebfub uses deterministic sampling based on the Chebyshev points (4),
we can prevent repeated evaluation at the same point on the curve by using a hashtable to
provide a cache. Fortunately, Matlab provides a suitable container and the hash function is
merely the value in [−1, 1].
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Third, since the computation of points on the arcs using the homotopies (2) and (3)
is merely a parameter homotopy, one can perform the path tracking in parallel, offering
significant speedup, via Paramotopy [1].

Fourth, adjusting the tolerances used in Chebfun for deciding when a Chebyshev inter-
polant is sufficiently accurate can drastically reduce the number of points which are needed
to be computed along the arcs. Since computing points on the arcs requires path tracking,
reducing the number of paths to be tracked can yield significant computational savings.

Fifth, all of the computations on the edges are local. For example, if all of the points on
an edge are known to not be physically meaningful for the particular problem, that edge can
trivially be ignored providing computational savings.

Finally, it is often the case that one wants to perform many computations over the
same real algebraic curve. Once the computational expense of obtaining the Chebyshev
interpolants of the arcs has been performed, this decomposition can be reused to perform
many efficient computations over the same real algebraic curve thereby amortizing the one-
time cost of computing the Chebyshev interpolants over many computations.

6 Applications

The underlying motivation of using Chebyshev interpolants to approximate real algebraic
curves is to quickly and efficiently perform not necessarily algebraic computations on the
real algebraic curves, which is exemplified by optimizing a non-algebraic objective function
over real algebraic curves. This is demonstrated on two plane curves in Section 6.1 followed
by synthesizing a four-bar linkage in Section 6.2.

6.1 Plane curves

The first plane curve under consideration is the “asteroid” curve defined by

f(x, y) = (x2 + y2 − 1)3 + 27x2y2 = 0

whose real part is depicted in Figure 3. This sextic curve has four singular points at (±1, 0)
and (0,±1) which are connected by four edges. Consider minimizing the objective function

Ω(x, y) = sin(7x) + sin(5y)

over the real part of the “asteroid” curve. Since both x and y as well as trigonometric
functions of x and y are utilized, this is not an algebraic problem.

Once Chebyshev interpolants are computed for each arc, the minimization computation
is performed with ease resulting in six local minima as shown in Figure 3.

As a more challenging example, consider the cubic “alpha” curve defined by

f(x, y) = y2 − x2(x+ 1) = 0

whose real part is depicted in Figure 4. This real curve has one singular point at the origin
and is unbounded so Step 2 in Section 3.1 is used to bound the infinite behavior.
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Figure 3: Visualization of minimizing Ω(x, y) = sin(7x) + sin(5y) over the “asteroid” curve
(x2 + y2 − 1)3 + 27x2y2 = 0 including the six local minima.

(a) (b)

Figure 4: Visualization of maximizing Ω(x, y) = besselj(1, abs(x+ y) + erfc(x− y)− 1) over the
“alpha” curve y2 − x2(x + 1) = 0. (a) Global maximum. (b) Several local maxima.

On the real points of the “alpha” curve, consider maximizing

Ω(x, y) = besselj(1, abs(x+ y) + erfc(x− y)− 1)

written using Matlab notation. In particular, besselj() is the Bessel function of the first kind,
abs() is the absolute value, and erfc() is complementary error function. Clearly, Ω(x, y) is
non-analytic and defined in terms of integrals. Nonetheless, by using Chebyshev interpolants
of the arcs of the “alpha” curve, numerical optimization can be easily performed yielding the
global maximum as shown in Figure 4(a) and several local maxima as shown in Figure 4(b).
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Precision point Target pose

Coupler link

Distal link

Circle-point

Proximal link

Fixed link

Center-point

Figure 5: A four-bar planar mechanism, terminology on the left and with vectors as the links
on the right. The subscript j ranges over the precision points and poses.

6.2 Planar four-bar mechanisms

The final example arises from synthesizing four-bar mechanisms as depecited in Figure 5.
A four-bar mechanism is composed of two dyads (commonly referred to as an RR linkage)
shown in red and green in Figure 5. The base of each proximal link is fixed in space at a
center-point with a revolute joint. The two center-points connected by a virtual fixed link. A
distal link is joined to the proximal link at a circle-point with a revolute joint. The distal links
are connected rigidly to form the coupler link with a marked coupler-point at the intersection
of the distal links. Hence, each circle-point traces a (subset of a) circle around its respective
center-point as the four-bar is driven and the coupler-point traces the coupler curve.

One can synthesize four-bar mechanisms by enforcing constraints based on precision
points and precision poses. A precision point is a point that the coupler curve must pass
through. A precision pose is a precision point together with a pose that specifies how the
orientation of the coupler link as it passes through the point. In particular, precision points
provide a single constraint while precision poses provide two constraints. Assuming rigid
links, synthesizing four-bar mechanisms amounts to solving a polynomial system. Depending
on the number of precision points and precision poses specified, the dimension and degree of
the solution set varies [6].

One approach to formulating the polynomial system is by utilizing isotropic coordinates
(x, x̄) ∈ C2 following [6]. In isotropic coordinates, the point (x, x̄) corresponds with a real
point if x and x̄ are complex conjugates of each other. Let i =

√
−1. An angle θj is converted

into isotropic coordinates (Tj,Tj) where

Tj = cos θj + i sin θj = eiθj and Tj = cos θj − i sin θj = e−iθj

In particular, Tj ·Tj = 1. When j corresponds with a precision pose, Tj and Tj are known
since the angle θj is prescribed. When j corresponds with a precision point, Tj and Tj be-
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come variables with the constraint Tj ·Tj = 1. A loop equation involving the coupler-point is

Z1j = Tjz1 + dj (5)

Z1j = Tjz1 + dj (6)

while loop equations for the dyads are

L1j = Tjz1 + dj −G1, (7)

L1j = Tjz1 + dj −G1, (8)

L2j = Tjz2 + dj −G2, (9)

L2j = Tjz2 + dj −G2. (10)

These equations require that the proximal link remains constant in length:

fj = L1jL1j − L11L11 = 0 for each precision point and precision pose

gj = L2jL2j − L21L21 = 0 for each precision point and precision pose

while the variables (Tj,Tj) for each precision point satisfy

hj = TjTj − 1 = 0 for each precision point.

It often happens that constraining a synthesis problem so that there are only finitely
many solutions is unproductive since many of the solutions turn out to be nonphysical (such
as links having non-real lengths), useless (such as a linkage which visits the precision points
in an unintended order or on two different branches of the coupler curve), or impractical
(such as a linkage having poor force transmission so that it is susceptible to jamming or
having links too long to fit within geometric constraints). In such circumstances, a useful
tactic is to remove a constraint, thereby allowing the designer to search over a real algebraic
curve to find a desirable answer. One way to automate such a search is for the designer to
specify an optimization criterion and it is often the case that the criterion is not algebraic.

We will demonstrate this by synthesizing a four-bar linkage based on specifying one
precision point and four poses summarized in Table 1. This setup produced a curve of
degree 72 in the 10 variables

(G1,G1, z1, z1,G2,G2, z2, z2,T3,T3)

for which the real part is readily decomposed by Bertini real. Note that there is a trivial
relabeling of the two dyads yielding a two-way correspondence

(G1,G1, z1, z1,G2,G2, z2, z2,T3,T3)←→ (G2,G2, z2, z2,G1,G1, z1, z1,T3,T3). (11)

In our particular run for this paper, the numerical cellular decomposition of the curve resulted
in 1247 edges (this number is not an invariant as it depends on the random projection
utilized). Figure 6 shows a projection of the real points of this curve onto G1.

Aiming to find an optimal four-bar mechanism based on the specifications in Table 1, we
consider minimizing the sum of the leg lengths:

Ω = |L11|+ |L21|+ |z1|+ |z2|. (12)
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Table 1: Task specification with four precision poses and one precision point

j djx djy θj (degrees)

1 0.79 0.87 −11.76
2 1.02 0.53 −33.56
3 0.90 1.00 –
4 1.28 0.33 −35.06
5 1.30 0.71 −8.14
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Figure 6: Projection of a one-dimensional family of four-bar mechanisms onto G1.

After computing Chebyshev interpolants for the arcs, Chebfun determined there were 28
local minima over the real algebraic curve restricted to the sphere centered at the origin of
radius 2.744 · 103. Due to the symmetry highlighted in (11), the 28 local minima arise in 14
pairs. Of these, 9 yield nondegenerate four-bar mechanisms while the other 5 are degenerate.
In Figure 7, parts (a) and (b) contains coupler curves for two distinct nondenerate local
minima; in part (a), the other branch of the coupler curve is out of the viewport and has
neither precision poses nor points on it. Part (c) of the figure is an example of a coupler
curve of a mechanism which has a branch defect since some precision points and precision
poses lie on both branches.

7 Conclusion

We have shown how numerical cellular decomposition and Chebyshev interpolants can be
combined to represent real algebraic curves in a form where subsequent operations, such as
optimizing an analytic or nonanalytic function over the curve, can be carried out efficiently to
high precision. Winding numbers computed during cell decomposition allow desingulariza-
tion so that arcs can be represented to machine precision even as they approach singularities.
In our implementation, after using Bertini real to compute a numerical cellular decompo-
sition and Chebfun to compute a Chebyshev interpolant for each arc, all the functionality
that Chebfun provides for functions on a real interval become available on the entirety of
a real algebraic curve. We have illustrated this capability on several examples, including a
mechanical design problem involving four-bar linkages.
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Figure 7: Coupler curves for three local minima of the sum of leg lengths of four-bar mechanisms
satisfying the conditions of Table 1. (a),(b) Coupler curves of two nondegenerate four-bar
mechanisms which are mechanically desirable. (c) Coupler curve of four-bar mechanism which
has a branch defect.
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