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Abstract. An approach for kinematic synthesis of mechanisms is pro-
posed when the constraints define an algebraic curve. This method first
computes a numerical cellular decomposition of the real part of the curve.
In such a decomposition, each edge is represented by an interior point
and a homotopy that permits tracking along the edge. This numerical
representation of each edge is converted to Chebyshev interpolants which
facilitate efficient optimization of an analytic or non-analytic function.
Illustrative examples along with synthesizing a four-bar linkage are pro-
vided which utilize Bertini real to compute a numerical cellular de-
composition and Chebfun to compute Chebyshev interpolants.
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1 Introduction

Kinematic synthesis of a mechanism can be formulated mathematically as a
system of basic constraints [9]. It often happens that constraining a synthesis
problem so that there are only finitely many solutions is unproductive since
many of the solutions turn out to be nonphysical (such as links having non-real
lengths), useless (such as a linkage which visits the precision points in an unin-
tended order or on two different branches of the coupler curve), or impractical
(such as a linkage having poor force transmission so that it is susceptible to
jamming or having links too long to fit within geometric constraints). In such
circumstances, a useful tactic is to remove a constraint, thereby allowing the
designer to search over the real part of a curve to find a desirable answer. One
way to automate such a search is for the designer to specify an optimization
criterion and it is often the case that the criterion is not algebraic. Even with a
non-analytic objective function, we aim to find the global optimum in this search.

For a specific example, Section 5 considers a mechanism design problem
wherein a curve of degree 72 in 10 variables describes all four-bars whose coupler
motion interpolates one precision point and four precision poses, corresponding
to Alt-type [1] and Burmester-type [6] constraints, respectively. A four-bar link-
age is composed of two dyads (commonly referred to as an RR linkage) shown
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in red and green in Fig. 3. After building a Chebyshev representation of that
degree 72 curve, a subsequent optimization step finds all four-bars on it that
minimize the sum of the lengths of the four links in the two dyads. Although the
sum of squares of lengths is algebraic and hence analytic, the sum of the lengths
is not. Nonetheless, our approach finds all local minima and the global minimum.
Moreover, the initial computations for representing the curve is independent of
the optimization criterion, allowing the designer to quickly and reliably explore
alternative objective functions, always obtaining the global minimum.

The approach couples two mathematical ideas to solve this problem. The first
ingredient is a numerical cellular decomposition of the real part of the curve (im-
plicit representation) [3,4,8], which can be computed using Bertini real [4]3

A cellular decomposition is a description of the curve as a finite union of ver-
tices and edges that have a smooth interior as illustrated in Fig. 1. Numerically,
each edge is represented by one interior point together with a homotopy-based
approach for tracking along the edge starting from this interior point. This repre-
sentation of each edge can be used for deciding membership and sampling points.

The second ingredient is a Chebyshev interpolant (extrinsic representation),
e.g., see [7], of each edge of the numerical cellular decomposition which per-
mits optimization to be performed efficiently. For simplicity, we always consider
edges to represent a bounded part of the curve, e.g., constrained to be inside
of a sphere. We show how to compute an analytic reparameterization of each
edge of a numerical cellular decomposition that works even when a vertex is
singular. This reparameterization permits efficient approximation of each edge
using Chebyshev interpolants. Chebfun [7]4 includes out-of-the-box methods for
performing computations using Chebyshev interpolants, including optimization.

The structure of the remainder of the paper is as follows. Sections 2 and 3
describe numerical cellular decomposition (implicit representation) and Cheby-
shev interpolant (explicit representation), respectively. Section 4 provides two
illustrative planar examples, then Section 5 applies the technique to a four-bar
kinematic synthesis problem. A short conclusion is provided in Section 6.

2 Numerical cellular decomposition and analytic
reparameterization

For a curve C ⊂ CN , a numerical cellular decomposition provides a represen-
tation of the real part C ∩ RN as a finite list of vertices and edges with [3,4,8]
providing more details. Such a decomposition is computed with respect to a lin-
ear projection map π : RN → R such that C ∩ π−1(t) consists of finitely many
points for every t ∈ C. This property holds for a general linear projection map.

The vertices V ⊂ C ∩ RN in a numerical cellular decomposition contain the
points in C ∩RN that are singular, including isolated points, as well as the end-

3 Available at http://bertinireal.com, which depends upon Bertini [2] that is available
at http://bertini.nd.edu.

4 Available at http://chebfun.org, which runs in standard Matlab that is available at
http://matlab.com.

http://bertinireal.com
http://bertini.nd.edu
http://chebfun.org
http://matlab.com
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Fig. 1. A cellular decomposition of the real part of x6 − x3 + y2 = 0 using projection
π(x, y) = 0.9x + 0.1y. Critical point v1 = (0, 0) is singular and invariant with respect
to π, while v2 ≈ (0.9916, 0.1557) depends on the choice of projection. Edges e1, e2 have
smooth midpoints p1, p2. Slicing outside the curve gives no midpoint and thus no edge.

points of the edges. Each edge is represented numerically by three points: a “left”
vertex vℓ ∈ V , a “right” vertex vr ∈ V , and an interior point p ∈ C ∩ RN . Sup-
pose that f = {f1, . . . , fN−1} is a polynomial system such that each irreducible
component of C is an irreducible component of V(f) = {x ∈ CN | f(x) = 0}
and has multiplicity one with respect to f . The vertices v ∈ V satisfy f = 0
and the N ×N Jacobian matrix of {f, π} is rank deficient. Hence, the maximum
number of vertices is

degC ·

(
1−N +

N−1∑
i=1

deg fi

)
.

Since this upper bound arises by considering the complex numbers whereas the
vertices are real, the actual number of vertices depends upon the choice of π as
illustrated in Ex. 1. If L = π(vℓ) and R = π(vr), then L < π(p) < R and one
has an implicit representation of the edge by having the ability to track along
the edge via the homotopy

H(x; t) =
[
f(x), π(x)− t

]
= 0 (1)

starting at (x, t) = (p, π(p)) and letting t vary in the interval [L,R].

Example 1. Consider the degree six plane curve x6 − x3 + y2 = 0, with the
real part depicted in Fig. 1. It has one singular point at the origin. Using a
sufficiently general projection π(x, y) = 0.9x+0.1y, there is one critical point at
v2 ≈ (0.9916, 0.1557), arising due to tangency with π. Slicing between the two
critical points gives two smooth midpoints p1 and p2, which connect to v1, v2
to form two edges e1, e2. Since this curve is compact, slicing outside the critical
points gives no midpoints. If the curve had been non-compact, the unbounded
branches would have generated additional midpoints and edges.

If one changes the projection to, say, π̃(x, y) = 0.1x + 0.9y, then one would
obtain four vertices rather than the two depicted in Fig. 1.
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Viewing each edge as the union of two arcs, one from the interior point p
to the “left” vertex vℓ and the other from p to the “right” vertex vr, each arc
can be reparameterized to be analytic at the endpoints and diffeomorphic to the
interval [−1, 1]. Considering the “left” arc, let L = π(vℓ) and P = π(p). Thus,
the first reparameterization is to replace t ∈ [L,P ] in (1) by

t(τ) = τ · P + (1− τ) · L = L+ τ · (P − L)

where τ ∈ [0, 1]. Therefore, the “left” arc corresponds to x(τ) for τ ∈ [0, 1] sat-
isfying x(1) = p and H(x(τ), t(τ)) ≡ 0 where H as in (1). By local uniformiza-
tion [10, § 10.2], there exists a positive integer cℓ, called the cycle number, such
that, for τ(s) = scℓ , the “left” arc x(s) := x(τ(s)) is analytic for s ∈ [0, 1]. The
cycle number cℓ can be computed using endgames, e.g., see [10, § 10.2], which are
typically already employed when computing a numerical cellular decomposition.

The net result is that one has that x(s) for s ∈ [0, 1] satisfying x(1) = p and

Hℓ(x, s) =

[
f(x)

π(x)− (L+ scℓ · (P − L))

]
= 0. (2)

One can apply a similar construction to the “right” arc yielding a cycle number cr
which is potentially different than cℓ.

Example 2. Both arcs of each edge of the curve x6 −x3 + y2 = 0 as decomposed
in Fig. 1 have cycle number 2.

3 Chebyshev interpolants

The outcome of Section 2 is a collection of implicitly defined arcs x(s) for
s ∈ [0, 1] which are analytic. Hence, one is able to perform computations on x(s)
by path tracking using the corresponding homotopy, e.g., (2) for the “left” arc.
Converting this implicit representation of the arc into an explicit Chebyshev
interpolant, e.g., see [7], enables one to compute and optimize general functions
defined on the arc. That is, after first constructing a Chebyshev interpolant for
each coordinate xi(s) of x(s), one can efficiently cast a large class of functions
of the form g(x) as g(x(s)), thereby facilitating tasks such as evaluation, differ-
entiation, and optimization. In particular, these and many other operations are
all implemented in the Matlab package Chebfun [7].

For K ≥ 1, the Chebyshev points of the second kind adjusted to [0, 1] are

sj = (1− cos(j · π/K)) /2 ∈ [0, 1] for j = 0, . . . ,K. (3)

Given a function g(s), let gj = g(sj). There is a unique polynomial qK(x),
called the Chebyshev interpolant, with deg qK ≤ K such that qK(sj) = gj for
j = 0, . . . ,K. By selecting an appropriate value of K, one can control the error

∥qK − g∥∞ = max
0≤s≤1

|qK(s)− f(s)|
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thereby creating an explicit polynomial approximation of g for s ∈ [0, 1]. In
Chebfun, K is selected so that the error is approximately machine precision.
When g is analytic, the error converges at least geometrically, but could still
lead to using large values of K depending on properties of g.

Returning to x(s), each coordinate xi(s) is approximated using its own
Chebyshev interpolant so the value of K can be different for each coordinate.
Each x(sj) is computed via path tracking using the corresponding homotopy,
e.g., (2) for the “left” arc. New points can be added to the approximation by
tracking from neighboring samples. As more samples are added to an edge, neigh-
bors become close and path tracking amounts to just a few Newton iterations.

4 Illustrative plane curves

The following two examples illustrate using the approach for optimizing analytic
and non-analytic objective functions over the real part of an algebraic curve. Al-
though these are not kinematics examples, they show the power of the approach
for handling complicated optimization criteria over curves.

Consider minimizing the function Ω(x, y) = sin(7x) + sin(5y) over the real
part of the “asteroid” curve defined by f(x, y) = (x2 + y2 − 1)3 + 27x2y2 = 0.
This degree six curve has four singular points at (±1, 0) and (0,±1) which are
connected by four edges. Since both x and y as well as trigonometric functions
of x and y are utilized, this is an analytic problem that is not algebraic. Nonethe-
less, once Chebyshev interpolants are computed for each arc of the “asteroid”
curve, the minimization computation is performed with ease resulting in six local
minima as shown in Fig. 2(a).

A second and more challenging example is to maximize the objective function
Ψ(x, y) = besselj(1, abs(x+ y) + erfc(x− y)− 1) written using Matlab notation
over the real part of the “alpha” curve defined by f(x, y) = y2 − x2(x+ 1) = 0.
That is, besselj() is the Bessel function of the first kind, abs() is the absolute
value, and erfc() is complementary error function. The cubic “alpha” curve has
one singular point at the origin and is unbounded so it is decomposed inside of a

(a) (b) (c)

Fig. 2. (a) Six local minima for Ω(x, y) over the “asteroid” curve. (b) Global maximum
and (c) several local maxima of Ψ(x, y) over the “alpha” curve.
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Precision point Target pose

Coupler link

Fixed link

Center-point

Fig. 3. A four-bar planar mechanism. The subscript j ranges over the precision points
and poses.

suitable circle. Clearly, Ψ(x, y) is non-analytic and defined in terms of integrals.
Nonetheless, by using Chebyshev interpolants of the arcs of the “alpha” curve,
numerical optimization can be easily performed yielding the global maximum as
shown in Fig. 2(b) and several local maxima as shown in Fig. 2(c).

5 Synthesizing a planar four-bar mechanism

Returning to kinematics, we now show how this approach can be used to syn-
thesize a four-bar mechanism as depicted in Fig. 3. The classic Burmester [6]
problem asks to find all four-bars whose coupler link interpolates 5 precision
poses. For general poses, this problem has up to 6 isolated solutions formed by
choosing 2 of four possible circle-point/center-point pairs. If none of these yields
a satisfactory design, one must change the precision poses and try again.

An alternative approach is to swap one precision pose for a precision point.
This frees up one degree of freedom in the design, so that the 4-pose, 1-point
specification yields a curve of possible four-bars. Following the formulation in [5]
via isotropic coordinates, this (4, 1) case of the Alt-Burmester family of design
problems defines a curve of degree 72 in the 10 variables

(G1,G1, z1, z1,G2,G2, z2, z2,T3,T3),

where G1,G2 give the center-point locations in the ground link, z1, z2 give the
circle point locations in the coupler link, and T3 is the rotation of the coupler
link when it is at the precision point, i.e., T3 = eθ3

√
−1. (The subscript “3”

here recognizes that the precision point is in row 3 of the precision data given
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j dj θj (deg)

1 0.79 + 0.87
√
−1 −11.76

2 1.02 + 0.53
√
−1 −33.56

3 0.90 + 1.00
√
−1 –

4 1.28 + 0.33
√
−1 −35.06

5 1.30 + 0.71
√
−1 −8.14

Table 1. Task specification
with four precision poses and
one precision point

-150 -100 -50 0 50 100 150

-60

-40

-20

0

20

40

Fig. 4. Projection of a one-dimensional
family of four-bar mechanisms onto G1.
The “gaps” in this curve are where no
physical mechanism can be constructed.

in Table 1.) Moreover, each is interpreted as a vector in the complex plane, so in
the isotropic formulation, the variable list also includes the conjugate variable
for each, e.g., G1 is the conjugate of G1. A point on the curve in C10 is a “real”
point corresponding to a physically realizable four-bar when each pair, (G1,G1),
etc., consists of complex conjugates. The degree 72 curve in C10 yields a curve
of degree 48 when projecting onto the first eight variables in accordance with
the results presented in [5, Table 1].

Using the specifications in Table 1, the real part of the degree 72 curve of
design alternatives is readily decomposed by Bertini real [4]. In our particu-
lar run for this paper, the numerical cellular decomposition of this real curve
which exists in a 10-dimensional space resulted in 1247 edges. (As described in
Section 2, this number depends on the projection chosen for the decomposition).
To help visualize it, Fig. 5 shows the corresponding center-point curve, which
consists of the real and imaginary parts of G1. In accordance with [5, Table 2],
this is a cubic curve. Nonetheless, one observes “gaps” in this image where no
real physical design exists. Although the solution of the (4, 1) problem includes
real pairs (G1,G1) that would fill these gaps, at least one of the other pairs,
i.e., (z1, z1), (G2,G2), (z2, z2), or (T3,T3), is non-real in the gaps.

After converting the implicit cellular decomposition of the curve to an ex-
trinsic representation of each arc using Chebyshev interpolation, we are ready to
find points on the design curve that optimize a secondary design criterion. For
demonstration, we choose to minimize the sum of the lengths of the four links
in the two dyads:

Ω = |L11|+ |L21|+ |z1|+ |z2|. (4)

This will tend to select compact designs that take up less space and use less
material to build. To this end, Chebfun determined there were 28 local minima
over the real part of the curve restricted to the sphere centered at the origin of
radius 2.744 · 103. Each physical design appears twice in this list since swapping
the subscripts labeling the left and right dyads of the four-bar does not change
the mechanism. Of the 14 distinct designs, 9 reach all precision specifications on
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the same branch of the coupler curve, while the other 5 are have branch defects.
Two viable designs and one with a branch defect are shown in Fig. 5.

6 Conclusion

For kinematic synthesis problems where the basic constraints define an alge-
braic curve, we have shown how to use numerical cellular decomposition and
Chebyshev interpolants to build an explicit representation of the real part of the
curve that facilitates subsequent computations on the curve, such as optimizing
an analytic or non-analytic function constrained to the curve. Cycle numbers
obtained when computing a numerical cellular decomposition yield an analytic
reparameterization so that each arc can be represented to machine precision as
a Chebyshev interpolant even as it approaches a singularity. In our implementa-
tion, after using Bertini real to compute a numerical cellular decomposition
and Chebfun to compute a Chebyshev interpolant for each arc, all the function-
ality that Chebfun provides for functions on a real interval are available for use
with this representation. A mechanical design problem with one degree of free-
dom involving a four-bar linkage demonstrates the practicality of this approach.
Moreover, other mechanical design problems having one degree of freedom can
be handled with this approach. Extending the approach to problems involving
more degrees of freedom is left for future work.
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