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Abstract. A core computation in numerical algebraic geometry is the
decomposition of the solution set of a system of polynomial equations
into irreducible components, called the numerical irreducible decompo-
sition. One approach to validate a decomposition is what has come to be
known as the “trace test.” This test, described by Sommese, Verschelde,
and Wampler in 2002, relies upon path tracking and hence could be
called the “tracking trace test.” We present a new approach which re-
places path tracking with local computations involving derivatives, called
a “local trace test.” We conclude by demonstrating this local approach
with examples from kinematics and tensor decomposition.

Keywords: Numerical algebraic geometry, trace test, numerical irre-
ducible decomposition

1 Introduction

Numerical algebraic geometry uses numerical methods to compute and manipu-
late the solution set to a given system of polynomial equations. Such a solution
set can be decomposed into finitely many components yielding the irreducible
decomposition. In numerical algebraic geometry, irreducible components are rep-
resented via a witness set with a numerical irreducible decomposition consisting
of a witness set for each irreducible component. See [3, 12] for a general overview
of witness sets and computing a numerical irreducible decomposition.

The focus of this article is the pure-dimensional decomposition step in com-
puting a numerical irreducible decomposition. Let X be a pure k-dimensional
component of the solution set of f , namely V(f) = {x | f(x) = 0}, and let L
be a general linear space of codimension k. That is, X is a union of irreducible
components of V(f) each having dimension k, say X = X1 ∪ · · · ∪ Xm. Given
the finitely many points W = X ∩L, called a witness point set for X, the pure-
dimensional decomposition step partitions W into X1 ∩ L, . . . , Xm ∩ L yielding
witness point sets for the irreducible components of X.

There are two tools commonly used for pure-dimensional decomposition.
First, random monodromy loops [10] aim to determine subsets of points in W
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contained in the same irreducible component. This relies on the fact that the set
of smooth points of an irreducible algebraic set is connected.

Second, given Z ⊂W , the trace test of [11] is used to verify that Z is a witness
point set for some algebraic set, i.e., there exists J ⊂ {1, . . . ,m} such that

Z =
⋃
j∈J

Xj ∩ L.

There are two ways to show that |J | = 1, i.e., Z is a witness point set for an
irreducible component. If Z was constructed as a result of using random mon-
odromy loops, then each point in Z must lie on the same irreducible component.
Another approach is to show that the trace test does not hold for any nonempty
and proper subset of Z.

Since the trace test of [11] uses only path tracking, we will refer to this as the
tracking trace test. We show that this test is the first in a family of three methods,
which are based on the zeroth, first, and second derivatives, respectively. The
third of these methods, which is built on computing second derivatives, computes
these derivatives locally at each point in Z and hence we call it a local trace test.

The remainder is organized as follows. In Section 2, we describe linear traces
in numerical algebraic geometry and present three computational approaches.
Section 3 considers the extension to parameterized algebraic sets. We demon-
strate the methods on two examples in Section 4 and conclude in Section 5.

2 Trace test

Let f : CN → Cn be a polynomial system with X ⊂ V(f) ⊂ CN a pure
k-dimensional set. Let ` : CN → Ck be a general linear system with L = V(`)
and W = X ∩L. If X1, . . . , Xm are the irreducible components of X, the goal is
to partition W into the m sets W1 = X1 ∩ L, . . . ,Wm = Xm ∩ L.

We first reduce to the multiplicity-one case as follows. Since the deflation
sequence [9] with respect to f is the same for each w ∈ Wi = Xi ∩ L, we can
first partition W based on deflation sequences. So, without loss of generality, we
may assume that each point in W has the same deflation sequence. In particular,
a byproduct of this computation is a polynomial system, which without loss of
generality we call f , such that each irreducible component has multiplicity one.

We next reduce to the “square” case using Bertini’s Theorem (see, e.g., [12,
Thm. A.8.7] and [3, Thm. 9.3]). In particular, for a general U ∈ C(N−k)×n, each
Xi is an irreducible component of V(U · f). Hence, without loss of generality, we
may assume that f : CN → CN−k such that X ⊂ V(f) is pure k-dimensional
and each irreducible component of X has multiplicity one with respect to f .

Suppose that d = degX = |W | and W = {w1, . . . , wd}. For a general
v ∈ Ck, consider the family of parallel slices Mt = V(` − t · v) for t ∈ C, so
that M0 = L = V(`). For i = 1, . . . , d, consider the paths xi(t) defined by

xi(t) ∈ X ∩Mt and xi(0) = wi. (1)

The following forms the basis of traces in numerical algebraic geometry.
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Theorem 1 ([11]). With the setup as above, let I ⊂ {1, . . . , d} be nonempty
with Z = {wi | i ∈ I} ⊂W . Then, there exists J ⊂ {1, . . . ,m} such that

Z =
⋃
j∈J

Xj ∩ L

if and only if

trI(t) =
∑
i∈I

xi(t) is a vector of linear functions of t. (2)

This theorem can be used to create a trace test for images of algebraic sets
using pseudowitness sets [8] (we consider a simple coordinate projection in Sec-
tion 4.1), and for multihomogeneous witness sets [7].

Example 1. Consider the parabola X = V(f) where f(α, β) = β − α2. For illus-
trative purposes, we consider the L = V(`) where `(α, β) = 2α+ β − 3 and take
v =
√
−1. If W = X ∩ L = {w1, w2} = {(−3, 9), (1, 1)}, then

tr{1}(t) =

[
−1−

√
4 + t

√
−1

5 + t
√
−1 + 2

√
4 + t

√
−1

]
and tr{2}(t) =

[
−1 +

√
4 + t

√
−1

5 + t
√
−1− 2

√
4 + t

√
−1

]

are not linear in t, whereas

tr{1,2}(t) =

[
0

2
√
−1

]
· t+

[
−2
10

]
is indeed linear in t confirming that X is irreducible of degree 2.

Example 2. For each subsequent method, we will use the twisted cube curve

X = {(s, s2, s3) | s ∈ C} ⊂ C3.

For illustrative purposes, we consider

f(α, β, γ) =

[
β − α2

γ − α3

]
, `(α, β, γ) = 2α− 3β − γ + 2, and v = 1.

With W = X ∩ V(`) where |W | = 3 and I = {1, 2, 3}, Newton’s identities yield

trI(t) =

 0
0
−3

 · t+
 −313
−39

 (3)

which is linear in t.

The following three tests determine if trI(t) is a linear function, i.e., there
exists a, b ∈ CN such that trI(t) = a · t + b. They are derived using the fact
that trI(t) is linear if and only if ṫrI(t) is constant if and only if ẗrI(t) is zero
corresponding with the zeroth, first, and second derivatives of trI(t). The zeroth
derivative trace test is the tracking test of [11].
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2.1 Zeroth derivative trace test

The tracking trace test of [11] determines if trI(t) is a linear function by evalu-
ating it at 3 distinct sufficiently general values of t, say t1, t2, t3 ∈ C facilitated
by path tracking. Due to the genericity of L and v, one could take t1 = 0, t2 = 1,
and t3 = −1. That is, one needs to compute

trI(tj) =
∑
i∈I

xi(tj)

where xi(t) defined in (1) are solution curves of H : CN × C→ CN with

H(x, t) =

[
f(x)

`(x)− t · v

]
= 0. (4)

With this setup, trI(t) is linear in t if and only if

trI(t2)− trI(t1)

t2 − t1
=

trI(t3)− trI(t1)

t3 − t1
=

trI(t3)− trI(t2)

t3 − t2
.

In the linear case, trI(t) = a · t+ b where

a =
trI(t2)− trI(t1)

t2 − t1
and b = trI(t1)− a · t1.

Example 3. With the setup from Ex. 2 and t1 = 0, t2 = 1, and t3 = −1, the
following table lists approximations of xi(tj) for i = 1, 2, 3 and j = 1, 2, 3:

t1 = 0 t2 = 1 t3 = −1

x1(tj)
1.0000
1.0000
1.0000

0.8342
0.6960
0.5806

1.1284
1.2733
1.4368

x2(tj)
−0.5858

0.3431
−0.2010

−0.3434
0.1179
−0.0405

−0.7984
0.6374
−0.5089

x3(tj)
−3.4142
11.6569
−39.7990

−3.4909
12.1861
−42.5401

−3.3301
11.0893
−36.9280

so that

trI(0) =

 −313
−39

 , trI(1) =

 −313
−42

 , trI(−1) =

 −313
−36

 (5)

which one can use to easily recover (3).

2.2 First derivative trace test

Since trI(t) is linear if and only if ṫrI(t) is constant, this can be decided by
evaluating ṫrI(t) at 2 distinct sufficiently general values of t, say t1, t2 ∈ C,
facilitated by path tracking and derivative computations. Due to the genericity
of L and v, one could take t1 = 0 and t2 = 1. Due to the relationship between
the paths xi(t) in (1) and the homotopy H(x, t) in (4),

ẋi(t) = −JxH(xi(t), t)
−1 · JtH(xi(t), t) =

[
Jf(xi(t))
J`(xi(t))

]−1

·
[
0
v

]
(6)
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with corresponding Jacobian matrices JxH(x, t), JtH(x, t), Jf(x), and J`(x) so

ṫrI(t) =
∑
i∈I

ẋi(t) =
∑
i∈I

[
Jf(xi(t))
J`(xi(t))

]−1

·
[
0
v

]
.

Therefore, trI(t) is a linear function of t if and only if

ṫrI(t1) = ṫrI(t2) =
trI(t2)− trI(t1)

t2 − t1
.

In the linear case, trI(t) = a · t+ b where

a = ṫrI(t1) and b = trI(t1)− a · t1.

Thus, the first derivative trace test replaces evaluating trI(t3), a path tracking
computation, with evaluating ṫrI(t1) and ṫrI(t2), a linear algebra computation.
We emphasize here that finding ṫrI(t1) does involve path tracking, but the cost
incurred due to tracking paths is half that of the zeroth derivative trace test.

Example 4. With the setup from Ex. 2, we consider t1 = 0 and t2 = 1 with the
values of xi(tj) listed in Ex. 3. The following table lists approximations of the
six values of ẋi(tj) for i = 1, 2, 3 and j = 1, 2 computed using (6):

t1 = 0 t2 = 1

ẋ1(tj)
−0.1429
−0.2857
−0.4286

−0.1963
−0.3276
−0.4099

ẋ2(tj)
0.2230
−0.2612

0.2295

0.2698
−0.1853

0.0954

ẋ3(tj)
−0.0801

0.5469
−2.8009

−0.0735
0.5129
−2.6855

so that

ṫrI(0) = ṫrI(1) =

 0
0
−3

 (7)

which, together with trI(0) in (5), one can easily recover (3).

2.3 Second derivative trace test

Since trI(t) is linear if and only if ẗrI(t) ≡ 0, this can be decided by evaluating
ẗrI(t) at a sufficiently general t1 ∈ C facilitated by derivative computations. Due
to the genericity of L and v, we take t1 = 0. Hence, xi(0) = wi by (1) and ẋi(0)
as in (6) so that

trI(0) =
∑
i∈I

xi(0) =
∑
i∈I

wi and ṫrI(0) =
∑
i∈I

ẋi(0) =
∑
i∈I

[
Jf(wi)
J`(wi)

]−1

·
[
0
v

]
.
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Due to the structure of H(x, t) in (4), ∂2H
∂x∂t = 0 and

ẍi(0) = −
[
Jf(wi)
J`(wi)

]−1

·


ẋi(0)T · Hessian(f1)(wi) · ẋi(0)

.

.

.

ẋi(0)T · Hessian(fn)(wi) · ẋi(0)
0

 (8)

where Hessian(fj)(wi) is the Hessian matrix of fj evaluated at wi. Hence, trI(t)
is a linear function of t if and only if

ẗrI(0) =
∑
i∈I

ẍi(0) = 0.

In the linear case, trI(t) = a · t+ b where

a = ṫrI(0) and b = trI(0).

Thus, the second derivative trace test replaces all path tracking with second
derivative computations performed locally and hence we call it a local trace test.

Example 5. With the setup from Ex. 2, we consider t1 = 0 with the values of
xi(0) and ẋi(0) listed in Ex. 3 and Ex. 4, respectively. Approximations of ẍi(0)
for i = 1, 2, 3 computed using (8) are

ẍ1(0) =

−0.0350
−0.0292

0.0175

 , ẍ2(0) =

 0.0275
0.0671
−0.1464

 , ẍ3(0) =

 0.0074
−0.0380

0.1289


so that ẗrI(0) = 0. Thus, trI(0) and ṫrI(0) computed in (5) and (7) yield (3).

3 Parameterizations

In Section 2, we considered pure-dimensional X ⊂ V(f), i.e., X was contained in
the solution set of f = 0. In this section, we consider pure-dimensional sets which
arise as the image of an algebraic set under an algebraic map. For simplicity,
we only consider X = {p(y) | y ∈ Ck} ⊂ CN where p : Ck → CN has rank k,
i.e., rank Jp(y) = k for generic y ∈ Ck, as more general situations follow using
similar computations. With this setup, X is irreducible with dimX = k so
that the main question is to determine degX via a trace test. That is, given
Z ⊂ W = X ∩ L where ` : CN → Ck is a general linear system and L = V(`),
one aims to decide if Z = W so that d = degX = |W | = |Z|.

Since we are given Z ⊂ W , let Z = {z1, . . . , zq}. Since X = p(Ck) and L
is general, we know that there exists y1, . . . , yq ∈ Ck such that zi = p(yi). Let
v ∈ Ck be general and Mt = V(`− t · v). For each i = 1, . . . , q, we consider the
paths xi(t) ∈ X and ui(t) ∈ Ck defined by

xi(t) = p(ui(t)) ∈ X ∩Mt and ui(0) = yi. (9)

In particular, ui(t) ∈ Ck satisfies the k equations `(p(ui(t)) = t · v.



Decomposing solution sets using derivatives 7

With I = {1, . . . , q}, the trace tests in Section 2 involve the computation of
trI(t) =

∑q
i=1 xi(t), ṫrI(t) =

∑q
i=1 ẋi(t), and ẗrI(t) =

∑q
i=1 ẍi(t). Thus, all that

remains is to compute ẋi(t) and ẍi(t), namely

u̇i(t) = (J`(xi(t)) · Jp(ui(t)))
−1 · v, ẋi(t) = Jp(ui(t)) · u̇i(t) (10)

and

ẍi(t) =
(
I − Jp(ui(t)) ·

(
J`(xi(t)) · Jp(ui(t))

)−1 · J`(xi(t))
)


u̇i(t)
T · Hessian(p1)(ui(t)) · u̇i(t)

.

.

.

u̇i(t)
T · Hessian(pN )(ui(t)) · u̇i(t)

 (11)

where I ∈ CN×N is the identity matrix.

Example 6. We again illustrate using the twisted cubic curve from Ex. 3 using
the same ` and v. In this case, we have xi(tj) = p(ui(tj)) where ui(tj) = (xi(tj))1,

i.e., the first coordinate, and p(s) =
[
s, s2, s3

]T
. Via (10) and (11), we have

u̇i(tj) = (2− 6ui(tj)− 3ui(tj)
2)−1,

ẋi(tj) = u̇i(tj) ·

 1
2ui(tj)
3ui(tj)

2

 , and ẍi(tj) = u̇i(tj)
3 ·

 6ui(tj) + 6
6ui(tj)

2 + 4
12ui(tj)− 18ui(tj)

2


which produces the values listed in the tables in Ex. 4 and Ex. 5.

4 Examples

The following compares the zeroth, first, and second derivative trace tests on two
large examples. These examples utilized Bertini [2] for the path tracking and
used Python with NumPy [13] to perform the linear algebra computations. For
simplicity in our comparison, we utilize serial computations for all three trace
tests but note that all three tests could be easily parallelized.

4.1 A curve from kinematics

One problem solved in [4] is the so-called 8 path-point synthesis problem for four-
bar linkages derived from classical work of [1, 5]. That is, one aims to compute
all four-bar planar linkages whose coupler curve passes through 8 given general
points in the plane. Since one can freely set the orientation at one point, the
8 path-point synthesis problem is the one-pose and 7 path-point Alt-Burmester
problem solved in [4] which defines a curve in C8 of degree 10,858. Following [4],
we consider the system of 21 polynomials f(x, y) where x ∈ C8 and y ∈ C14. Since
the curve of interest is the natural projection of a solution curve in V(f) into C8,
following [8], we take `(x) as a random linear polynomial and v ∈ C random.

With this setup and I = {1, . . . , 10858}, we used the zeroth, first, and second
derivative trace tests from Section 2 to verify that the degree of this curve in C8

is indeed 10,858 by showing that the first 8 coordinates of trI(t) are linear in t.
Using serial computations on an Intel Core i7, the zeroth derivative trace test
took 21.6 minutes, the first derivative test took 9.5 minutes, and the second
derivative test took 1.4 minutes.
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4.2 A secant variety

In order to consider the border rank of the tensor corresponding to 2× 2 matrix
multiplication, the secant variety X = σ6(C4 × C4 × C4) ⊂ C64 was considered
in [6] which showed that dimX = 60 and degX = 15,456. After selecting 60
random linear polynomials ` and random v ∈ C60, we performed the zeroth,
first, and second derivative trace tests based on parameterizations in Section 3
which verified that the degree is indeed 15,456. Using serial computations on an
AMD Opteron 6378 processor, the zeroth derivative test took 84.1 hours, the first
derivative test took 42.2 hours, and the second derivative test took 0.2 hours.
The vast difference in computation time is due to the use of adaptive precision
during tracking; larger systems such as this, having 60 variables, often require
higher precision than hardware types provide.

5 Conclusion

Decomposition of a pure-dimensional algebraic set into its irreducible compo-
nents is fundamental to computational algebraic geometry. In numerical alge-
braic geometry, the pure-dimensional decomposition is performed using random
monodromy loops verified by a trace test. By replacing path tracking with local
derivative computations, we have developed a local trace test which examples
show is computationally advantageous. Due to these results, we are in the process
of developing a robust, high-performance, and parallel implementation.
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